
A CODING UNIT CLASSIFICATION BASED AVC-TO-HEVC TRANSCODING

WITH BACKGROUND MODELING FOR SURVEILLANCE VIDEOS

Peiyin Xinga,b, Yonghong Tianb*, Xianguo Zhangb, Yaowei Wangc, Tiejun Huangb
aThe Shenzhen Key Lab for Cloud Comput. Tech. & App., Shenzhen Graduate School, Peking University, Shenzhen 518055, P.R. China

bInstitute of Digital Media, Peking University, Beijing, 100871, P.R. China
c Department of Electronic Engineering, Beijing Institute of Technology, Beijing 100081, China

* Corresponding to: yhtian@pku.edu.cn

ABSTRACT

To save the storage and transmission cost, it is applicable
now to develop fast and efficient methods to transcode the

perennial surveillance videos to HEVC ones, since HEVC

has doubled the compression ratio. Considering the long-

time static background characteristic of surveillance videos,

this paper presents a coding unit (CU) classification based

AVC-to-HEVC transcoding method with background mod-

eling. In our method, the background frame modeled from

originally decoded frames is firstly transcoded into HEVC

stream as long-term reference to enhance the prediction effi-

ciency. Afterwards, a CU classification algorithm which

employs decoded motion vectors and the modeled back-

ground frame as input is proposed to divide the decoded
data into background, foreground and hybrid CUs. Follow-

ing this, different transcoding strategies of CU partition ter-

mination, prediction unit candidate selection and motion

estimation simplification are adopted for different CU cate-

gories to reduce the complexity. Experimental results show

our method can achieve 45% bit saving and 50% complexity

reduction against traditional AVC-to-HEVC transcoding.

Index Terms— video transcoding, surveillance video,

HEVC, coding unit classification, background modeling

1. INTRODUCTION

In surveillance applications, large storage and bandwidth

cost is required to record and transmit the long-period video

archives. To save the cost, it is a reasonable solution to

transcode surveillance videos using a high-efficient encod-

ing process. Recently, the latest video coding standard, High

Efficiency Video Coding (HEVC) [1], can achieve about 50%

bit-rate reduction against its predecessor H.264/AVC [2]

(shorten for AVC) at the same perceptual quality. Therefore,

it is very meaningful to transcode surveillance videos from

AVC to HEVC. However, the efficient quadtree based CU
partition and various patterns of prediction unit (PU) in

HEVC also remarkably increase the encoding complexity.

Consequently, it is desired to develop higher-efficiency and

lower-complexity technologies to transcode the widely used

AVC surveillance video streams to HEVC ones.

Among the transcoding methods, directly connecting

transcoder from the source-format decoder and target-format

encoder can be named full decoding and full encoding

(FDFE). Although FDFE is considered to be the most effi-

cient, it is not practical due to the high computational com-
plexity. Therefore, various speed-up transcoding techniques

have been investigated in [3][4][5]. For example, Shin et al.

[3] developed a motion vector (MV) clustering method to

accelerate the motion estimation (ME) procedure.

While transcoding from AVC to HEVC, the different

partitions of coding units between AVC and HEVC make

the reuse of motion vector and coding modes much more

complex. To address the problem, a motion vector reuse

method was introduced by Peixoto et al. [6], in which CU

size and PU pattern are determined by the similarity among

the corresponding decoded MVs in AVC stream. Moreover,

D. Zhang et al. [7] proposed a fast CU partitioning and PU
candidate selection transcoding procedure. They estimated

the best CU split quadtree, PU mode and MV of each PU by

utilizing the power spectrum based rate-distortion (RD) op-

timization model. However, none of the referred methods

[3-7] is specially designed for surveillance videos. Intuitive-

ly, if typical characteristics of surveillance videos (e.g., the

long-time static background) can be exploited, better trans-

coding efficiency can be achieved.

Thus to obtain a high-efficiency and low-complexity

surveillance video transcoding from AVC to HEVC, we

propose a coding unit classification based AVC-to-HEVC
transcoding method with background modeling (namely

CTBM) for surveillance videos in this paper. For efficiency,

we propose to embed background modeling into AVC-to-

HEVC transcoder, where the beginning originally decoded

frames are utilized to model a background frame. After-

wards, the modeled background frame is transcoded into

HEVC stream as long-term reference to enhance back-

ground prediction efficiency of the following frames.

As for complexity, a CU classification algorithm is

firstly developed using the decoded motion vectors and the

modeled background frame as input. As a result, the decod-

ed data are classified into background CUs (BCs, mainly
background pixels), foreground CUs (FCs, mainly fore-

ground pixels) and hybrid foreground and background CUs

(HCs). The statistics on each CU category shows that differ-

ent kinds of to-be-transcoded CUs tend to own different

characteristics in the HEVC recursive coding structure, such

as different terminated depths of CU partitioning, different

PU patterns for inter prediction etc. Inspired by this, we

propose to adopt different transcoding strategies to trans-

code different CU categories of decoded data into HEVC

streams (the streams can still be decoded by HEVC decoder).

These strategies include CU Partition Determination, PU

Candidate Selection, and ME Simplification.

Experimental results show that our method can achieve
49.9% (CIF) and 54.8% (SD) transcoding time reduction

against traditional FDFE (T-FDFE, directly combining AVC

decoder and HEVC encoder),with 44.6% (CIF) and 46.5%

(SD) bit saving.

The rest of this paper is organized as follows: Section 2

analyzes the problems of transcoding from AVC to HEVC.

Section 3 gives an overview of our transcoding method.

Section 4 shows the experimental results. Section 5 con-

cludes the paper.

2. PROBLEM ANALYSIS

HEVC still follows the traditional “hybrid” encoding meth-

od (inter-/intra-picture prediction and 2D transform coding)

used in all previous compression standards. Nevertheless, it

also introduces some new coding tools. Among them, the

quadtree based block partition is one of the most important

changes with dramatic impact on efficiency and complexity.

Referred to the partition, novel concepts are introduced,

including Coding Unit (CU), Prediction Unit (PU) and

Transform Unit (TU). CU is the basic processing unit rather

than Macroblock (MB) in previous standards such as AVC.

The size of PU and TU depends on the size of CU. Instead
of dividing each picture into MBs, HEVC partitions each

picture into CUs, which are squared regions with size of

2N×2N. The largest CU size is 64×64(N=32) and the small-

est is 8×8(N=4). Fig. 1 shows the recursive quadtree CU

partitioning process. For each CU, the candidate patterns of

PU for inter prediction include symmetric partitions of

2N×2N, 2N×N, N×2N, N×N and asymmetric motion parti-

tions (AMP) of 2N×nU, 2N×nD, nL×2N and nR×2N, all of

which are illustrated in Fig. 2. Note that, the best CU parti-

tion and PU candidate will be selected through the mode

decision process. It is obvious that this decision process will
be very costly. Beside above features, another factor impact-

ing the real-time surveillance video transcoding is the low-

delay reference frame selection. Different from AVC’s ref-

erence software Joint Model (JM), HEVC’s reference Model

(HM) selects the previous frame and the last frames of pre-

vious Group of Pictures (GOPs) as reference frames. Taking

four reference frames and GOP size equal to 4 as an exam-

ple, the picture distances between the current frame and its

reference frames in JM’s low-delay encoder are -1,-2,-3,-4,

and those for HM’s low-delay encoder are -1,-5,-9,-13.

In summary, the different size of coding units, predic-

tion units and reference frame structure make it difficult to
directly reuse the decoded motion vectors, prediction modes

and reference frames from AVC decoder. Thereby the trans-

coding method from AVC to HEVC should be more com-

plicated to realize remarkable complexity reduction. For

surveillance video transcoding, the specific characteristics

of long-time static background can be exploited for time

saving. A reasonable idea follows: after classifying the de-

coded data using the modeled background frame, CU-

category adaptive fast strategies may be summarized to re-

duce the transcoding complexity.

...

2N

SF=0

SF=0 SF=0

2N

SplitFlag

(SF)=0 SF=0

SF=0

SF=0

SF=1

Fig. 1. CU partitioning

AMP

nL×2N nR×2N 2N×nD

N×N N×2N 2N×N 2N×2N

2N×nU

Fig. 2. PU patterns of inter prediction

2.1. Experimental setup for problem analysis

To investigate the detailed fast transcoding strategies, exper-

iments are conducted in this section to analyze the distribu-
tions of CU partition, PU candidate patterns, motion vectors

and reference frames. The experimental platform is the

HM8.0 using the modeled background as long-term refer-

ence. Because surveillance videos are always recorded real-

timely, the low delay main configuration [8] is utilized to

configure HM8.0. While transcoding, the source videos are

crossroad-cif, bank-cif, campus-cif and classover-cif (re-

ferred in Sec. 4) compressed by JM17.2 baseline profile

with quantization parameter (QP) equal to 16. During the

transcoding result analysis, the transcoding information is

made respectively for BCs, FCs and HCs on the four CIF
sequences. Note that, the background modeling and CU

classification algorithm will be referred in Sec. 3.

2.2. Analysis of CU partition

Table 1 shows the distribution of CU partition for different

CU categories. As is seen, the “split CUs” take up 8.46% on

average for BC, and the proportion is much less than that of

FC and HC. However, the proportion 8.46% is not very

small and directly terminating CU partition for BCs may

lead noticeable performance loss. Therefore, we make the

following further analysis. Denoting the CUs without any
foreground Basic Unit (foreground BU, which is a 4x4

block with seldom background pixels and defined in Sec. 3)

as pure background CUs, we can figure out its spilt and non-

spilt proportion in Fig. 3. It can be observed that 98.30% of

pure background CUs will not split any more. In other

words, only 1.70% of pure background CUs with depth

equal to t will be split to depth t+1. Therefore, we can sum-

marize the CU partition determination rule: CU partitioning

can be early terminated if current CU is a pure background.

Table 1. The distribution of CU partition of BC, HC and FC

CU category BC HC FC

non-split(SF=0) 91.54% 43.45% 39.96%

split(SF=1) 8.46% 56.55% 60.04%

Fig. 3. The proportion of split and non-split pure-background CUs

2.3. Analysis of PU patterns

It is apparent that the proportion of each prediction mode

varies among BC, HC and FC. Table 2 shows the distribu-

tion of the prediction modes of BC, HC and FC. As can be

seen from the table, 97.30% of BCs select 2N×2N inter pre-

diction mode. The selection of 2N×N, N×2N and N×N ac-

count 1.52%, and that for AMP account 1.18%. Moreover,

from BC, HC to FC, the percentage for 2N×2N inter predic-

tion mode decreases, and those for 2N×N&N×2N&N×N

and AMP patterns enlarge. Consequently, we can get PU

candidate selection rule: only 2N×2N mode should be used
for BCs, the AMP prediction modes are disabled for HCs

and all the candidate modes will be tried for FCs.

Table 2. The distribution of prediction modes of BC, HC and FC

CU category 2N×2N 2N×N&N×2N&N×N AMP

BC 97.30% 1.52% 1.18%

HC 96.51% 2.40% 1.09%

FC 93.64% 3.72% 2.64%

2.4. Analysis of motion estimation

For BC, HC and FC, the used reference frames probably

have a different distribution. In order to find the best way to

select reference frames, we analyze the distribution of the
selected reference frames with and without long-term refer-

ence. For BC, HC and FC, Fig. 4 (a) and (b) respectively

depicts the distributions without long-term reference

(HM8.0 without background modeling) and that with the

modeled background frame as long-term reference. As can

be seen, both Fig. 4 (a) and (b) show the importance of the

first reference. Moreover in Fig. 4 (a), the fourth reference

frame only accounts a small percentage of 0.81% on average.

Whereas in Fig. 4 (b), the fourth background reference takes

up larger than 5% for BC and HC, the third reference for all

categories and the second reference for BC is less than 5%.

In summary, the first and long-term reference are required
for BC; the first, second and long-term reference are needed

for HC; while the first and second are necessary for FC.

Besides reference frame selection, motion search range

is another important factor in ME that affects the complexity.

Intuitively, the transcoding search range should be no less

than the so-called best MVD, the difference between pre-

dicted motion vector (PMV) and the best matched motion

vector. Table 3 shows the distribution of best MVDs of BC,
HC and FC. From the table, we can find that more than 99%

of the best MVDs are no more than 1 pixel for BC even in

the crossroad-cif which has lots of moving blocks.

(a) (b)

Fig. 4. The distribution of reference frames of T-FDFE:
(a) without long-term reference; (b) with long-term reference

Table 3. The distribution of MVDs

 mvd range

CU category
<=1pixel 1pixel~4pixel >4pixel

BC 99.671% 0.328% 0.001%

HC 99.089% 0.909% 0.002%

FC 98.326% 1.656% 0.018%

Moreover, five candidates will be checked in the pro-

cess of start-search-position selection for ME in HM, which

enlarge the ME time. These candidates are: the motion vec-

tor predictor (PMV) obtained by motion vector predictor

derivation process, three motion vectors of neighboring po-

sitions and zero motion [9]. Actually, some candidates for

some CU categories can be skipped using the decoded MVs.

From the analyses above, we can summarize the motion

estimation simplification rule: For BCs, the second and third

reference frames can be forbidden; the first, second and
long-term reference frames are used for HCs; for FCs, only

the first and second reference frames will be used. The mo-

tion search range will be just set to 1 pixel for BCs, and for

HCs and FCs, motion search range should be larger in order

to maintain the performance. Besides, some start search

positions should be skipped.

3. THE PROPOSED METHOD

Following the summarized rules for transcoding AVC sur-

veillance streams to HEVC ones, we propose a coding unit
classification based AVC-to-HEVC transcoding method

with background modeling for surveillance videos in this

section. As depicted in Fig. 5, CTBM is composed of Back-

ground Modeling and Encoding, CU Classification, CU Par-

tition Determination, PU Candidate Selection and ME Sim-

plification. By adopting these, our CTBM works as follows:

1) A background frame is modeled from originally decod-

ed frames and then encoded as long-term reference.

0%

20%

40%

60%

80%

100%

Ref1 Ref2 Ref3 Ref4

bank campus

classover crossroad

 bank: 1.24%

 campus: 0.37%

classover: 0.49%

crossroad: 1.14%

0%

20%

40%

60%

80%

100%

Ref1 Ref2 Ref3 RefLongTerm

BC HC FC

BC:6.2%

HC:5.0%

FC:3.9%

2) Each CU is classified into BC, HC or FC by calculating

the differences between itself and the corresponding

background data using threshold judgment.

3) With the help of the CU classification information and

the decoded prediction mode information, we early-

terminate CU partition or decide the PU size in advance.
4) BC, HC and FC are processed by the ME Simplification

module respectively. The process includes reference

frame selection, search range modification and start-

search-position refinement using the decoded reference

frames and motion vectors from AVC decoder.

Details about the modules will be referred in the following.

Input
Stream
(H.264)

Decode One
Frame

Encode One
Frame T

ran
sco

d
ed

S

tream
(H

E
V

C
)

Background
Modeling

CU
Classification

ME
Simplification

PU Candidate
Selection

CU Partition
Determination

Original Decoded
Frames

Reference Frame,
MV, Mode Type

Background
Frame

BC, HC, FC

CTBM

Background
Encoding

Background Stream

Fig. 5. The framework of the proposed method

3.1. Background modeling, updating and encoding

Considering the transcoding time and memory cost, the low

complexity segment-and-weight based running average in X.

Zhang et al [10] is utilized as the background modeling al-

gorithm. In general, this method models a background value

of pixels at each position by the following five steps: initial-

izing average values and corresponding weights, calculating

the threshold for temporal segmenting, creating a new seg-
ment or widen the current segment, updating the average

values or calculating the final background value. While

transcoding, the background frame should be updated to

provide a better long-term reference. To avoid the bit-

allocation problem, we still follow [10] to update each

background frame every super group of L frames, the last M

frames of which are used to generate the background frame

to predict the following super group of pictures. In this way,

a no-delay coding can be guaranteed. In order to produce a

high-quality background as long-term reference and guaran-

tee the decoding match, the modeled background frame is
encoded into HEVC stream and only intra prediction and the

decoded minimum QP are employed.

3.2. CU Classification

After the background frame is generated, we classify a CU

according to the foreground or background properties of its

inside BUs. To judge the property of a BU, a reasonable

idea is to calculate the difference between the BU and its

corresponding BU in the background frame. Besides, if one

decoded BU has a large motion vector, it should also be

classified as foreground BU.

Let us donate bi,j as the pixel value at row i and column

j in current BU and BGi,j as the pixel value at the corre-

sponding position in the modeled background frame. We
use (mvx,mvy) as the MV obtained from AVC decoder. Then

we can calculate the property P(b) of a BU b as background

B or foreground F by
4 4

2 2

, ,

1 1

4 4
2 2

, ,

1 1

, (-)

() .

, (-)

i j i j x y

i j

i j i j x y

i j

F abs b BG or mv mv

P b

B abs b BG and mv mv

 

 

 

 


  


 
   







(1)

This means current BU will be judged as foreground if sum

of background difference exceeds the threshold value α (80

in our experiment) or it has obvious motion (ν=2 in our ex-

periment). Otherwise, it will be judged as background. With

the properties of inside BUs, each CU can be classified ac-
cording to the distributions of inside BUs.

A most direct idea for CU classification is to judge

whether the proportion of foreground or background BUs

exceed a threshold. However, even if the above condition is

satisfied, there are still exceptions. For example, one CU has

relative large proportions of background BUs, but there are

still some foreground BUs clustering together. In such case,

the CU cannot be classified into BC, since a worse coding of

foreground BU quality will significantly decrease the total

coding performance. Therefore, we should add some con-

strains beyond counting the proportion of BUs, e.g., with the
help of decoding information and distributions of BUs. Fol-

lowing this idea, we firstly denote any two neighboring de-

coded foreground BUs (P(b)=F) as a foreground group (FG).

Moreover, if one foreground BU is neighboring to any BU

in a foreground group, it will be added to the FG. This pro-

cedure will iterate until size of the FG never enlarges.

With each BU’s property and all foreground groups’ in-

formation, we can obtain each CU’s category C(c) through

calculating and comparing the proportion of foreground

BUs of current CU c. Supposing ||X|| represents the size of a

set X, b(i) is the i-th BU in c, fg(j) is the j-th FG in c, and

2N×2N is the size of c, the calculation process is :

 

 

2 2

2 2

, 16 | (()) . 32 ()

() , 16 | (()) 32 () .

,

FC i P b i F N and j st fg j N

C c BC i P b i F N and j fg j N

HC others

 

 

      


       



(2)

where δ is practically set to 0.5 and ε is 0.0625. All the

thresholds are obtained from the analysis experiment. The

classification of BC, HC and FC will be more consistent

with the scene content using these thresholds. Following

these, if foreground-BU proportion is no more than 1/16 and

no FG takes up more than 1/32 of the total BU number, the

current CU will be categorized as BC; If the foreground-BU

proportion is more than 1/2 and there is one FG, covering

more than 1/4 BUs, the CU is classified to FC; Otherwise it

should be an HC. Algorithm 1 describes the above CU clas-

sification procedure.

Algorithm 1: CU classification algorithm

Input value: Current CU c,
Output: current category class C(c) in {FC,HC,BC}

Classification procedure:

A. Calculate the proportion of foreground BUs R in c:

R=   216 | (())i P b i F N 

B. Find every foreground group

i=1,j=1,k=1,

,P(()) ,m b m F  Then

fg(1) ={b(m)}

While (1)

For k=1 to k=j

For i=1 to i=
2 / 4N

If , ()x k b i  neighbors (), (()) () () () ()b x P b i F b i fg k b x fg k    

Then () { ()} ()fg k b i fg k 

 If , (()) () (1) ... ()x P b x F b x fg fg j      Then j++, fg(j) ={b(x)}

 Else Break

C. Classification

If 2 and . () / 32R j st fg j N    , Then C(c) =FC

Else if 2and () / 32R j fg j N     , Then C(c) =BC

Else C(c) =HC

3.3. CU Partition Determination

As discussed in Sec. 2.2, most of the pure background CUs

will not split any more. Thus following the CU partition

determination rule, if the current CU is a pure background

CU, the recursive CU partitioning will be terminated. Fur-

thermore, if CU size is 16×16 (equal to that of a MB), the

decoded mode of SKIP or P16×16 will indicate the pixels of
the decoded block have similar motion. In such case, it is

reasonable to terminate the CU partition. Fig. 6 depicts the

CU Partition Determination process.

SF=1 SF=0

SF=0

CU candidate Condition

SF=0

others

CU=16×16
Decoded Mode is SKIP

or P16×16

CU=64×64, 32×32,
16×16, 8×8

pure background

Fig. 6. CU Partition Determination process

Table 4. Prediction mode candidates for different CU categories

category Prediction mode candidate

BC Merge,2N×2N

HC Merge,2N×2N,2N×N,N×2N,N×N

FC All

3.4. PU Candidate Selection

As summarized in Sec. 2.3, the large size prediction modes

will be selected mostly for static region. Therefore, follow-
ing the PU candidate selection rule, we only chose 2N×2N

for BCs and other PU sizes will be skipped. On the contrary,

all the possible prediction modes will be tried for FCs. And

for HCs, only AMP prediction modes are disabled. Predic-

tion mode candidates for every category are listed in Table 4.

3.5. ME Simplification

The long-term reference frame takes up a higher proportion

in BCs than HCs and FCs. To refine the reference frame

selection, we skip some reference frames according to the

correlation and analysis of these three categories. Beyond
the motion estimation simplification rule, the reference

frames decoded from the bit stream are also added to the

reference frame candidate pool to maintain the performance.

In summary, the reference frame set S(c) for the current CU

c is described in Eq. 3.

 { 0, } , ()

() { 0, 1, } { }, () ,

{ 0, 1} { }, ()

R Bg U i GopSize C c BC

S c R R Bg U i GopSize C c HC

R R U i GopSize C c FC

   


    
   

(3)

where R0, R1, R2 and Bg represent the first, second, third

and long-term reference frame respectively, i is the refer-

ence frame index obtained from AVC decoder and GopSize

is the length of GOP in HEVC encoder.

To further reduce complexity, as said in the motion es-
timation simplification rule, motion search range will be set

to 1 pixel for BCs, and the range will be modified to the

maximum MVD obtained from AVC decoder for HCs and

FCs. As for the start-search-position selection, we propose

to skip test zero position if all the MVs getting from AVC

decoder is not zero. Equation 4 shows the algorithm for

skipping test zero MV start search position. In Eq. 4, SP is

the search start position set; A, B and C are the three motion

vectors of neighboring positions; Zero is the zero position;

MV is the decoded motion vectors’ set of the current CU.

{ , , , , },
.

{ , , , },

PMV A B C Zero mv MV mv
SP

PMV A B C Otherwise

   
 


0 (4)

bank-cif campus-cif classover-cif crossroad-cif

bank-sd campus-sd classover-sd crossroad-sd
Fig. 7. Examples of surveillance videos used to evaluate CTBM

4. EXPERMENTAL RESULTS

To verify the performance of our transcoding method, we

compare the efficiency and complexity of our method with

T-FDFE. Both T-FDFE and our CTBM are implemented on

HM8.0 under the low-delay-main common test conditions [8]

for the real-time surveillance videos. Moreover, the experi-

mental dataset, eight CIF&SD surveillance videos with 3000

frames, are compressed by AVC software JM17.2 with

baseline configuration and QP=16, most of which have been

utilized to evaluate the method in [10]. They will be trans-

coded by CTBM and T-FDFE with QP=22, 27, 32, 37. Fig.

7 shows the examples of the CIF and SD surveillance videos

with different motion characteristics.

4.1. Efficiency and complexity analysis

For efficiency, experimental results in Table 5 show that
CTBM can save 49.9% (CIF) and 54.8% (SD). In detail, we

can find that larger bit-rate saving will be achieved on the

sequences with larger background regions. For example, the

crossroad-cif that has lots of moving cars has the least bit-

saving and the static bank-cif gains the most bit-saving. This

result reveals the significant improvement in transcoding

efficiency is mainly produced by the background modeling.

For complexity reduction, Table 5 also shows trans-

coding time is reduced by 44.6% (CIF) and 46.5% (SD)

over T-FDFE. Also in detail, the more background regions a

video has, the more complexity reduction is achieved. This
is because our CU category adaptive transcoding strategy

makes more efforts on the time saving for BCs, in which

faster CU partition termination, PU candidate selection and

ME simplification are designed.

It should be noted that, any fast algorithm will produce

some quality loss than the method without the fast algorithm.

However as Table 6 shows, the fast transcoding algorithms

of CU Partition Determination, PU Candidate Selection and

ME Simplification in CTBM only produces 3.3% (CIF)/3.7%

(SD) loss on average compared with the CTBM only using

background modeling based efficiency optimization. Fig. 8

depicts the transcoding RD curves and time saving example.

Table 5. Performance and complexity comparison between CTBM

and T-FDFE on CIF and SD sequences

Sequence
BD rate PSNR gain Time BD rate PSNR gain Time

CIF SD

bank -60.2% 1.030 dB -37.5% -67.6% 1.644 dB -65.6%

campus -52.0% 1.241 dB -48.6% -49.1% 1.168 dB -48.6%

classover -42.4% 1.045 dB -61.5% -45.0% 1.209 dB -67.4%

crossroad -23.6% 0.840 dB -51.8% -24.3% 0.811 dB -37.6%

average -44.6% 1.039 dB -49.9% -46.5% 1.208 dB -54.8%

Table 6. PSNR loss produced by the fast transcoding algorithm

Sequence
BD rate PSNR gain BD rate PSNR gain

CIF SD
bank 2.0% -0.048 dB 3.3% -0.115dB

campus 2.4% -0.088 dB 3.0% -0.090 dB
classover 4.2% -0.141 dB 4.0% -0.133 dB
crossroad 4.8% -0.190 dB 4.5% -0.166 dB
average 3.4% -0.117 dB 3.7% -0.126 dB

Fig. 8. RD curves and time saving example

4.2. Additional experiments

Additionally, we also analyze the complexity reductions

separately performing each fast transcoding strategies in our

CTBM. As Table 7 shows, the complexity reductions are

respectively 10.57%, 20.19% and 26.48% for CU Partition
Determination, PU Candidate Selection and ME Simplifica-

tion. This reveals the importance of each strategy.

Table 7. The complexity reduction while separately perform-

ing each fast transcoding strategy

Strategy
CU Partition

Determination
PU Candidate

Selection
ME Simplification

Time saving 10.57% 20.19% 26.48%

5. CONCLUSION

In this paper, we proposed a coding unit classification based

fast and efficient AVC-to-HEVC transcoding method for

surveillance videos. Beside the more efficient background

prediction from background modeling, a CU classification

algorithm using the modeled background is proposed to

transcode the decoded data into HEVC streams of CU cate-

gories (BC, FC and HC) with different fast transcoding

strategies. Experimental results showed that CTBM could

averagely reduce the total transcoding time by 49.9% (CIF)

and 54.8% (SD) on the eight surveillance sequences, with

44.6% (CIF) and 46.5% (SD) bit saving over the traditional
FDFE without background modeling. For the future work,

we will focus on more accurate CU classification and more

sufficient utilization of decoding information.

ACKNOWLEDGEMENT

This work is partially supported by grants from the Chinese

National Natural Science Foundation under contract No.

61035001, 61121002 and 61176139.

6. REFERENCES

[1] G. J. Sullivan, W. Han, “Overview of the High Efficiency Video

Coding (HEVC) standard,” in T-CSVT, Dec. 2012.

[2] T. Wiegand, G. J. Sullivan and et al., “Overview of the H.264 video

coding standard,” in T-CSVT, Jul. 2003.

[3] Y. Shin and et al., “Low-complexity heterogeneous video transcoding

by motion vector clustering,” in ICISA, April 2010.

[4] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architec-

tures and techniques: an overview,” IEEE Signal Process. Mag., vol.

20 (2), pp. 18-29, Mar. 2003.

[5] I. Ahmad and et al., “Video transcoding: an overview of various

techniques and research issues,” in T-MM, Oct. 2005.

[6] Eduardo Peixoto and et al., “A complexity-scalable transcoder from

H.264 to the new HEVC codec,” in ICIP, pp. 737-740, Sept. 2012.

[7] D. Zhang, B. Li, J. Xu and et al. “Fast transcoding from H.264 to

High Efficiency Video Coding,” in ICME, July 2012.

[8] “HM 8 common test conditions and software reference configura-

tions,” in JCTVC-J1100, Jul. 2012.

[9] “High Efficiency Video Coding (HEVC) Test Model8 (HM8) encod-

er description,” in JCTVC-J1002, Jul. 2012.

[10] X. Zhang and et al., “Low-complexity and high-efficiency back-

ground modeling for surveillance video coding,” in VCIP, Nov., 2012

27

29

31

33

35

37

39

0 500 1000 1500

Bitrate (kbps)

T-FDFE(anchor)

CTBM(proposed)

dB performance
crossroad-cif

0

5000

10000

15000

20000

0 500 1000 1500

Bitrate (kbps)

time

T-FDFE(anchor)

CTBM(proposed)

S

crossroad-cif

