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English abstract:

After decades of development, traditional cameras have penetrated all corners of
production and life in modern society. The practical value of camera imaging has expanded
from meeting people's photography needs to empowering important application fields in the
information age such as face recognition and autonomous driving. However, traditional
cameras often affect the photography experience and the performance of downstream tasks
due to factors such as insufficient frame rate, insufficient dynamic range, and high power. At
present, many vision and robotics tasks rely on the powerful processing performance of
imaging equipment for high-speed motion and high dynamic range (HDR) scenes, and can
meet the characteristics of high spatial resolution and low noise. In recent years,
neuromorphic cameras have attracted the attention of more and more researchers as a new
type of imaging sensor. The neuromorphic camera draws on the imaging principle of the
biological imaging system, adopts the method of asynchronous dynamic sensing, and obtains
the light intensity change signal in the scene with high time accuracy and wide dynamic range.
However, due to the constraints of camera manufacturing process level and design cost, the
current mainstream neuromorphic cameras have the problems of low resolution and large
noise, which will restrict the wide use of neuromorphic cameras in practical application
scenarios. However, there is currently no algorithm for effective denoising and super-
resolution processing of neuromorphic signals captured by neuromorphic cameras. In
response to this problem, this thesis studies the imaging principle of neuromorphic signals,
and proposes two contributions, and verifies the effectiveness of the algorithm through real
shot data. Studies on neuromorphic signals themselves fully prove the importance and great
potential of high-quality neuromorphic signals in assisting traditional imaging. Therefore, this
paper further proposes an algorithm to use neuromorphic event cameras in hybrid camera
systems to assist in the correction of rolling shutter images. The main contributions of this
thesis include:

(1) This chapter proposes high-performance imaging by exploring the synergy between
traditional frame-based sensors with high spatial resolution and low sensor noise, and
emerging event-based sensors with high speed and high dynamic range. We introduce a
novel computational framework, termed Guided Event Filtering (GEF), to process these two
streams of input data and output a stream of super-resolved yet noise-reduced events. To
generate high-quality events, GEF first registers the captured noisy events onto the guidance



image plane according to our flow model. It then performs joint image filtering that inherits
the mutual structure from both inputs. Lastly, GEF re-distributes the filtered event frame in
the space-time volume while preserving the statistical characteristics of the original events.
When the guidance images underperform, GEF incorporates an event self-guiding
mechanism that resorts to neighbor events for guidance. We demonstrate the benefits of GEF
by applying the output high-quality events to existing event-based algorithms across diverse
application categories, including high-speed object tracking, depth estimation, high frame-
rate video synthesis, and super-resolution/HDR/color image restoration.

(2) This chapter proposes a neuromorphic signal denoising and super-resolution
algorithm, called NeuroZoom, based on real sample learning, to address the problem that
the performance of the GEF algorithm depends on the quality of the guiding image, and the
signal processing speed cannot meet the requirements of practical applications. NeuroZoom
uses 3D U-Net as the backbone architecture to extract rich temporal correlation features from
neuromorphic signals. It also employs a pyramid network structure and multi-scale
supervision mechanisms to achieve neuromorphic signal denoising and super-resolution at
different resolutions. To establish the correspondence between low-resolution (LR) and high-
resolution (HR) neuromorphic signals, a “display-camera” system for collecting multi-
resolution neuromorphic signal data is proposed, which is based on real shooting. This system
collects neuromorphic signal data of three scales by capturing high-frame-rate videos played
on a fixed display. NeuroZoom adopts the noise-to-noise training mode, using a paired data
set of "HR-LR" with the same distribution noise to train the network, and thus effectively
performs up to 4$\times$ neuromorphic event signal denoising and super-resolution tasks,
and 2$\times$ neuromorphic spike signal denoising and super-resolution tasks. Experimental
results demonstrate that NeuroZoom can quickly and effectively process neuromorphic
signals, and the enhanced data helps improve performance in tasks such as visual object
tracking and image super-resolution reconstruction.

(3) This chapter proposes the algorithm EvUnroll for correcting rolling shutter images
using neuromorphic event signals to address the problems of edge distortion and region
occlusion caused by the rolling shutter effect that is prevalent in CMOS camera sensors.
EvUnroll introduces a novel computational imaging system that includes both a rolling shutter
traditional camera and a neuromorphic event camera, and designs a neural network model
consisting of four modules. The algorithm establishes the spatiotemporal correlation between
the rolling shutter image and the global shutter video through event signals and proposes
optical flow estimation and residual estimation modules to solve the problems of edge
distortion and region occlusion in the rolling shutter image, respectively. The intermediate
results of the above two modules are fused to obtain the final corrected image. In addition,
the network also includes an optional deblurring preprocessing module to address the
problem of motion blur in the input image. In the validation test, we use a high-speed camera
with a frame rate of $5700FPS$ to obtain simulated data for network training and build a
hybrid camera system consisting of a rolling shutter camera and a collaborative event camera
to capture real data for testing. Experimental results demonstrate that the proposed method
achieves significantly better performance on both simulated and real data than the state-of-
the-art methods.



