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Abstract—The SoftCast scheme recently proposed for wireless
visual communication avoids the threshold effect that traditional
communication systems usually suffer from. It provides graceful
quality transition by sending images in a sequence of whitened
transform coefficients using dense-constellation modulation and
analog-like transmission. A key point in SoftCast is that it allo-
cates transmission power among coefficients unequally, according
to the expected energy of each coefficient. Importantly, the energy
diversity utilized by power allocation should be shared with
the receiver for correct decoding. Signaling the energy for each
coefficient individually is prohibitive since it requires a large set of
meta data. Grouping coefficients into a few chunks and signaling
the energy at chunk level, on the other hand, may compromise the
efficiency of SoftCast remarkably. In this paper, we investigate
the energy distribution of natural images in transform domain
and propose a model to approximate this distribution. We apply
the model to guide the power allocation in SoftCast. Experimental
results show that the proposed method outperforms the equal-
chunk approach in the original SoftCast by 2∼5 dB, and reduces
the number of required meta data significantly at the same time.

I. INTRODUCTION

Traditional communication system generally requires the

channel quality to be known at the time of encoding, in order

to choose appropriate coding rate. Once a signal is coded and

sent out, the decoding process tends to break down if the actual

channel quality falls below a threshold. On the other hand,

if the channel quality increases beyond that threshold, such

system cannot provide further improvement in the quality of

received signal. This “threshold effect” brings challenges for

the design of wireless point-to-point or broadcast visual com-

munication systems, because the quality of wireless channel

may fluctuate unpredictably and the various wireless users may

have very different receiving qualities.

Recently, a scheme named SoftCast [1]–[3] was proposed

for wireless video. Unlike typical image and video coders

that compress input signal into a binary stream, SoftCast

transforms the image signal into a stream of coefficient num-

bers from which exact reconstruction is possible, leaving out

the conventional quantization and entropy coding. SoftCast

also abandons the conventional channel coding. Instead, it
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modulates the number stream directly to a dense constella-

tion for transmission. The transmission in SoftCast is lossy

in nature and the noise level in the received numbers is

commensurate with the channel signal-to-noise ratio (SNR).

The most prominent advantage of SoftCast is that it provides

graceful quality transition in very wide channel SNR range

and can serve various clients of different channel conditions

simultaneously, using the same transmitted signal in the air.

For this reason, SoftCast has attracted much research attention

in recent years [4]–[10].

A key point of SoftCast is that, to achieve the best per-

formance, SoftCast allocates transmission power among the

coefficients unequally, by scaling each coefficient individually

according to its energy. Importantly, the energy diversity used

to guide power allocation should be shared between the sender

and the receiver via meta data, for the purpose of correct

decoding. To limit the overhead of meta data, SoftCast divides

the coefficients into a set of chunks of equal size and perform

scaling at chunk level. This turns out to be inefficient in terms

of power usage.

In this paper, we address the problem by introducing an

energy distribution model for natural images. We first investi-

gate the characteristics of image transform coefficients. Based

on the observation that the energy of transform coefficients

decay rapidly from low frequency to high frequency, we then

propose a model to approximate this distribution. Finally,

we apply the proposed model to guide the power allocation

in SoftCast. Experimental results indicate that the proposed

approach can improve the performance of the original SoftCast

scheme significantly, while reducing the number of required

meta data to only 4.

The rest of the paper is organized as follows. Section II

briefly reviews the SoftCast scheme. Section III discusses the

statistical properties of transform coefficients and describes

the proposed energy distribution model. Section IV shows

experimental results and Section V concludes the paper.

II. REVIEW OF SOFTCAST

A. SoftCast Transmission

Fig. 1 illustrates the SoftCast scheme. The input image

is first decorrelated by a 2-D transform, producing a stream

of transform coefficients. The transmission stage scales each

coefficient individually, applies a Walsh-Hardmard transform

(WHT) to whiten the stream, and modulates the resulted

978-1-4799-3432-4/14/$31.00 ©2014 IEEE 1114



numbers to a dense constellation (e.g. 64k-QAM) for raw

OFDM transmission. As illustrated by Fig. 2, a pair of

numbers (extracted from the stream) is mapped to a point in

the constellation, using the two numbers as the I- and the Q-

components respectively, and transmitted by one OFDM sub-

carrier. The receiver will get a noisy version of the stream due

to channel noises. The scaling operation serves the purposes

of power allocation and unequal protection against noises.

The scaling factors are determined by a power-distortion

optimization (PDO) procedure, and will be shared by the

SoftCast sender and receiver via a limited number of meta

data. See [1]–[3] for the details of SoftCast.
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Fig. 1. Framework of the SoftCast scheme [1]–[3].
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Fig. 2. Modulation for raw OFDM transmission.

B. Power-Distortion Optimization

Suppose x = (x1, x2, . . . , xN ) ∈ R
N are the coefficients to

transmit. To achieve efficient power usage, the encoder scales

each coefficient xi by a factor gi and sends out yi = gi ·xi di-

rectly using dense constellation and raw OFDM transmission1.

After demodulation, the receiver gets ŷi = yi + ni, where ni

is commonly assumed to be additive white Gaussian noise

(AWGN) with variance σ2

n. The decoder gets an estimation of

xi by x̂i = ŷi/gi = xi + ni/gi.
2

In this process, the expected distortion in x̂i is Di = E[(x̂i−
xi)

2] = σ2

n/g
2

i . The expected transmission power for sending

xi is Pi = E[y2i ] = g2i · E[x2

i ]. Therefore, the distortion-power

relationship is Di ·Pi = σ2

n ·E[x2

i ], or Di(Pi) = σ2

n ·E[x2

i ]/Pi.

To achieve optimal performance, the transmission power is

allocated among {xi} by

(P1): minimize
∑

i

Di s. t.
∑

i

Pi 6 Ptotal (1)

1The Walsh-Hardmard transform can be ignored during power-distortion
analysis, because the WHT transform of a white noise is still a white noise.

2The receiver may employ a linear least-square error (LLSE) estimator to
derive x̂i, if σn is known [1]–[3]. However, this aspect is usually ignored by
the power allocation procedure since σn is unknown by the sender.

The problem is easily solved by setting ∂Di/∂Pi to a constant.

This eventually leads to

Pi = Cσn

√

E[x2

i ] or Pi ∝
√

E[x2

i ],

and

gi =
√

Cσn(E[x2

i ])
−1/4

or gi ∝ (E[x2

i ])
−1/4

.

Using the optimal power allocation, the total distortion in the

reconstructed image is

Dtotal =
∑

i

Di =
σ2

n

Ptotal

(

∑

i

√

E[x2

i ]

)2

. (2)

For a general signal x, We define the “activity” of x by

H(x) =
∑

i

√

E[x2

i ].

III. ENERGY MODELING FOR SOFTCAST OPTIMIZATION

Ideally, to achieve optimal power usage, the scaling factors

gi should be selected individually according to E[x2

i ]. How-

ever, the receiver needs to know the scaling factors employed

by the sender, for the purpose of correct decoding. Of course,

sending one meta data gi for each coefficient individually may

introduce significant overhead. Therefore, SoftCast groups

coefficients into a set of chunks and perform scaling at chunk

level, sending one gi for each chunk. In other words, all the

coefficients in a chunk choose the same gi value, based on

the mean coefficient energy (i.e. E[x2

i ]) of that chunk. Fig. 3

illustrates the chunk division approach in the original SoftCast.

Typically, 64 chunks are used for a whole image.
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Fig. 3. Chunk division in SoftCast for power allocation. (a) The distribution
of transform coefficient energy. (b) The equal-size chunk division in SoftCast.
Y (u, v) represents the transform coefficients of image.

In this section, we introduce a model to approximate the

energy distribution in transform domain. Suppose Y (u, v) is

the transform domain (e.g. DCT) representation of an image.

We have the following observations (as shown in Fig. 3): (1)

The energy of Y (u, v) decays rapidly from low frequency

region to high frequency region, as the value of
√
u2 + v2

increases; (2) The energy distribution of Y (u, v) varies with

the angle of frequency (i.e. θ = arctan(u/v)) only slightly.

Based on the above observations, we believe that the expec-

tation of Y 2(u, v) can be reliably estimated based on ρ(u, v) =√
u2 + v2, i.e. the distance of between this coefficient and the
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Fig. 4. Relationship between the energy expectation E(ρ) and ρ.

DC coefficient in the transform coefficient plane. We establish

an energy distribution model according to the following steps.

Firstly, we evaluate the mean energy of transform coefficients

which have the similar distance ρ(u, v). To do this, we define

a set of “virtual” chunks, Lk, k = 1, 2, . . . , by

Lk = {(u, v)|k − 1 < ρ(u, v) ≤ k},

each of which includes the coefficients with similar ρ(u, v)
values. Then we calculate the energy expectation for each Lk

by

E(k) = Mean{Y 2(u, v)|(u, v) ∈ Lk}.

As stated before, for natural images, the value of E(k)
decays with k rapidly. This is illustrated in Fig. 4 more clearly.

To model this distribution, we propose to employ the following

function to approximate E(k):

Ẽ(k) = a(k + b)c + d.

The parameters a, b, c, d will be optimized so that the estimated

energy expectation Ẽ(k) becomes as close to the real energy

expectation E(k) as possible. Once these parameters are

determined, they are transmitted to the receiver as meta data.

At the same time, the energy distribution model established

by a, b, c, d will be used to guide power allocation, by setting

E[||Y (u, v)||2] = Ẽ(ρ(u, v)).

IV. EXPERIMENTAL RESULTS

In this section, we conduct some experiments to evaluate

the proposed scheme. We first investigate the accuracy of

the proposed energy distribution model. Fig. 5 illustrates the

estimated transform coefficient energy based on the proposed

model. To further show the accuracy of the model, we compare

the actual energy E(k) with the estimated Ẽ(k). From these

figures, we can see that the proposed model is accurate

enough for modeling the energy diversity among transform

coefficients.

Now we investigate the performance of SoftCast using the

proposed energy distribution model, and compare it with the

original SoftCast scheme. Fig. 7 summarizes the simulation

results. We can see that the proposed method outperforms the
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Fig. 5. The energy map of transform coefficients. Left: the actual energy.
Right: the energy estimated by the model.
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Fig. 6. Comparison between the actual energy E(k) and the estimated energy

Ẽ(k) by the model.

original SoftCast scheme by 2 ∼ 5 dB. The reconstructed

images are illustrated in Fig. 8 to provide a subjective per-

formance comparison. Since the power-usage of the proposed

method is very efficient, we consider a relatively low channel

signal-to-noise ratio, i.e. CSNR=0dB. We can see the proposed

approach can generate reconstruction images with much better

perceptual qualities.

V. CONCLUSIONS AND DISCUSSIONS

SoftCast provides graceful quality transition for wide chan-

nel SNR range. However, both the SoftCast sender and receiver

needs to know the energy diversity among the coefficients, in

order to achieve optimal power allocation and correct decod-

ing. Signaling the energy of each coefficient (approximately)

using a limited number of meta data is very important for

SoftCast. This paper investigates the transform coefficient

energy distribution of natural images and propose a model

to approximate this distribution. Experimental results verified

the efficiency of the model.
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