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Abstract—In this paper, a mode-dependent intra frame 
interpolation method is proposed for H.264/AVC compressed 
video. The intra prediction mode information is taken into 
account in the interpolation filter design. For each intra 
prediction mode, an optimal Wiener filter is trained based on 
the representative video sequences. Therefore the trained filter 
is adaptive to the intra prediction mode. Furthermore, the 
quantization parameter is also explored as context information 
for filter selection. Extensive experiments demonstrate that the 
proposed method achieves better performance than the 
traditional methods such as Bicubic, Bilinear, LAZA and NEDI, 
while keeping low computational complexity. 

I. INTRODUCTION 
Image interpolation, which addresses the problem of 

rescaling a low resolution (LR) image to a high resolution 
(HR) image, is one of the most elementary research topics in 
image processing. Image interpolation has a wide range of 
applications in digital photography, video communication, 
satellite remote sensing, object recognition, medical analysis, 
and consumer electronics. Image interpolation is an ill-posed 
problem due to the fact that there are generally multiple HR 
images that can be downsampled to the same LR image. 

A number of image interpolation methods have been 
developed. The simplest techniques for image interpolation 
among these existing methods are based on classical fixed 
linear filters, such as the Bilinear and Bicubic [1]. These 
linear filters are efficient for flatten regions, but may not be 
efficient for edges and texture regions.  To improve the 
efficiency, a spatially adaptive interpolation algorithm called 
LAZA is proposed in [2], which performs interpolation along 
local edge directions. LAZA uses simple rules and 
configurable thresholds to explicitly detect edges and updates 
the interpolation process accordingly. In [3], a fusion based 
method is proposed, it first interpolates the missing pixel in 
the preset multiple directions, gets multiple interpolation 
results, and then fuses these multiple results by minimum 
mean square-error estimation (MMSE). Li and Orchard 
propose a new edge-directed interpolation (NEDI) method [4], 
in which the linear regression model is used to estimate 
coefficients to adapt the interpolation at the HR image. 

Furthermore, Zhang and Wu propose the SAI algorithm [5], 
which learns and adapts varying scene structures using a 2-D 
piecewise AR model by a soft-decision manner. In [6], multi-
frame is considered for image super resolution and the 
support vector regression is applied in [7]. Hardie proposes to 
train Wiener filters based on the motion position of an 
observation window in image [8]. All the aforementioned 
methods deal with the uncompressed image/video, but few 
works focus on the compressed image/video. In [9], the 
authors introduce a Bayesian super resolution reconstruction 
technique to model compression and exploit the quantization 
step information for MPEG-2, H.261, and DV. As [9] 
describes, “Super-Resolution algorithms designed for 
original video don’t perform well when directly applied to 
decompressed image sequences, especially for low 
compression bit-stream”.  

In this work we propose a mode-dependent intra frame 
interpolation for H.264/AVC compressed video. The intra 
prediction mode information is taken into account in the filter 
design. For each intra prediction mode, an optimal Wiener 
filter is trained based on the representative video sequences. 
Furthermore, the quantization parameter is also explored as 
context information. Note that in [10], an adaptive Wiener 
filter has been proposed for the fractional pixel motion 
compensated prediction in video coding. Different from [9] 
and [10], the trained optimal filter in our method is adaptive 
to the intra prediction mode. 

The rest of this paper is organized as follows. Section II 
presents the framework of the mode-dependent intra frame 
interpolation method. Experimental results are provided in 
Section III. Section IV concludes this paper. 

II. PROPOSED INTRA FRAME INTERPOLATION 
In this section, we first give a brief introduction about 

H.264/AVC intra prediction. Then we present the framework 
of mode-dependent intra frame interpolation method. At the 
last, the Wiener filtering training method is given. 
A.  H.264/AVC Intra Prediction Mode 

In the new video coding standard H.264/AVC, an intra 
block (I block) is coded using intra prediction without 



 

 

referring to any data outside the current frame. Intra 
prediction uses pixels from adjacent, previously coded block 
to predict the values in the current block as Fig. 1. There are 
nine intra prediction modes, named as Vertical, Horizontal, 
DC, Diagonal Down-Left, Diagonal Down-Right, Vertical-
Left, Horizontal-Down, Vertical-Right, and Horizontal-Up 
respectively. As illustrated in Fig. 2, the image on the right 
describes the directional stripe of intra prediction mode. 
These directional stripes could approximately describe the 
edge of the image on the left. As indicated in [11], 
interpolation along edge direction is very effective. This is 
because, based on geometric constraint of edges, estimation 
along the edge orientation is optimal in the sense of best 
inferring unknown pixels. Therefore, a mode-dependent intra 
frame interpolation method is proposed in the following. 

 
Figure 1.  Labeling of prediction samples, 4×4 prediction. 

   
Figure 2.  One frame of News and its corresponding intra prediction mode’s 
spatial distribution. 

B. Mode-Dependent Intra Frame Interpolation 

 
Figure 3.  Intra frame interpolation flow chart. 

 
Figure 4.  Intra block interpolation of proposed method. 

The proposed method is illustrated by taking a single 
interpolation frame with 2x2 scaling. Fig. 3 shows the flow 
chart, I frames are decompressed by H.264/AVC decoder, 
then the filter is chosen by the prediction mode of each intra 
block for interpolation. Let ĝ  be a rectangular decompressed 
LR intra frame. f̂  is the rectangular corresponding HR frame 

to be interpolated. The intra block interpolation is depicted in 
Fig. 4. The white dots represent the decompressed pixels 
which we will use to interpolate other pixels. The black 
triangles represent the pixels in the vertical direction, and 
they are interpolated by 

( , )
ˆ (2 , 2 1) G W( , ,0)x yf x y k qp+ = .              (1) 

The black squares represent the pixels in the horizontal 
direction. They are interpolated by  

 ( , )
ˆ (2 1, 2 ) G W( , ,1)x yf x y k qp+ = .              (2) 

The black dots represent pixels in the diagonal direction. 
They are interpolated by  

( , )
ˆ (2 1, 2 1) G W( , ,2)x yf x y k qp+ + = .             (3) 

In (1)-(3), ( )ˆ ˆG ( 1, 1), , ( , )( , ) g x L y L g x L y Lx y = − + − + + +…  
represents the intensity values in the intra compressed frame 

and ( )( , , ) ( , , )W (0,0), , (2 1,2 1)( , , )
T

k qp p k qp pw w L Lk qp p = − −… is 

the weight vector of the Wiener filtering, p is the subpixel 
position and p=0,1,2 corresponds to the black triangle pixels, 
the black square pixels and the black dot pixels respectively. 
k  is the intra block prediction mode. qp  is the quantization 
parameter, which is also considered as context information 
for Wiener filtering. 

C. Wiener Filtering Training 
We use the mean square error (MSE) to measure the 

performance of the intra block interpolation as follows: 

( ) ( ) ( )( )22ˆ ˆ, ,
( , )

MSE E f f f m n f m n
m n block

= − = −∑
∈

⎡ ⎤
⎢ ⎥⎣ ⎦ ,    (4) 

where .  denotes the L2 norm, f  is the original HR frame. 
The optimum weights W should be the one minimizing the 
MSE in (4). However, such W is unavailable because the 
actual pixels in f  are not available at the decoder. Therefore, 
we use Wiener filtering training method [12] to offline 
calculate the W based on some training set. The best 
coefficient vector ( , , )W k qp p  is computed in the training set 

by MSE Wiener-Hopf equation: 
( ) 0.

W( , , )

d MSE
d k qp p

=
                                (5) 

The obtained ( , , )W k qp p is used in (1)-(3) to calculate the f̂ . 

In the training, we take eight CIF sequences: News, 
Tempete, Mobile, Football, Bus, Stefan, Foreman and Mother, 
250 frames each sequence as the training set. All the frames 
are coded in I frames, with four different QP = 24, 28, 32, 36. 
So we finally got the Wiener filters for intra prediction modes 
(Vertical, Horizontal, DC, Diagonal Down-Left, Diagonal 
Down-Right, Vertical-Left, Horizontal-Down, Vertical-Right, 
and Horizontal-Up) under the four quantization parameters. 
In Fig. 5, we take the weight vectors ( 3L = ) for the intra 
prediction modes: 3 (Diagonal Down-Left) and 4 (Diagonal 
Down-Right) as an example. 
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Figure 5.  The weight vectors for intra modes: 3(Left) and 4(Right). 

It can be seen from Fig. 4, the weights of the positions 
along the intra prediction mode’s direction are much greater 
than other weights in these vectors. 

III. EXPERIMENTAL RESULTS 
To evaluate the proposed method, extensive experiments 

were carried out in this section. For thoroughness and fairness 
of our comparison study, we exploit some widely used CIF 
sequences: News, Tempete, Mobile, Football, Bus, Stefan (6 
sequences in the training set) and Basket, Akiyo, Container, 
Funfair, Novel of the size 352x288, 4CIF sequences: Crew 
and Harbour of the size 704x576, and 720P sequences: City 
and Cyclists of the size 1280x720 (9 sequences in the testing 
set), 30 frames each sequence. First the MPEG-B down-
sampling is used in our experiments (each image is filtered 
and then down-sampled by the direct-subsampling method. 
The filter coefficient is set to be [ 2, 0, -4, -3, 5, 19, 26, 19, 5, 
-3, -4, 0, 2 ]/64 [13]). These video sequences are compressed 
by H.264/AVC in the form of all I frames. The proposed 
interpolation method is performed at the decoder. In our 
experiments, the W  presents the optimal Wiener filter vector 
with size of 2 2L L×  ( 3L = ), which is adaptive to the intra 
prediction mode. 

The performance is measured by PSNR and SSIM [14] 
between original video and interpolated video acquired both 
in the training set and the testing set. Our method is compared 
with some representative work in the literature: (1) bicubic 
interpolation [1], (2) bilinear interpolation, (3) locally-
adaptive zooming algorithm (LAZA) [2], and (4) new edge-
directed interpolation (NEDI) [4]. 

Since the original HR images are known in the simulation, 
we can compare the interpolation results with the true 
sequences and measure the objective and subjective quality of 
them. Tables I-II tabulate the objective quality comparison 
with respect to PSNR of the five different methods when 
applied to the six test sequences in training set. It can be 
observed that for all instances the proposed algorithm 
consistently works better than other methods. From Tables I 
and II, the proposed method can improve the objective 
quality of generated HR frames. The average gains in Tables 
I and II are 0.40dB and 0.26dB compared to Bicubic 
respectively. Compared to Bilinear,  the average gains are 
more than 0.6dB. Our method also outperforms the edge 
detection based local methods: LAZA and NEDI. The gains 
are 1.05dB and 0.7dB in Tables I and II compared to LAZA. 
Compared to  NEDI,  the average  gains are more than 1dB.  

PSNR can measure the intensity difference between two 
videos, but it may fail to describe the visual perception 
quality of the video. 

TABLE I.  COMPARISON OF PSNR ON QP=24 

Video Bicubic Bilinear LAZA NEDI Proposed
News 28.46 27.78 27.74 27.63 29.07 

Tempete 26.05 25.72 25.65 25.33 26.23 
Mobile 21.98 21.63 21.60 21.22 22.33 

Football 28.59 27.93 27.84 27.23 29.16 
Bus 25.23 24.83 24.77 24.27 25.56 

Stefan 26.02 25.50 25.40 24.35 26.37 
Average 26.05 25.50 25.40 24.35 26.45 

TABLE II.  COMPARISON OF PSNR ON QP=32 

Video Bicubic Bilinear LAZA NEDI Proposed
News 27.73 27.18 27.14 27.06 28.19 

Tempete 25.29 25.04 24.98 24.75 25.37 
Mobile 21.60 21.29 21.26 20.95 21.84 

Football 27.29 26.83 26.77 26.34 27.62 
Bus 24.58 24.25 24.22 23.82 24.79 

Stefan 25.34 24.92 24.84 23.95 25.57 
Average 25.30 24.91 24.86 24.47 25.56 

The SSIM index is one of the most commonly used 
measures for image visual quality assessment. We further use 
SSIM to measure the average visual quality of all the frames 
of these interpolation methods. The higher SSIM value means 
the better visual quality. From Tables III-IV, it could be seen 
that proposed algorithm again achieves the highest average 
SSIM scores among the competing methods. It means our 
method can achieve better performance on the image visual 
quality. 

TABLE III.  COMPARISON OF SSIM ON QP=24 

Video Bicubic Bilinear LAZA NEDI Proposed
News 0.9069 0.8995 0.8990 0.8977 0.9087 

Tempete 0.8264 0.8118 0.8089 0.8003 0.8332 
Mobile 0.7421 0.7257 0.7245 0.7107 0.7534 

Football 0.8563 0.8418 0.8381 0.8290 0.8617 
Bus 0.8054 0.7908 0.7871 0.7693 0.8160 

Stefan 0.8661 0.8524 0.8500 0.8350 0.8747 
Average 0.8338 0.8203 0.8179 0.8070 0.8412 

TABLE IV.  COMPARISON OF SSIM ON QP=32 

Video Bicubic Bilinear LAZA NEDI Proposed
News 0.8759 0.8696 0.8693 0.8684 0.8767 

Tempete 0.7734 0.7610 0.7587 0.7526 0.7771 
Mobile 0.7041 0.6890 0.6881 0.6766 0.7134 

Football 0.7685 0.7573 0.7553 0.7504 0.7720 
Bus 0.7405 0.7286 0.7236 0.7131 0.7480 

Stefan 0.8377 0.8246 0.8226 0.8089 0.8446 
Average 0.7833 0.7716 0.7696 0.7616 0.7886 

Table V tabulates the objective quality comparison with 
respect to PSNR of the five different methods when applied 
to these nine test sequences in the testing set. Table VI shows 
the image visual quality assessment comparison with respect 
to SSIM in the testing set. Compared with the other four 
methods, the proposed method can also improve both the 
objective quality and the visual quality of generated HR 
frames only with little loss when compared with the 
performance on the training set. 

From these experimental results, we found an interesting 
phenomenon that the NEDI and the LAZA methods do not 
show better performances than the Bicubic and the Bilinear 
method in the compressed frames. 



 

 

TABLE V.  TESTING SET PSNR ON QP=24 

Video Bicubic Bilinear LAZA NEDI Proposed
Akiyo 24.17 23.96 23.89 23.36 24.33 
Basket 33.04 32.52 32.52 32.90 33.52 

Container 26.69 26.38 26.34 24.81 26.96 
Funfair 25.03 24.79 24.76 24.25 25.25 
Novel 28.75 28.66 28.67 28.34 28.82 
Crew 34.86 34.45 34.41 34.41 35.20 

Harbour  30.54 29.47 29.39 39.10 31.60 
City 31.12 30.83 30.79 30.44 31.28 

Cyclists 37.01 36.38 36.33 36.43 37.13 
Average 30.13 29.71 29.67 29.33 30.45 

TABLE VI.  TESTING SET SSIM ON QP=24 

Video Bicubic Bilinear LAZA NEDI Proposed
Akiyo 0.9354 0.9320 0.9320 0.9352 0.9346 
Basket 0.7694 0.7585 0.7539 0.7367 0.7771 

Container 0.8405 0.8359 0.8345 0.8247 0.8407 
Funfair 0.8123 0.8011 0.7992 0.7900 0.8190 
Novel 0.8366 0.8332 0.8331 0.8328 0.8367 
Crew  0.9026 0.8995 0.8986 0.8979 0.9027 

Harbour 0.8991 0.8808 0.8780 0.8718 0.9144 
City 0.8650 0.8585 0.8558 0.8369 0.8665 

Cyclists 0.9222 0.9207 0.9202 0.9205 0.9218 
Average 0.8647 0.8578 0.8561 0.8496 0.8682 

Fig. 6 shows the subjective quality comparison. The 
proposed method produces better visually pleasant results 
among these competing methods.  

IV. CONCLUSION 

A mode-dependent intra frame interpolation method is 
proposed for H.264/AVC compressed video in this paper. In 
the proposed method, each pixel to be interpolated is 
approximated as the weighted combination of its spatial 
neighborhood and all pixels to be interpolated in one intra 
block share the same weights. Unlike other traditional 
interpolation methods, the weights are intra prediction mode-
dependent and trained by Wiener filtering on the 
representative video sequences in terms of different intra 
prediction modes. In addition, the quantization parameter is 
further utilized as the context information for the proposed 
adaptive filter. Extensive experiments demonstrate that the 
proposed method achieves better performance than the 
traditional methods while keeping low computational 
complexity. 
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Figure 6.  Comparison of different methods for sequence: Mobile. (a) 
original frame; (b) bicubic; (c) bilinear; (d) LAZA [2]; (e) NEDI [4]; (f) 
proposed method. 


