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ABSTRACT 

 

To save the storage and transmission cost, it is applicable 
now to develop fast and efficient methods to transcode the 

perennial surveillance videos to HEVC ones, since HEVC 

has doubled the compression ratio. Considering the long-

time static background characteristic of surveillance videos, 

this paper presents a coding unit (CU) classification based 

AVC-to-HEVC transcoding method with background mod-

eling. In our method, the background frame modeled from 

originally decoded frames is firstly transcoded into HEVC 

stream as long-term reference to enhance the prediction effi-

ciency. Afterwards, a CU classification algorithm which 

employs decoded motion vectors and the modeled back-

ground frame as input is proposed to divide the decoded 
data into background, foreground and hybrid CUs. Follow-

ing this, different transcoding strategies of CU partition ter-

mination, prediction unit candidate selection and motion 

estimation simplification are adopted for different CU cate-

gories to reduce the complexity. Experimental results show 

our method can achieve 45% bit saving and 50% complexity 

reduction against traditional AVC-to-HEVC transcoding. 

 

Index Terms— video transcoding, surveillance video, 

HEVC, coding unit classification, background modeling 

 

1. INTRODUCTION 

 

In surveillance applications, large storage and bandwidth 

cost is required to record and transmit the long-period video 

archives. To save the cost, it is a reasonable solution to 

transcode surveillance videos using a high-efficient encod-

ing process. Recently, the latest video coding standard, High 

Efficiency Video Coding (HEVC) [1], can achieve about 50% 

bit-rate reduction against its predecessor H.264/AVC [2] 

(shorten for AVC) at the same perceptual quality. Therefore, 

it is very meaningful to transcode surveillance videos from 

AVC to HEVC. However, the efficient quadtree based CU 
partition and various patterns of prediction unit (PU) in 

HEVC also remarkably increase the encoding complexity. 

Consequently, it is desired to develop higher-efficiency and 

lower-complexity technologies to transcode the widely used 

AVC surveillance video streams to HEVC ones. 

Among the transcoding methods, directly connecting 

transcoder from the source-format decoder and target-format 

encoder can be named full decoding and full encoding 

(FDFE). Although FDFE is considered to be the most effi-

cient, it is not practical due to the high computational com-
plexity. Therefore, various speed-up transcoding techniques 

have been investigated in [3][4][5]. For example, Shin et al. 

[3] developed a motion vector (MV) clustering method to 

accelerate the motion estimation (ME) procedure.  

While transcoding from AVC to HEVC, the different 

partitions of coding units between AVC and HEVC make 

the reuse of motion vector and coding modes much more 

complex. To address the problem, a motion vector reuse 

method was introduced by Peixoto et al. [6], in which CU 

size and PU pattern are determined by the similarity among 

the corresponding decoded MVs in AVC stream. Moreover, 

D. Zhang et al. [7] proposed a fast CU partitioning and PU 
candidate selection transcoding procedure. They estimated 

the best CU split quadtree, PU mode and MV of each PU by 

utilizing the power spectrum based rate-distortion (RD) op-

timization model. However, none of the referred methods 

[3-7] is specially designed for surveillance videos. Intuitive-

ly, if typical characteristics of surveillance videos (e.g., the 

long-time static background) can be exploited, better trans-

coding efficiency can be achieved.  

Thus to obtain a high-efficiency and low-complexity 

surveillance video transcoding from AVC to HEVC, we 

propose a coding unit classification based AVC-to-HEVC 
transcoding method with background modeling (namely 

CTBM) for surveillance videos in this paper. For efficiency, 

we propose to embed background modeling into AVC-to-

HEVC transcoder, where the beginning originally decoded 

frames are utilized to model a background frame. After-

wards, the modeled background frame is transcoded into 

HEVC stream as long-term reference to enhance back-

ground prediction efficiency of the following frames.  

As for complexity, a CU classification algorithm is 

firstly developed using the decoded motion vectors and the 

modeled background frame as input. As a result, the decod-

ed data are classified into background CUs (BCs, mainly 
background pixels), foreground CUs (FCs, mainly fore-

ground pixels) and hybrid foreground and background CUs 

(HCs). The statistics on each CU category shows that differ-

ent kinds of to-be-transcoded CUs tend to own different 

characteristics in the HEVC recursive coding structure, such 

as different terminated depths of CU partitioning, different 

PU patterns for inter prediction etc. Inspired by this, we 



propose to adopt different transcoding strategies to trans-

code different CU categories of decoded data into HEVC 

streams (the streams can still be decoded by HEVC decoder). 

These strategies include CU Partition Determination, PU 

Candidate Selection, and ME Simplification.  

Experimental results show that our method can achieve 
49.9% (CIF) and 54.8% (SD) transcoding time reduction 

against traditional FDFE (T-FDFE, directly combining AVC 

decoder and HEVC encoder),with 44.6% (CIF) and 46.5% 

(SD) bit saving.  

The rest of this paper is organized as follows: Section 2 

analyzes the problems of transcoding from AVC to HEVC. 

Section 3 gives an overview of our transcoding method. 

Section 4 shows the experimental results. Section 5 con-

cludes the paper. 

 

2. PROBLEM ANALYSIS 
 

HEVC still follows the traditional “hybrid” encoding meth-

od (inter-/intra-picture prediction and 2D transform coding) 

used in all previous compression standards.  Nevertheless, it 

also introduces some new coding tools. Among them, the 

quadtree based block partition is one of the most important 

changes with dramatic impact on efficiency and complexity. 

Referred to the partition, novel concepts are introduced, 

including Coding Unit (CU), Prediction Unit (PU) and 

Transform Unit (TU). CU is the basic processing unit rather 

than Macroblock (MB) in previous standards such as AVC. 

The size of PU and TU depends on the size of CU. Instead 
of dividing each picture into MBs, HEVC partitions each 

picture into CUs, which are squared regions with size of 

2N×2N. The largest CU size is 64×64(N=32) and the small-

est is 8×8(N=4). Fig. 1 shows the recursive quadtree CU 

partitioning process. For each CU, the candidate patterns of 

PU for inter prediction include symmetric partitions of 

2N×2N, 2N×N, N×2N, N×N and asymmetric motion parti-

tions (AMP) of 2N×nU, 2N×nD, nL×2N and nR×2N, all of 

which are illustrated in Fig. 2. Note that, the best CU parti-

tion and PU candidate will be selected through the mode 

decision process. It is obvious that this decision process will 
be very costly. Beside above features, another factor impact-

ing the real-time surveillance video transcoding is the low-

delay reference frame selection. Different from AVC’s ref-

erence software Joint Model (JM), HEVC’s reference Model 

(HM) selects the previous frame and the last frames of pre-

vious Group of Pictures (GOPs) as reference frames. Taking 

four reference frames and GOP size equal to 4 as an exam-

ple, the picture distances between the current frame and its 

reference frames in JM’s low-delay encoder are -1,-2,-3,-4, 

and those for HM’s low-delay encoder are -1,-5,-9,-13.  

In summary, the different size of coding units, predic-

tion units and reference frame structure make it difficult to 
directly reuse the decoded motion vectors, prediction modes 

and reference frames from AVC decoder. Thereby the trans-

coding method from AVC to HEVC should be more com-

plicated to realize remarkable complexity reduction. For 

surveillance video transcoding, the specific characteristics 

of long-time static background can be exploited for time 

saving. A reasonable idea follows: after classifying the de-

coded data using the modeled background frame, CU-

category adaptive fast strategies may be summarized to re-

duce the transcoding complexity.  
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Fig. 1. CU partitioning 
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Fig. 2. PU patterns of inter prediction 

 

2.1. Experimental setup for problem analysis 

 

To investigate the detailed fast transcoding strategies, exper-

iments are conducted in this section to analyze the distribu-
tions of CU partition, PU candidate patterns, motion vectors 

and reference frames. The experimental platform is the 

HM8.0 using the modeled background as long-term refer-

ence. Because surveillance videos are always recorded real-

timely, the low delay main configuration [8] is utilized to 

configure HM8.0. While transcoding, the source videos are 

crossroad-cif, bank-cif, campus-cif and classover-cif (re-

ferred in Sec. 4)  compressed by JM17.2 baseline profile 

with quantization parameter (QP) equal to 16. During the 

transcoding result analysis, the transcoding information is 

made respectively for BCs, FCs and HCs on the four CIF 
sequences. Note that, the background modeling and CU 

classification algorithm will be referred in Sec. 3. 

 

2.2. Analysis of CU partition 

 

Table 1 shows the distribution of CU partition for different 

CU categories. As is seen, the “split CUs” take up 8.46% on 

average for BC, and the proportion is much less than that of 

FC and HC. However, the proportion 8.46% is not very 

small and directly terminating CU partition for BCs may 

lead noticeable performance loss. Therefore, we make the 

following further analysis. Denoting the CUs without any 
foreground Basic Unit (foreground BU, which is a 4x4 

block with seldom background pixels and defined in Sec. 3) 

as pure background CUs, we can figure out its spilt and non-

spilt proportion in Fig. 3. It can be observed that 98.30% of 

pure background CUs will not split any more. In other 

words, only 1.70% of pure background CUs with depth 



equal to t will be split to depth t+1. Therefore, we can sum-

marize the CU partition determination rule: CU partitioning 

can be early terminated if current CU is a pure background. 
 

Table 1. The distribution of CU partition of BC, HC and FC 

CU category BC HC FC 

non-split(SF=0) 91.54% 43.45% 39.96% 

split(SF=1) 8.46% 56.55% 60.04% 
 

 
Fig. 3. The proportion of split and non-split pure-background CUs 

 

2.3. Analysis of PU patterns 

 

It is apparent that the proportion of each prediction mode 

varies among BC, HC and FC. Table 2 shows the distribu-

tion of the prediction modes of BC, HC and FC. As can be 

seen from the table, 97.30% of BCs select 2N×2N inter pre-

diction mode. The selection of 2N×N, N×2N and N×N ac-

count 1.52%, and that for AMP account 1.18%. Moreover, 

from BC, HC to FC, the percentage for 2N×2N inter predic-

tion mode decreases, and those for 2N×N&N×2N&N×N 

and AMP patterns enlarge. Consequently, we can get PU 

candidate selection rule: only 2N×2N mode should be used 
for BCs, the AMP prediction modes are disabled for HCs 

and all the candidate modes will be tried for FCs. 
 

Table 2. The distribution of prediction modes of BC, HC and FC 

CU category 2N×2N 2N×N&N×2N&N×N AMP 

BC 97.30% 1.52% 1.18% 

HC 96.51% 2.40% 1.09% 

FC 93.64% 3.72% 2.64% 

 

2.4. Analysis of motion estimation 

 

For BC, HC and FC, the used reference frames probably 

have a different distribution. In order to find the best way to 

select reference frames, we analyze the distribution of the 
selected reference frames with and without long-term refer-

ence. For BC, HC and FC, Fig. 4 (a) and (b) respectively 

depicts the distributions without long-term reference 

(HM8.0 without background modeling) and that with the 

modeled background frame as long-term reference. As can 

be seen, both Fig. 4 (a) and (b) show the importance of the 

first reference. Moreover in Fig. 4 (a), the fourth reference 

frame only accounts a small percentage of 0.81% on average. 

Whereas in Fig. 4 (b), the fourth background reference takes 

up larger than 5% for BC and HC, the third reference for all 

categories and the second reference for BC is less than 5%. 

In summary, the first and long-term reference are required 
for BC; the first, second and long-term reference are needed 

for HC; while the first and second are necessary for FC. 

Besides reference frame selection, motion search range 

is another important factor in ME that affects the complexity. 

Intuitively, the transcoding search range should be no less 

than the so-called best MVD, the difference between pre-

dicted motion vector (PMV) and the best matched motion 

vector. Table 3 shows the distribution of best MVDs of BC, 
HC and FC. From the table, we can find that more than 99% 

of the best MVDs are no more than 1 pixel for BC even in 

the crossroad-cif which has lots of moving blocks.  
 

 
(a) (b) 

Fig. 4. The distribution of reference frames of T-FDFE: 
(a) without long-term reference; (b) with long-term reference 

 

Table 3. The distribution of MVDs 

     mvd range 

CU category 
<=1pixel 1pixel~4pixel >4pixel 

BC 99.671% 0.328% 0.001% 

HC 99.089% 0.909% 0.002% 

FC 98.326% 1.656% 0.018% 
 

Moreover, five candidates will be checked in the pro-

cess of start-search-position selection for ME in HM, which 

enlarge the ME time. These candidates are: the motion vec-

tor predictor (PMV) obtained by motion vector predictor 

derivation process, three motion vectors of neighboring po-

sitions and zero motion [9]. Actually, some candidates for 

some CU categories can be skipped using the decoded MVs. 

From the analyses above, we can summarize the motion 

estimation simplification rule: For BCs, the second and third 

reference frames can be forbidden; the first, second and 
long-term reference frames are used for HCs; for FCs, only 

the first and second reference frames will be used. The mo-

tion search range will be just set to 1 pixel for BCs, and for 

HCs and FCs, motion search range should be larger in order 

to maintain the performance. Besides, some start search 

positions should be skipped. 

 

3. THE PROPOSED METHOD 

 

Following the summarized rules for transcoding AVC sur-

veillance streams to HEVC ones, we propose a coding unit 
classification based AVC-to-HEVC transcoding method 

with background modeling for surveillance videos in this 

section. As depicted in Fig. 5, CTBM is composed of Back-

ground Modeling and Encoding, CU Classification, CU Par-

tition Determination, PU Candidate Selection and ME Sim-

plification. By adopting these, our CTBM works as follows: 

1) A background frame is modeled from originally decod-

ed frames and then encoded as long-term reference.  
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2) Each CU is classified into BC, HC or FC by calculating 

the differences between itself and the corresponding 

background data using threshold judgment.  

3) With the help of the CU classification information and 

the decoded prediction mode information, we early-

terminate CU partition or decide the PU size in advance.  
4) BC, HC and FC are processed by the ME Simplification 

module respectively. The process includes reference 

frame selection, search range modification and start-

search-position refinement using the decoded reference 

frames and motion vectors from AVC decoder. 

Details about the modules will be referred in the following. 
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Fig. 5. The framework of the proposed method 
 

3.1. Background modeling, updating and encoding 

 

Considering the transcoding time and memory cost, the low 

complexity segment-and-weight based running average in X. 

Zhang et al [10] is utilized as the background modeling al-

gorithm. In general, this method models a background value 

of pixels at each position by the following five steps: initial-

izing average values and corresponding weights, calculating 

the threshold for temporal segmenting, creating a new seg-
ment or widen the current segment, updating the average 

values or calculating the final background value. While 

transcoding, the background frame should be updated to 

provide a better long-term reference. To avoid the bit-

allocation problem, we still follow [10] to update each 

background frame every super group of L frames, the last M 

frames of which are used to generate the background frame 

to predict the following super group of pictures. In this way, 

a no-delay coding can be guaranteed. In order to produce a 

high-quality background as long-term reference and guaran-

tee the decoding match, the modeled background frame is 
encoded into HEVC stream and only intra prediction and the 

decoded minimum QP are employed.  

 

3.2. CU Classification 

 

After the background frame is generated, we classify a CU 

according to the foreground or background properties of its 

inside BUs. To judge the property of a BU, a reasonable 

idea is to calculate the difference between the BU and its 

corresponding BU in the background frame. Besides, if one 

decoded BU has a large motion vector, it should also be 

classified as foreground BU.  

Let us donate bi,j as the pixel value at row i and column 

j in current BU and BGi,j as the pixel value at the corre-

sponding position in the modeled background frame. We 
use (mvx,mvy) as the MV obtained from AVC decoder. Then 

we can calculate the property P(b) of a BU b as background 

B or foreground F by  
4 4
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(1) 

This means current BU will be judged as foreground if sum 

of background difference exceeds the threshold value α (80 

in our experiment) or it has obvious motion (ν=2 in our ex-

periment). Otherwise, it will be judged as background. With 

the properties of inside BUs, each CU can be classified ac-
cording to the distributions of inside BUs.  

A most direct idea for CU classification is to judge 

whether the proportion of foreground or background BUs 

exceed a threshold. However, even if the above condition is 

satisfied, there are still exceptions. For example, one CU has 

relative large proportions of background BUs, but there are 

still some foreground BUs clustering together. In such case, 

the CU cannot be classified into BC, since a worse coding of 

foreground BU quality will significantly decrease the total 

coding performance. Therefore, we should add some con-

strains beyond counting the proportion of BUs, e.g., with the 
help of decoding information and distributions of BUs. Fol-

lowing this idea, we firstly denote any two neighboring de-

coded foreground BUs (P(b)=F) as a foreground group (FG). 

Moreover, if one foreground BU is neighboring to any BU 

in a foreground group, it will be added to the FG. This pro-

cedure will iterate until size of the FG never enlarges. 

With each BU’s property and all foreground groups’ in-

formation, we can obtain each CU’s category C(c) through 

calculating and comparing the proportion of foreground 

BUs of current CU c. Supposing ||X|| represents the size of a 

set X, b(i) is the i-th BU in c, fg(j) is the j-th FG in c, and 

2N×2N is the size of c,  the calculation process is : 

 
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(2) 

where δ is practically set to 0.5 and ε is 0.0625. All the 

thresholds are obtained from the analysis experiment. The 

classification of BC, HC and FC will be more consistent 

with the scene content using these thresholds. Following 

these, if foreground-BU proportion is no more than 1/16 and 

no FG takes up more than 1/32 of the total BU number, the 

current CU will be categorized as BC; If the foreground-BU 

proportion is more than 1/2 and there is one FG, covering 

more than 1/4 BUs, the CU is classified to FC; Otherwise it 

should be an HC. Algorithm 1 describes the above CU clas-

sification procedure. 
 



Algorithm 1: CU classification algorithm 

Input value: Current CU c, 
Output: current category class C(c) in {FC,HC,BC} 

 

Classification procedure: 

A. Calculate the proportion of foreground BUs R in c: 

R=   216 | ( ( ))i P b i F N   

B. Find every foreground group 

i=1,j=1,k=1,
 

,P( ( )) ,m b m F  Then
 
fg(1) ={b(m)} 

While (1) 

For k=1 to k=j 

For i=1 to i=
2 / 4N

 
If , ( )x k b i  neighbors ( ), ( ( )) ( ) ( ) ( ) ( )b x P b i F b i fg k b x fg k      

Then ( ) { ( )} ( )fg k b i fg k 
 

    If , ( ( )) ( ) (1) ... ( )x P b x F b x fg fg j      Then j++, fg(j) ={b(x)} 

    Else Break
 

C. Classification 

If 2 and  . ( ) / 32R j st fg j N    , Then C(c) =FC 

Else if 2and ( ) / 32R j fg j N     , Then C(c) =BC 

Else C(c) =HC 

 
 

 

3.3. CU Partition Determination 

 

As discussed in Sec. 2.2, most of the pure background CUs 

will not split any more. Thus following the CU partition 

determination rule, if the current CU is a pure background 

CU, the recursive CU partitioning will be terminated. Fur-

thermore, if CU size is 16×16 (equal to that of a MB), the 

decoded mode of SKIP or P16×16 will indicate the pixels of 
the decoded block have similar motion. In such case, it is 

reasonable to terminate the CU partition. Fig. 6 depicts the 

CU Partition Determination process. 
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Fig. 6. CU Partition Determination process 

 

Table 4. Prediction mode candidates for different CU categories 

category Prediction mode candidate 

BC Merge,2N×2N 

HC Merge,2N×2N,2N×N,N×2N,N×N 

FC All 

 

3.4. PU Candidate Selection 

 

As summarized in Sec. 2.3, the large size prediction modes 

will be selected mostly for static region. Therefore, follow-
ing the PU candidate selection rule, we only chose 2N×2N 

for BCs and other PU sizes will be skipped.  On the contrary, 

all the possible prediction modes will be tried for FCs. And 

for HCs, only AMP prediction modes are disabled. Predic-

tion mode candidates for every category are listed in Table 4. 

3.5. ME Simplification 

 

The long-term reference frame takes up a higher proportion 

in BCs than HCs and FCs. To refine the reference frame 

selection, we skip some reference frames according to the 

correlation and analysis of these three categories. Beyond 
the motion estimation simplification rule, the reference 

frames decoded from the bit stream are also added to the 

reference frame candidate pool to maintain the performance. 

In summary, the reference frame set S(c) for the current CU 

c is described in Eq. 3.  
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(3) 

where R0, R1, R2 and Bg represent the first, second, third 

and long-term reference frame respectively, i is the refer-

ence frame index obtained from AVC decoder and GopSize 

is the length of GOP in HEVC encoder.  

To further reduce complexity, as said in the motion es-
timation simplification rule, motion search range will be set 

to 1 pixel for BCs, and the range will be modified to the 

maximum MVD obtained from AVC decoder for HCs and 

FCs. As for the start-search-position selection, we propose 

to skip test zero position if all the MVs getting from AVC 

decoder is not zero. Equation 4 shows the algorithm for 

skipping test zero MV start search position. In Eq. 4, SP is 

the search start position set; A, B and C are the three motion 

vectors of neighboring positions; Zero is the zero position; 

MV is the decoded motion vectors’ set of the current CU. 

{ , , , , },
.

{ , , , },  

PMV A B C Zero mv MV mv
SP

PMV A B C Otherwise

   
 


0  (4)
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Fig. 7. Examples of surveillance videos used to evaluate CTBM 

 

4. EXPERMENTAL RESULTS 

 

To verify the performance of our transcoding method, we 

compare the efficiency and complexity of our method with 

T-FDFE. Both T-FDFE and our CTBM are implemented on 

HM8.0 under the low-delay-main common test conditions [8] 

for the real-time surveillance videos. Moreover, the experi-

mental dataset, eight CIF&SD surveillance videos with 3000 

frames, are compressed by AVC software JM17.2 with 

baseline configuration and QP=16, most of which have been 

utilized to evaluate the method in [10]. They will be trans-

coded by CTBM and T-FDFE with QP=22, 27, 32, 37. Fig. 



7 shows the examples of the CIF and SD surveillance videos 

with different motion characteristics. 

 

4.1. Efficiency and complexity analysis 

 

For efficiency, experimental results in Table 5 show that 
CTBM can save 49.9% (CIF) and 54.8% (SD). In detail, we 

can find that larger bit-rate saving will be achieved on the 

sequences with larger background regions. For example, the 

crossroad-cif that has lots of moving cars has the least bit-

saving and the static bank-cif gains the most bit-saving. This 

result reveals the significant improvement in transcoding 

efficiency is mainly produced by the background modeling.  

For complexity reduction, Table 5 also shows trans-

coding time is reduced by 44.6% (CIF) and 46.5% (SD) 

over T-FDFE. Also in detail, the more background regions a 

video has, the more complexity reduction is achieved. This 
is because our CU category adaptive transcoding strategy 

makes more efforts on the time saving for BCs, in which 

faster CU partition termination, PU candidate selection and 

ME simplification are designed.  

It should be noted that, any fast algorithm will produce 

some quality loss than the method without the fast algorithm. 

However as Table 6 shows, the fast transcoding algorithms 

of CU Partition Determination, PU Candidate Selection and 

ME Simplification in CTBM only produces 3.3% (CIF)/3.7% 

(SD) loss on average compared with the CTBM only using 

background modeling based efficiency optimization. Fig. 8 

depicts the transcoding RD curves and time saving example.  
 

Table 5. Performance and complexity comparison between CTBM 

and T-FDFE on CIF and SD sequences 

Sequence 
BD rate PSNR gain Time  BD rate PSNR gain Time  

CIF SD 

bank -60.2% 1.030 dB -37.5% -67.6% 1.644 dB -65.6% 

campus -52.0% 1.241 dB -48.6% -49.1% 1.168 dB -48.6% 

classover -42.4% 1.045 dB -61.5% -45.0% 1.209 dB -67.4% 

crossroad -23.6% 0.840 dB -51.8% -24.3% 0.811 dB -37.6% 

average -44.6% 1.039 dB -49.9% -46.5% 1.208 dB -54.8% 
 

Table 6. PSNR loss produced by the fast transcoding algorithm 

Sequence 
BD rate PSNR gain BD rate PSNR gain  

CIF SD 
bank 2.0% -0.048 dB 3.3% -0.115dB 

campus 2.4% -0.088 dB 3.0% -0.090 dB 
classover 4.2% -0.141 dB 4.0% -0.133 dB 
crossroad 4.8% -0.190 dB 4.5% -0.166 dB 
average 3.4% -0.117 dB 3.7% -0.126 dB 

 

 
Fig. 8. RD curves and time saving example 

 

4.2. Additional experiments 

 

Additionally, we also analyze the complexity reductions 

separately performing each fast transcoding strategies in our 

CTBM. As Table 7 shows, the complexity reductions are 

respectively 10.57%, 20.19% and 26.48% for CU Partition 
Determination, PU Candidate Selection and ME Simplifica-

tion. This reveals the importance of each strategy. 
 

Table 7. The complexity reduction while separately perform-

ing each fast transcoding strategy 

Strategy 
CU Partition 

Determination 
PU Candidate 

Selection 
ME Simplification 

Time saving 10.57% 20.19% 26.48% 

 

5. CONCLUSION 

 

In this paper, we proposed a coding unit classification based 

fast and efficient AVC-to-HEVC transcoding method for 

surveillance videos. Beside the more efficient background 

prediction from background modeling, a CU classification 

algorithm using the modeled background is proposed to 

transcode the decoded data into HEVC streams of CU cate-

gories (BC, FC and HC) with different fast transcoding 

strategies. Experimental results showed that CTBM could 

averagely reduce the total transcoding time by 49.9% (CIF) 

and 54.8% (SD) on the eight surveillance sequences, with 

44.6% (CIF) and 46.5% (SD) bit saving over the traditional 
FDFE without background modeling. For the future work, 

we will focus on more accurate CU classification and more 

sufficient utilization of decoding information. 
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