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Exploring Algorithmic Limits of Matrix Rank
Minimization Under Affine Constraints
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Abstract—Many applications require recovering a matrix of
minimal rank within an affine constraint set, with matrix com-
pletion a notable special case. Because the problem is NP-hard in
general, it is common to replace the matrix rank with the nuclear
norm, which acts as a convenient convex surrogate. While elegant
theoretical conditions elucidate when this replacement is likely to
be successful, they are highly restrictive and convex algorithms
fail when the ambient rank is too high or when the constraint
set is poorly structured. Nonconvex alternatives fare somewhat
better when carefully tuned; however, convergence to locally opti-
mal solutions remains a continuing source of failure. Against this
backdrop, we derive a deceptively simple and parameter-free prob-
abilistic PCA-like algorithm that is capable, over a wide battery
of empirical tests, of successful recovery even at the theoretical
limit where the number of measurements equals the degrees of
freedom in the unknown low-rank matrix. Somewhat surprisingly,
this is possible even when the affine constraint set is highly ill-
conditioned. While proving general recovery guarantees remains
evasive for nonconvex algorithms, Bayesian-inspired or otherwise,
we nonetheless show conditions whereby the underlying cost func-
tion has a unique stationary point located at the global optimum;
no existing cost function we are aware of satisfies this property.
The algorithm has also been successfully deployed on a computer
vision application involving image rectification and a standard col-
laborative filtering benchmark.

Index Terms—Rank minimization, affine constraints, matrix
completion, matrix recovery, empirical Bayes.

I. INTRODUCTION

R ECENTLY there has been a surge of interest in finding
minimum rank matrices subject to some problem-specific

constraints often characterized as an affine set [1]–[7]. Mathe-
matically this involves solving

min
X

rank [X] s.t. b = A (X) , (1)

where X ∈ Rn×m is the unknown matrix, b ∈ Rp represents
a vector of observations and A : Rn×m → Rp denotes a linear
mapping. An important special case of (1) commonly applied
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to collaborative filtering is the matrix completion problem

min
X

rank [X] s.t. X ij = (X0)ij , (i, j) ∈ Ω, (2)

where X0 is a low-rank matrix we would like to recover, but
we are only able to observe elements from the set Ω [1], [2].
Unfortunately however, both this special case and the general
problem (1) are well-known to be NP-hard, and the rank penalty
itself is non-smooth. Consequently, a popular alternative is to
instead compute

min
X

∑

i

f (σi [X]) s.t. b = A (X) , (3)

where σi [X] denotes the i-th singular value of X and f is
usually a concave, non-decreasing function (or nearly so). In
the special case where f(z) = I[z �= 0] (i.e., an indicator func-
tion) we retrieve the matrix rank; however, smoother surrogates
such as f(z) = log z or f(z) = zq with q ≤ 1 are generally pre-
ferred for optimization purposes. When f(z) = z, (3) reduces
to convex nuclear norm minimization. A variety of celebrated
theoretical results have quantified specific conditions, heavily
dependent on the singular values of matrices in the nullspace
of A, where the minimum nuclear norm solution is guaranteed
to coincide with that of minimal rank [1], [3], [6]. However,
these guarantees typically only apply to a highly restrictive set
of rank minimization problems, and in a practical setting non-
convex algorithms can succeed in a much broader range of
conditions [2], [5], [6].

In Section II we will summarize state-of-the-art non-convex
rank minimization algorithms that operate under affine con-
straints and point out some of their shortcomings. This will
be followed in Section III by the derivation of an alternative
approach using Bayesian modeling techniques adapted from
probabilistic PCA [8]. Section IV will then describe connections
with nuclear norm minimization, convergence issues, and prop-
erties of global and local solutions. The latter includes special
cases whereby any stationary point of the intrinsic cost func-
tion is guaranteed to have optimal rank, illustrating an under-
lying smoothing mechanism which leads to success over com-
peting methods. We next discuss algorithmic enhancements in
Section V that further improve recovery performance in prac-
tice. Section VI contains a wide variety of numerical compar-
isons that highlight the efficacy of this algorithm, while Section
Section VII presents a computer vision application involving
image rectification and a standard collaborative filtering bench-
mark. Technical proofs and algorithm update rule details are
contained in the Appendix. Portions of this work have previ-
ously appeared in conference proceedings [9].
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Before proceeding, we highlight several main contributions
as follows:

1) Bayesian inspiration can take uncountably many different
forms and parameterizations, but the devil is in the details
and existing methods offer little opportunity for both the-
oretical inquiry and substantial performance gains solving
(1). In this regard, we apply carefully-tailored modifica-
tions to a veteran probabilistic PCA model leading to sys-
tematic theoretical and empirical insights and advantages.
Model justification is ultimately based on such meticulous
technical considerations rather than merely the presumed
qualitative legitimacy of any underlying prior distribu-
tions.

2) Non-convex algorithms have demonstrated some im-
provement in estimation accuracy over the celebrated con-
vex nuclear norm; however, this typically requires the in-
clusion of one or more additional tuning parameters to
incrementally inject additional objective function curva-
ture and avoid bad local solutions. In contrast, for solving
(1) our non-convex Bayesian-inspired algorithm requires
no such parameters at all, and noisy relaxations necessi-
tate only a single, standard trade-off parameter balancing
data-fit and minimal rank.1

3) Over a wide battery of controlled experiments with
ground-truth data, our approach outperforms all existing
algorithms that we are aware of, Bayesian, non-convex, or
otherwise. This includes direct head-to-head comparisons
using the exact experimental designs and code prepared
by original authors. In fact, even whenA is ill-conditioned
we are consistently able to solve (1) right up to the the-
oretical limit of any possible algorithm, which has never
been demonstrated previously.

II. RELATED WORK

Here we focus on a few of the latest and most effective rank
minimization algorithms, all developed within the last few years
and evaluated favorably against the state-of-the-art.

A. General Non-Convex Methods

In the non-convex regime, effective optimization strategies
attempt to at least locally minimize (3), often exceeding the per-
formance of the convex nuclear norm. For example, [6] derives
a family of iterative reweighted least squares (IRLS) algorithms
applied to f(z) = (z2 + γ)q/2 with q, γ > 0 as tuning parame-
ters. A related penalty also considered, which coincides with the
limit as q → 0 (up to an inconsequential scaling and translation),
is f(z) = log(z2 + γ), which maintains an intimate connection
with rank given that

log z = lim
q→0

q−1 (zq − 1) and lim
q→0

zq = I [z �= 0] , (4)

where I is a standard indicator function. Consequently, when
γ is small,

∑
i log(σi [X]2 + γ) behaves much like a scaled

1While not our emphasis here, similar to other Bayesian frameworks, even this
trade-off parameter can ultimately be learned from the data if a true, parameter-
free implementation is desired across noise levels.

and translated version of the rank, albeit with nonzero gradients
away from zero.

The IRLS0 algorithm from [6] represents the best-performing
special case of the above, where

∑
i log(σi [X]2 + γ) is min-

imized using a homotopy continuation scheme merged with
IRLS. Here a fixed γ is replaced with a decreasing sequence
{γk}, the rationale being that when γk is large, the cost func-
tion is relatively smooth and devoid of local minima. As the
iterations k progress, γk is reduced, and the cost behaves more
like the matrix rank function. However, because now we are
more likely to be within a reasonably good basin of attraction,
spurious local minima are more easily avoided. The downside
of this procedure is that it requires a pre-defined heuristic for
reducing γk , and this schedule may be problem specific. More-
over, there is no guarantee that a global solution will ever be
found.

In a related vein, [5] derives a family of iterative reweighted
nuclear norm (IRNN) algorithms that can be applied to virtu-
ally any concave non-decreasing function f , even when f is
non-smooth, unlike IRLS. For effective performance however
the authors suggest a continuation strategy similar to IRLS0.
Moreover, additional tuning parameters are required for differ-
ent classes of functions f and it remains unclear which choices
are optimal. While the reported results are substantially better
than when using the convex nuclear norm, in our experiments
IRLS0 seems to perform slightly better, possibly because the
quadratic least squares inner loop is less aggressive in the initial
stages of optimization than weighted nuclear norm minimiza-
tion, leading to a better overall trajectory. Regardless, all of these
affine rank minimization algorithms fail well before the theoreti-
cal recovery limit is reached, when the number of observations p
equals the number of degrees of freedom in the low-rank matrix
we wish to recover. Specifically, for an n × m, rank r matrix,
the number of degrees of freedom is given by r(m + n) − r2 ,
hence p = r(m + n) − r2 is the best-case boundary. In practice
if A is ill-conditioned or degenerate the achievable limit may be
more modest.

A third approach relies on replacing the convex nuclear norm
with a truncated non-convex surrogate [2]. While some com-
petitive results for image impainting via matrix completion are
shown, in practice the proposed algorithm has many parameters
to be tuned via cross-validation. Moreover, recent comparisons
contained in [5] show that default settings perform relatively
poorly.

Finally, a somewhat different class of non-convex algorithms
can be derived using a straightforward application of alternating
minimization [10]. The basic idea is to assume X = UV T for
some low-rank matrices U and V and then solve

min
U ,V

‖ b −A
(
UV T

)
‖F (5)

via coordinate decent. The downside of this approach is that it
can be sensitive to data correlations and requires that U and
V be parameterized with the correct rank. In contrast, our em-
phasis here is on algorithms that require no prior knowledge
whatsoever regarding the true rank. This is especially important
in application extensions that may manage multiple low-rank
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matrices such that prior knowledge of all individual ranks is not
feasible.

B. Bayesian Methods

From a probabilistic perspective, previous work has applied
Bayesian formalisms to rank minimization problems, although
not specifically within an affine constraint set. For example,
[11]–[13] derive robust PCA algorithms built upon the lin-
ear summation of a rank penalty and an element-wise sparsity
penalty. In particular, [12] applies an MCMC sampling approach
for posterior inference, but the resulting iterations are not scal-
able, subjectable to detailed analysis, nor readily adaptable to
affine constraints. In contrast, [11] applies a similar probabilis-
tic model but performs inference using a variational mean-field
approximation. While the special case of matrix completion
is considered, from an empirical standpoint its estimation ac-
curacy is not competitive with the state-of-the-art non-convex
algorithms mentioned above. Finally, without the element-wise
sparsity component intrinsic to robust PCA (which is not our
focus here), [13] simply collapses to a regular PCA model with
a closed-form solution, so the challenges faced in solving (1) do
not apply. Consequently, general affine constraints really are a
key differentiating factor.

From a motivational angle, the basic probabilistic model with
which we begin our development can be interpreted as a care-
fully re-parameterized generalization of the probabilistic PCA
model from [8]. This will ultimately lead to a non-convex algo-
rithm devoid of the heuristic tuning strategies mentioned above,
but nonetheless still uniformly superior in terms of estimation
accuracy. We emphasize that, although we employ a Bayesian
entry point for our algorithmic strategy, final justification of the
underlying model will be entirely based on properties of the
underlying cost function that emerges, rather than any putative
belief in the actual validity of the assumed prior distributions
or likelihood function. This is quite unlike the vast majority of
existing Bayesian approaches.

C. Analytical Considerations

Turning to analytical issues, a number of celebrated theoret-
ical results dictate conditions whereby substitution of the rank
function with the convex nuclear norm in (1) is nonetheless guar-
anteed to still produce the minimal rank solution. For example,
if A is a Gaussian iid measurement ensemble and X0 ∈ Rn×n

represents the optimal solution to (1) with rank[X0 ] = r, then
with high probability as the problem dimensions grow large, the
minimum nuclear norm feasible solution will equal X0 if the
number of measurements p satisfies p ≥ 3r(2n − r) [14].

The limitation of this type of result is two-fold. First, in the
above situation the true minimum rank solution only actually re-
quires p ≥ r(2n − r) measurements to be recoverable via brute
force solution of (1), and the remaining difference of a factor
of three can certainly be considerable in many practical situa-
tions (e.g., requiring 300 measurements is far more laborious
than only needing 100 measurements). Secondly though, and
far more importantly, all existing provable recovery guarantees
place extremely strong restrictions on the structure of A, e.g.,

strong restrictions on the singular value decay of matrices in
the nullspace of A. Such conditions are unlikely to ever hold in
realistic application settings, including the image rectification
example we describe in Section VII.A (in fact, these conditions
are usually incapable of even being checked). In contrast, the
algorithm we propose is empirically observed to only require
the theoretically minimal number of measurements even when
such nullspace conditions are violated in many cases. While a
general theoretical guarantee of this sort is obviously not pos-
sible, we do nonetheless provide several supporting theoretical
results indicative of why such performance is at least empirically
obtainable.

III. ALTERNATIVE ALGORITHM DERIVATION

In this section we first detail our basic distributional assump-
tions followed by development of the associated update rules
for inference.

A. Basic Model

In contrast to the majority of existing algorithms organized
around practical solutions to (3), here we adopt an alternative,
probabilistic starting point. We first define the Gaussian likeli-
hood function

p (b|X;A, λ) ∝ exp
[
− 1

2λ
‖ A (X) − b ‖2

2

]
, (6)

noting that in the limit as λ → 0 this will enforce the same
constraint set as in (1). Next we define an independent, zero-
mean Gaussian prior distribution with covariance νiΨ on each
column of X , denoted x:i for all i = 1, . . . ,m. This produces
the aggregate prior on X given by

p (X;Ψ,ν) =
∏

i

N (x:i ;0, νiΨ) ∝ exp
[
x	Ψ

−1
x
]
, (7)

where Ψ ∈ Rn×n is a positive semi-definite symmetric matrix,2

ν = [ν1 , . . . , νm ]	 is a non-negative vector, x = vec[X]
(column-wise vectorization), and Ψ = diag[ν] ⊗ Ψ, with ⊗
denoting the Kronecker product. It is important to stress here
that we do not necessarily believe that the unknown X actually
follows such a Gaussian distribution per se. Rather, we adopt
(7) primarily because it will lead to an objective function with
desirable properties related to solving (1).

Moving forward, given both likelihood and prior are Gaus-
sian, the posterior p(X|b;Ψ,ν,A, λ) is also Gaussian, with
mean given by an X̂ such that

x̂ = vec
[
X̂

]
= ΨA	(

λI + AΨA	)−1
b. (8)

2Technically Ψ must be positive definite for the inverse in (7) to be de-
fined. However, we can accommodate the semi-definite case using the fol-
lowing convention. Without loss of generality assume that Ψ = RR	 for
some matrix R. We then qualify that p(X; Ψ, ν) = 0 if x /∈ span[R],
and p(X; Ψ, ν) ∝ exp[− 1

2 x	(R	)
†
R†x] otherwise. Equivalently, through-

out the paper for convenience (and with slight abuse of notation) we define

x	Ψ
−1

x = ∞ when x /∈ span[R], and x	Ψ
−1

x = x	(R	)
†
R†x other-

wise. This will come in handy, for example, when interpreting the bound in
(12) below. Note also that the final cost function (10) we will ultimately be
minimizing requires no such inverse anyway.
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Here A ∈ Rp×nm is a matrix defining the linear operator A
such that b = Ax reproduces the feasible region in (1). From
this expression it is clear that, if Ψ represents a low-rank co-
variance matrix, then each column of X̂ will be constrained
to a low-dimensional subspace resulting overall in a low-rank
estimate as desired. Of course for this simple strategy to be suc-
cessful we require some way of determining a viable Ψ and the
scaling vector ν.

A common Bayesian strategy in this regard is to marginalize
over X and then maximize the resulting likelihood function
with respect to Ψ and ν [15], [13], [16]. This involves solving

max
Ψ∈H + ,ν≥0

∫
p (b|X;A, λ) p (X;Ψ,ν) dX, (9)

where H+ denotes the set of positive semi-definite and symmet-
ric n × n matrices. After a −2 log transformation and applica-
tion of a standard convolution-of-Gaussians integration, solving
(9) is equivalent to minimizing the cost function

L (Ψ,ν) = b	Σ−1
b b + log |Σb |, (10)

where

Σb = AΨA	 + λI and Ψ = diag [ν] ⊗ Ψ. (11)

Here Σb is the covariance of b given Ψ and ν.

B. Update Rules

Minimizing (10) is a non-convex optimization problem, and
we employ standard upper bounds for this purpose leading to an
EM-like algorithm, somewhat related to [8]. In particular, we
compute separate bounds, parameterized by auxiliary variables,
for both the first and second terms of L(Ψ,ν). While the gen-
eral case can easily be handled and may be applicable for more
challenging problems, here for simplicity and ease of presenta-
tion we consider minimizing L(Ψ) � L(Ψ,ν = 1), meaning
all elements of ν are fixed at one (and such is the case for all
experiments reported herein, although we are currently explor-
ing situations where this added generality could be especially
helpful).

Based on [16], for the first term in (10) we have

b	Σ−1
b b ≤ 1

λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x (12)

with equality whenever x satisfies (8). For the second term we
use

log |Σb | ≡ m log |Ψ| + log |λA	A + Ψ
−1 |

≤ m log |Ψ| + tr
[
Ψ−1∇Ψ−1

]
+ C, (13)

where because log |λA	A + Ψ
−1 | is concave with respect to

Ψ−1 , we can upper bound it using a first-order approximation
with a bias term C that is independent of Ψ. Equality is obtained
when the gradient satisfies

∇Ψ−1 =
m∑

i=1

Ψ − ΨA	
i

(
AΨA	 + λI

)−1
AiΨ, (14)

where Ai ∈ Rp×n is defined such that A = [A1 , . . . ,Am ].
Finally given the upper bounds from (12) and (13) with X

and ∇Ψ−1 fixed, we can compute the optimal Ψ in closed form
by optimizing the relevant Ψ-dependent terms via

Ψopt = arg minX tr
[
Ψ−1

(
XX	 + ∇Ψ−1

)]
+ m log |Ψ|

=
1
m

[
X̂X̂

	
+ ∇Ψ−1

]
. (15)

By agnostically starting with Ψ = I and then iteratively com-
puting (8), (14), and (15), we can then obtain an estimate for Ψ,
and more importantly, a corresponding estimate for X given by
(8) at convergence. We refer to this basic procedure as BARM
for Bayesian Affine Rank Minimization. The next section will
describe in detail why it is particularly well-suited for solving
problems such as (1).

IV. PROPERTIES OF BARM

Here we first describe a close but perhaps not intuitively-
obvious relationship between the BARM objective function and
canonical nuclear norm minimization. We then discuss desirable
properties of global and local minima before concluding with a
brief examination of convergence issues.

A. Connections with Nuclear Norm Minimization

On the surface, it may appear that minimizing (10) is com-
pletely unrelated to the convex problem

min
X

‖ X ‖∗ s.t. b = A (X) (16)

that is most commonly associated with practical rank mini-
mization implementations. However, a close connection can be
revealed by considering the modified objective function

L′ (Ψ) = b	Σ−1
b b + tr

[
Ψ

]
, (17)

which represents nothing more than (10), with ν = 1 and with
log |Σb | being replaced by tr[Ψ]. Now suppose we minimize
(17) with respect to Ψ ∈ H+ obtaining some Ψ∗. We then go
on to compute an estimate of X using (8). Note that if we apply
the bound from (12) to the first term in (17), then this estimate
for X equivalently solves

min
Ψ∈H + ,X

1
λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x + tr
[
Ψ

]
, (18)

with x = vec[X] as before. If we first optimize over Ψ, it is eas-

ily demonstrated that the optimal value of Ψ equals (XX	)
1/2

.
Plugging this value into (18), simplifying, and then applying the
definition of the nuclear norm, we arrive at

min
X

1
λ
‖ b − Ax ‖2

2 + 2‖ X ‖∗, (19)

Furthermore, in the limit λ → 0 (applied outside of the
minimization), (19) becomes equivalent to (16). For more
information regarding the duality relationship between vari-
ance/covariance space and coefficient space, at least in the
related context of compressive sensing models, please refer
to [16].

Consequently, we may conclude that the central distinc-
tion between the proposed BARM cost function and nuclear
norm minimization is an intrinsic A-dependent penalty function
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log |Σb | which is applied in covariance space. In Section IV.B
we will examine desirable properties of this non-convex sub-
stitution, highlighting our desire to treat the underlying BARM
probabilistic model as an independent cost function that may be
subject to technical analysis independent of its Bayesian origins.

B. Global/Local Minima Analysis

As discussed in Section II one nice property of the∑
i log(σi [X]) penalty employed (approximately) by IRLS0

[6] is that it can be viewed as a smooth version of the matrix
rank function while still possessing the same set of minimum,
both global and local, over the affine constraint set, at least if we
consider the limiting situation of

∑
i log(σi [X]2 + γ) when γ

becomes small so that we may avoid the distracting singularity
of log 0. Additionally, it possesses an attractive form of scale
invariance, meaning that if X∗ is an optimal feasible solution,
a block-diagonal rescaling of A nevertheless leads to an equiv-
alent rescaling of the optimum (without the need for solving
an additional optimization problem using the new A). This is
very much unlike the nuclear norm or other non-convex surro-
gates that penalize the singular values of X in a scale-dependent
manner.

In contrast, the proposed algorithm is based on a very differ-
ent Gaussian statistical model with seemingly a more tenuous
connection with rank minimization. Encouragingly however,
the proposed cost function enjoys the same global/local minima
properties as

∑
i log(σi [X]2 + γ) with γ → 0. Before present-

ing these results, we define spark[A] as the smallest number
of linearly dependent columns in matrix A [17]. All proofs are
deferred to the Appendix.

Lemma 1: Let b = Avec[X], where A ∈ Rp×nm satisfies
spark[A] = p + 1. Also define r as the smallest rank of any fea-
sible solution. Then if r < p/m, any global minimizer {Ψ∗,ν∗}
of (10) in the limit λ → 0 is such that x∗ = Ψ

∗
A	(AΨ

∗
A	)

†
b

is feasible and rank[X∗] = r with vec[X∗] = x∗.
Lemma 2: Additionally, let Ã = AD, where D = diag

[α1Γ, . . . , αmΓ] is a block-diagonal matrix with invertible
blocks Γ ∈ Rn×n of unit norm scaled with coefficients αi > 0.
Then iff {Ψ∗,ν∗} is a minimizer (global or local) to (10) in the
limit λ → 0, then {Γ−1Ψ∗,diag[α]−1ν∗} is a minimizer when
Ã replaces A. The corresponding estimates of X are likewise
in one-to-one correspondence.

Remarks: The assumption r = rank[X∗] < p/m in Lemma
1 is completely unrestrictive, especially given that a unique,
minimal-rank solution is only theoretically possible by any al-
gorithm if p ≥ (n + m)r − r2 , which is much more restrictive
than p > rm. Hence the bound we require is well above that
required for uniqueness anyway. Likewise the spark assumption
will be satisfied for any A with even an infinitesimal (con-
tinuous) random component. Consequently, we are essentially
always guaranteed that BARM possesses the same global op-
timum as the rank function. Regarding Lemma 2, no surrogate
rank penalty of the form

∑
i f(σi [X]) can achieve this result

except for f(z) = log z, or inconsequential limiting translations
and rescalings of the log such as the indicator function I[z �= 0]
(which is related to the log via arguments in Section II).

While these results are certainly a useful starting point, the
real advantage of adopting the BARM cost function is that lo-
cally minimizing solutions are exceedingly rare, largely as a
consequence of the marginalization process in (9), and in some
cases provably so. A specialized example of this smoothing can
be quantified in the following scenario.

Suppose A is now block diagonal, with diagonal blocks Ai

such that bi = Aix:i producing the aggregate observation vec-

tor b = [b	
1 , . . . , b	

m ]
	

. While somewhat restricted, this situa-
tion nonetheless includes many important special cases, includ-
ing canonical matrix completion and generalized matrix com-
pletion where elements of Z = WX0 are observed after some
transformation W , instead of X0 directly.

Theorem 1: Let b = Avec[X], where A is block diagonal,
with blocks Ai ∈ Rpi ×n . Moreover, assume pi > 1 for all i
and that ∩inull[Ai ] = ∅. Then if minXrank[X] = 1 in the
feasible region, any minimizer {Ψ∗,ν∗} of (10) (global or local)

in the limit λ → 0 is such that x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is

feasible and rank[X∗] = 1 with vec[X∗] = x∗. Furthermore,
no cost function in the form of (3) can satisfy the same result.
In particular, there can always exist local and/or global minima
with rank greater than one.

Remarks: This result implies that, under extremely mild con-
ditions, which do not even depend on the concentration proper-
ties of A, the proposed cost function has no minima that are not
global minima, at least in this rank-one case. (The minor techni-
cal condition regarding nullspace intersections merely ensures
that high-rank components cannot simultaneously “hide” in the
nullspace of every measurement matrix Ai ; the actual A opera-
tor may still be highly ill-conditioned.) Thus any algorithm with
provable convergence to some local minimizer is guaranteed to
obtain a globally optimal solution.3

Although a global optimal guarantee for finding a rank-one
matrix sounds somewhat limited, such a guarantee is not pos-
sible with any other penalty function of the standard form∑

i f(σi [X]), which is the typical recipe for rank minimization
algorithms, convex or not. Moreover, finding rank one matrices
subject to affine constraints represents a crucial component of
applications such as phase retrieval [18], [19].

Additionally, if a unique rank-one solution exists to (1), then
the unique minimizing solution to (10) will produce this X via
(8). Crucially, this will occur even when the minimal number
of measurements p = n + m − 1 are available, unlike any other
algorithm we are aware of that is blind to the true underlying
rank.4 Moreover, as evident from the experiments, the proposed
algorithm always successfully finds the global optimal in many
situations where the underlying matrix has a rank much higher
than one. Therefore, although we can only provide theoretical
guarantee for the rank-one case, the underlying intuition that
local minima are smoothed away arguably carries over to situa-
tions where the rank is greater than one.

3Note also that with minimal additional effort, it can be shown that no sub-
optimal stationary points of any kind, including saddle points, are possible.

4It is important to emphasize that the difficulty of estimating the optimal low-
rank solution is based on the ratio of the d.o.f. in X to the number of observations
p. Consequently, estimating X even with r small can be challenging when p is
also small, meaning A is highly overcomplete.
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Fig. 1. Plots of different surrogates for matrix rank in a 1D feasible subspace. Here the convex nuclear norm does not retain the correct global minimum. In
contrast, although the non-convex

∑
i
log(σi [X]2 + γ) penalty exhibits the correct minimum when γ is sufficiently small, it also contains spurious minima.

Only BARM smoothes away local minimum while simultaneously retaining the correct global optima.

C. Visualization of BARM Local Minima Smoothing

To further explore the smoothing effect and complement The-
orem 1, it helps to visualize rank penalty functions restricted to
the feasible region. While the BARM algorithm involves mini-
mizing (10), its implicit penalty function on X can nonetheless
be numerically obtained across the feasible region in a given
subspace of interest; for other penalties such as the nuclear
norm this is of course trivial. Practically it is convenient to ex-
plore a 1D feasible subspace generated by X∗ + ηV , where
X∗ is the true minimum rank solution, V ∈ null[A], and η
is a scalar. We may then plot various penalty function values
as η is varied, tracing the corresponding 1D feasible subspace.
We choose V = X1 − X∗, where X1 is a feasible solution
with minimum nuclear norm; however, random selections from
null[A] also show similar characteristics.

Fig. 1 provides a simple example of this process. A is gen-
erated randomly with all zeros and a single randomly placed
‘1’ in each row leading to a canonical matrix completion prob-
lem. X∗ ∈ R5×5 is randomly generated as X∗ = uv	, where
u and v are iid N (0, 1) vectors, and so X∗ is rank one. Finally,
p = 10 elements are observed, and therefore A has 10 rows and
5 × 5 = 25 columns. η is varied from −5 to 5 and the values of
the nuclear norm,

∑
i log(σi [X]2 + γ), and the implicit BARM

cost function are displayed.
From the figure we observe that the minimum of the nuclear

norm is not produced when the rank is smallest, which occurs
when η = 0; hence the convex cost function fails for this prob-
lem. Likewise, the

∑
i log(σi [X]2 + γ) penalty used by IRLS0

displays an incorrect global minimum when the tuning param-
eter γ is large. In contrast, when γ is small, while the global
minimum may now be correct, spurious local ditches have ap-
peared in the cost function.5 Therefore, any success of the IRLS0
algorithm depends heavily on a carefully balanced decaying se-
quence of γ values, with the hope that initial iterations can steer
the trajectory towards a desirable basin of attraction where local

5Technically speaking, these are not provably local minima since we are
only considering a 1D subspace of the feasible region. However, it nonetheless
illustrates the strong potential for troublesome local minima, especially in high
dimensional practical problems.

minima are less problematic. One advantage of BARM then is
that it is parameter free in this respect and yet still retains the
correct global minimum, often without additional spurious local
minima.

D. Convergence

Previous results of Section IV are limited to exploring aspects
of the underlying BARM cost function. Regarding the BARM
algorithm itself, by construction the updates generated by (8),
(14), and (15) are guaranteed to reduce or leave unchanged
L(Ψ) at each iteration. However, this is not technically suffi-
cient to guarantee convergence to a stationary point of the cost
function unless the additional conditions of Zangwill’s Global
Convergence Theorem are satisfied [20]. However, provided we
add a small regularization factor γtr[Ψ−1 ], with γ > 0, then it
can be shown that any cluster point of the resulting sequence of
iterations {Ψk} must be a stationary point. Moreover, because
the sequence is bounded, there will always exist at least one
cluster point, and therefore the algorithm is guaranteed to at
least converge to a set of parameter values S such that for any
Ψ∗ ∈ S, L(Ψ∗) + γtr[(Ψ∗)−1 ] is a stationary point.

Finally, we should mention that this extra γ factor is akin to the
homotopy continuation regularizer used by the IRLS0 algorithm
[6] as discussed in Section II. However, whereas IRLS0 requires
a carefully-chosen, decreasing sequence {γk} with γk > 0 both
to prove convergence and to avoid local minimum (and without
this factor the algorithm performs very poorly in practice), for
BARM a small, fixed factor only need be included as a technical
necessity for proving formal convergence; in practice it can be
fixed to exactly zero.

V. SYMMETRIZATION IMPROVEMENTS

Despite the promising theoretical attributes of BARM, there
remains one important artifact of its probabilistic origins not
found in more conventional existing rank minimization algo-
rithms. In particular, other algorithms rely upon a symmetric
penalty function that is independent of whether we are working
with X or X	. All methods that reduce to (3) fall into this
category, e.g., nuclear norm minimization, IRNN, or IRLS0. In
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contrast, our method relies on defining a distribution with re-
spect to the columns of X . Consequently the underlying cost
function is not identical when derived with respect to X or
X	, a difference which will depend on A. While globally opti-
mal solutions should nonetheless be the same, the convergence
trajectory could depend on this distinction leading to different
local minima in certain circumstances. Although either con-
struction leads to low-rank solutions, we may nonetheless ex-
pect improvement if we can somehow symmetrize the algorithm
formulation.

To accomplish this, we consider a Gaussian prior on x =
vec[X] with a covariance formed using a block-wise averaging
of covariances defined over rows and columns, denoted Ψr and
Ψc respectively. The overall covariance is then given by the
Kronecker sum

Ψ = 1/2 (Ψr ⊗ I + I ⊗ Ψc) . (20)

The estimation process then proceeds in a similar fashion as
before but with modifications and alternate upper-bounds that
accommodate for this merger. For reported experimental results
this symmetric version of BARM is used, with complete up-
date rules listed in the Appendix and computational complexity
evaluated in Section VI.E.

VI. EXPERIMENTAL VALIDATION

This section compares BARM with existing state-of-the-art
affine rank minimization algorithms. For BARM, in all noise-
less cases we simply used λ = 10−10 (effectively zero), and
hence no tuning parameters are required. Likewise, nuclear
norm minimization [1], [4] requires no tuning parameters be-
yond implementation-dependent control parameters frequently
used to enhance convergence speed (however the global min-
imum is unaltered given that the problem is convex). For the
IRLS0 algorithm, we used our own implementation as the al-
gorithm is straightforward and no code was available for the
case of general A; we based the required decreasing γk se-
quence on suggestions from [6]. IRLS0 code is available from
the original authors for matrix completion; however, the results
obtained with this code are not better than those obtained with
our version. For the IRNN algorithm, we did not have access
to code for general A, nor specific details of how various pa-
rameters should be set in the general case. Note also that IRNN
has multiple parameters to tune even in noiseless problems un-
like BARM. Therefore we report results directly from [5] where
available. Note that both [5] and [6] show superior results to a
number of other algorithms; we do not generally compare with
these others given that they are likely no longer state-of-the-art
and may clutter the presentation.

As stated previously, our focus here is on algorithms that do
not require knowledge of the true rank of the optimal solution,
and hence we do not include comparisons with [10] or the nor-
malized hard thresholding algorithm from [21]. Regardless, we
have nonetheless conducted numerous experiments with these
algorithms, and even when the correct rank is provided, results
are inferior to BARM, especially when correlated measurements
are used. However, we do show limited empirical results with

Fig. 2. Matrix completion comparisons (avg of 10 trials).

the variational sparse Bayesian algorithm (VSBL) from [11]
because of its Bayesian origins, although the underlying param-
eterization is decidedly different from BARM. But these results
are limited to matrix completion as VSBL presently does not
handle general affine constraints. Results from VSBL were ob-
tained using publicly available code from the authors.

A. Matrix Completion

We begin with the matrix completion problem from (2), in
part because this allows us to compare our results with the latest
algorithms even when code is not available. For this purpose we
reproduce the exact same experiment from [5], where a rank r
matrix is generated as X0 = MLMR , with ML ∈ Rn×r and
MR ∈ Rr×m (n = m = 150) as iid N (0, 1) random matrices.
50% of all entries are then hidden uniformly at random. The
relative error (REL) given by ‖ X0 − X̂‖F/‖ X0 ‖F is com-
puted for each trial and averaged as r is varied. Likewise, we
compute the frequency of success (FoS) score, which measures
the percentage of trials where the REL is below 10−3 . Results
are shown in Fig. 2 where BARM is the only algorithm ca-
pable of reaching the theoretical recovery limit, beyond which
p = 0.5 × 1502 = 11250 is surpassed by the number of degrees
of freedom in X0 , in this case 2 × 150 × 44 − 442 = 11264.
Note that FoS values were reported in [5] over a wide range of
non-convex IRNN algorithms. The green curve represents the
best performing candidate from this pool as tuned by the original
authors; REL values were unavailable. Interestingly, although
VSBL is based on a somewhat related probabilistic model to
BARM, the underlying parameterization, cost function, and up-
date rules are entirely different and do not benefit from strong
theoretical underpinnings. Hence performance does not always
match recent state-of-the-art algorithms, although from a com-
putational standpoint it is quite efficient.

Besides BARM, the IRLS0 algorithm also displayed better
performance than the other methods. This motivated us to re-
produce some of the matrix completion experiments from [6] so
as to provide direct head-to-head comparisons with the authors’
original implementation. For this purpose, X0 is conveniently
generated in the same way as above; however, values of n,m,
r, and the percentage of missing entries are varied while eval-
uating reconstructions using FoS. While [6] tests a variety of
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TABLE I
MATRIX COMPLETION RESULTS OF BARM WITH IRLS0 ON THE THREE

HARDEST PROBLEMS FROM [6]. PUBLISHED RESULTS IN [6] INCLUDED FOR

COMPARISON

Problem IRLS0 IHT FPCA Opts BARM

FR n(=m) r FoS FoS FoS FoS FoS

0.78 500 20 0.9 0 0 0 1
0.8 40 9 1 0 0.5 0 1
0.87 100 14 0.5 0 0 0 1

combinations of these values to explore varying degrees of
problem difficulty, here we only reproduce the most challeng-
ing cases to see if BARM is still able to produce superior
reconstruction accuracy. In this respect problem difficulty is
measured by the degrees of freedom ratio (FR) given by FR
= r(n + m − r)/p as defined in [6]. We also only include ex-
periments where algorithms are blind to the true rank of X0 .6

Results are shown in Table I, where we have also displayed
the published results of three additional algorithms that were
compared with IRLS0 in [6], namely, IHT [22], FPCA [23]
and Optspace [24]. From the table we observe that, in the most
difficult problem considered in [6], IRLS0 achieved only a 0.5
FoS score (meaning failure 50% of the time) while BARM still
achieves a perfect 1.0. Note that when FR is high, the problem
of recovering the underlying matrix is essentially much harder.
This happens in a manner that more local minima are induced
(due to increased rank) and/or much larger search space are
exposed (due to decreased number of observations/constraints).
In these cases, the equivalency of the global optimal with con-
vex relaxation usually does not hold, whereas for the existing
non-convex surrogates, there is no reason to assume any local
minima are not present. However, since BARM has an implicit
mechanism of smoothing local minima (though maybe not all
of them), it works more robustly in these situations.

B. General A

Next we consider the more challenging problem involving
arbitrary affine constraints. The desired low-rank X0 is gener-
ated in the same way as above. We then consider two types of
linear mappings where A is generated as: (i) an iid N (0, 1),
p × n2 matrix, and (ii)

∑p
i=1 i−1/2uiv

	
i , where ui ∈ Rp and

vi ∈ Rn2
are iid N (0, 1) vectors. The latter is meant to ex-

plore less-than-ideal conditions where the linear operator dis-
plays correlations and may be somewhat ill-conditioned. Fig. 3
displays aggregate results when X0 is 50× 50 and 100× 100,
including the underlying REL scores for additional comparison.
In both cases p = 1000 observations are used, and therefore the
corresponding measurement matrices A are 1000× 2500 and
1000× 10000 respectively. We then vary r from 1 up to the
theoretical limit corresponding to problem size. Again we ob-
serve that BARM is consistently able to work up to the limit,
even when the A operator is no longer an ideal Gaussian. In

6Note that IRLS0 can be modified to account for the true rank if such knowl-
edge were available.

general, we have explored a wide range of empirical conditions
too lengthly to report here, and it is only very rarely, and always
near the theoretical boundary, where BARM occasionally may
not succeed. We explore such failure cases in the next section.

C. Failure Case Analysis

Thus far we have not shown any cases where BARM actually
fails. Of course solving (1) for general A is NP-hard so recovery
failures certainly must exist in some circumstances when using
a polynomial-time algorithm such as BARM. Although we cer-
tainly cannot explore every possible scenario, it behooves us
to probe more carefully for conditions under which such errors
may occur. One way to accomplish this is to push the problem
difficulty even further towards the theoretical limit by reducing
the number of measurements p as follows.

With the number of observations fixed at p = 1000 and a
general measurement matrix A, the previous section examined
the recovery of 50 × 50 and 100 × 100 matrices as the rank
was varied from 1 to the recovery limit (r = 11 for the 50× 50
case; r = 5 for the 100× 100 case). However, it is still possible
to make the problem even more challenging by fixing r at the
limit and then reducing p until it exactly equals the degrees
of freedom 2nr − r2 . With {n = 50, r = 11} this occurs at
p = 979, for {n = 100, r = 5} this occurs at p = 975.

We examined the BARM algorithm under these conditions
with 10 additional trials using the uncorrelated A for each prob-
lem size. Encouragingly, BARM was still 30% successful with
{n = 50, r = 11}, and 40% successful with {n = 100, r = 5}.
However, it is interesting to further examine the nature of these
failure cases. In Fig. 4 we have averaged the singular values of
X̂ in all the failure cases. We notice that, although the recovery
was technically classified as a failure since the relative error
(REL) was above the stated threshold, the estimated matrices
are of almost exactly the correct minimal rank. Hence BARM
has essentially uncovered an alternative solution with minimal
rank that is nonetheless feasible by construction. We therefore
speculate that right at the theoretical limit, when A is maxi-
mally overcomplete (p × n2 = 979 × 2500 or 975× 10000 for
the two problem sizes), there exists multiple feasible matri-
ces with singular value spectral cut-off points indistinguishable
from the optimal solution. Importantly, when the other algo-
rithms we tested failed, the failure is much more dramatic and
a clear spectral cut-off at the correct rank is not apparent.

This motivates a looser success criteria than FoS to account
for the possibility of multiple (nearly) optimal solutions that
may not necessarily be close with respect to relative error. For
this purpose we define the frequency of rank success (FoRS) as
the percentage of trials whereby a feasible solution X̂ is found
such that σr [X̂]/σr+1[X̂] > 103 , where σi [·] denotes the i-th
singular value of a matrix and r is the rank of the true low-rank
X0 . In words, FoRS measures the percentage of trials such that
roughly a rank r solution is recovered, regardless of proximity
to X0 .

Under this new criteria, all of the failure cases with respect to
FoS described above, for both problem sizes, become successes;
however, none of the other algorithms show improvement under
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Fig. 3. Comparisons with general affine constraints (avg of 10 trials). (a) 50× 50, A uncorrelated, (b) 50× 50, A correlated, (c) 100× 100, A uncorrelated,
and (d)100× 100, A correlated.

Fig. 4. Singular value averages of failure cases. In both cases solutions of min-
imal rank are obtained even though X̂ �= X0 . (a) 50× 50 and (b) 100× 100.

TABLE II
FURTHER MATRIX COMPLETION COMPARISONS OF BARM WITH IRLS0 BY

REDUCING THE NUMBER OF MEASUREMENTS IN THE HARDEST PROBLEM

FROM [6]. RESULTS WITH BOTH FOS AND FORS METRICS ARE REPORTED

(AVG OF 10 TRIALS)

Problem IRLSO BARM

FR n(=m) r FoS FoRS FoS FoRS

0.9 100 14 0 0 1 1
0.95 100 14 0 0 0.8 1
0.99 100 14 0 0 0.7 1

this criteria, indicating that their original failures involved actual
sub-optimal rank solutions. Something similar happens when we
revisit the matrix completion experiments. For example, based
on Table I the most difficult case involves FR = 0.87; however,
by further reducing p, we can push FR towards 1.0 to further
investigate the break-down point of BARM. Results are shown
in Table II. While IRLS0 (which is the top performing algorithm

in [6] and in our experiments besides BARM) fails 100% of the
time via both metrics, BARM can achieve an FoS of 0.7 even
when FR = 0.99 and an FoRS of 1.0 in all cases.

We therefore adopt a more challenging measurement struc-
ture for A to better evaluate the limits of BARM performance to
reveal potential failures by both FoS and FoRS metrics. Specif-
ically, we first applied 2-D discrete cosine transform (DCT) to
X0 and then randomly sampled p of the resulting DCT coef-
ficients. Because both the DCT and the sampling sub-process
are linear operations on the entries of X0 , the whole process is
representable via a matrix A, which encodes highly structured
information. Fig. 5 depicts the results using problem sizes con-
sistent with Fig. 3; note that the FoRS metric has replaced the
REL metric for comparison purposes.

Two things stand out from the analysis. First, while the other
algorithms display almost identical behavior under either metric,
BARM failures under the FoS criteria are mostly converted
to successes by the FoRS metric by recovering a matrix of
near-optimal rank. Secondly, even though certain unequivocal
failures emerge near the limits with this challenging DCT-based
sampling matrix, BARM outperforms the other algorithms using
either metric by a large margin.

To summarize, we have demonstrated that BARM is capa-
ble of recovering a low-rank matrix right up to the theoretical
limit in a variety of scenarios using different types of mea-
surement processes. Moreover, even in cases where it fails, it
often nonetheless still produces a feasible X̂ with rank nearly
identical to the generative low-rank X0 , suggesting that multi-
ple optimal solutions may be possible in challenging borderline
cases. But when true unequivocal failures do occur, such fail-
ures tend to be near the theoretical boundary, and with greater
likelihood when the dictionary displays significant structure
(or correlations). While certainly we envision that, out of the
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Fig. 5. Comparisons with structured affine constraints using both FoS and FoFS evaluation metrics (avg of 10 trials). (a) 50× 50, A sub-sampled DCT,
(b) 100× 100, A sub-sampled DCT.

Fig. 6. Test with noisy data.

infinite multitude of testing situations further significant pock-
ets of BARM failure can be revealed, we nonetheless feel that
BARM is quite promising relative to existing algorithms.

D. Additional Noisy Tests

We also briefly present results that demonstrate the robustness
of BARM to noise. For this purpose we reproduce the noisy
experiment from [5] designed for validating IRNN algorithms.
The simulated data are generated in the exact same way as was
used to produce Fig. 2, only now instead of observing elements
of X0 directly, we observe X0 + 0.1 × E, where elements
of E are iid N (0, 1). Although in [5] a heuristic strategy is
introduced and tuned for adaptively setting all parameters (four
in total), we simply applied BARM with λ = 10−3 (so only a
single parameter need be adjusted, and actually a wide range
of λ values produces similar performance anyway). Results are
shown in Fig. 6 where we compare BARM directly with the
best result reported in [5] over the range r = 15 to r = 35. The
nuclear norm solution is also included for reference. Overall, the
BARM solution is stable and exhibits superior accuracy relative
to the others.

E. Computational Complexity

Finally, regarding computational complexity, for general A
the BARM updates can be implemented to scale linearly in the
elements of X and quadratically in the number of observations
p (the special case of matrix completion is decidedly much
cheaper because of the special structure that can be exploited).
In our experiments, for relatively easy problems on the order of

Fig. 7. Empirical convergence of BARM.

10 iterations are required, while for difficult recovery problems
near the theoretical recovery boundary this may increase by a
factor of 10 or so. This is somewhat expected though since as we
near the theoretical limit, A becomes highly overcomplete, and
candidate solutions become much more difficult to differentiate.

To show this effect empirically, we compare two separate tri-
als from Fig. 3(a), the first when r = 1 (relatively easy), the sec-
ond when r = 11 (relatively hard).7 In Fig. 7 we plot the value
of REL in both cases versus the iteration number of BARM.

VII. APPLICATION EXAMPLES

Many real-world problems from disparate fields can be for-
mulated as the search for a low-rank matrix under affine con-
straints [1], [3], [4], [25]. Here we briefly consider two such
examples: low-rank image rectification and collaborative filter-
ing for recommender systems. The former implicitly involves
a general sampling operator A, while the latter reduces to a
standard matrix completion problem.

A. Low-Rank Image Rectification

In [4], the transform invariant low-rank textures (TILT) al-
gorithm is derived for rectifying images containing low-rank

7Note that r = 1 is only relatively easy here because the number of obser-
vations is sufficient for the larger r = 11 case; if only the minimal number
of measurements are available then even r = 1 can be challenging for many
algorithms.
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Fig. 8. Image rectification comparisons using a checkboard image. Top: Original image with observed region (red box) and estimated transformation (green
box). Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

textures that have been transformed using an unknown operator
τ from some group (e.g., a homography). For a given observed
image Y , the basic idea is to construct a first-order Taylor series
approximation around the current rectified image estimate X̂
and solve

min
X,δ

rank [X] s.t. X = Y +
∑

i

J i

(
X̂

)
δi, (21)

where J i(X̂) is the Jacobian matrix with respect to X of
the i-th parameter τi describing the transformation, with τ =
[τ1 , τ2 , . . .]

	. Optimization over the vector of first-order differ-
ences δ = [δ1 , δ2 , . . .]

	 can be accomplished in closed form by
projecting both sides of the constraint to the orthogonal comple-
ment of the span of all J i(X̂). Let PJ c represent this projection
operator. The feasible region in (21) then becomes

PJ c (X) = PJ c (Y ) + PJ c

(
∑

i

J i

(
X̂

)
δi

)
= PJ c (Y )

(22)
The resulting problem then reduces exactly to (1) when we

define A = PJ c and b = vec[PJ c (Y )]. Once X is computed in
this way, we then update each J i(X̂) and repeat until conver-
gence.

While the original TILT algorithm substitutes the nuclear
norm for rank[X], we embedded the BARM algorithm into
the posted TILT source code [4] for comparison purposes (note
that we disabled an additional sparse error term for both algo-
rithms to simplify comparisons, and it is not necessary anyway
in many regimes). Figs. 8 and 9 display results on both two
easy examples, where the number of observations p is large,
and two more difficult problems where the number observa-
tions is small. While both algorithms succeed on the easy cases,
when the observations are constrained by a small image window,
only BARM is successful in accurately rectifying the images.
This may be due, at least in part, to the fact that the implicit
A operator contains significant structure that is not consistent
with the required nullspace properties required for nuclear norm
minimization success.

B. Collaborative Filtering of MovieLens Data

Collaborative filtering, a technique used by many recom-
mender systems, is a popular representative application of low-
rank matrix completion. Typically the rows (or columns) of X0
index users, the columns (or rows) denote items, and each entry
(X0)ij is the rating/score of user i applied to item j. Given
that we can observe some subset of elements of X0 , the task
of collaborative filtering is to predict all or some of the miss-
ing ratings. In general this would be impossible; however, if we
have access to some prior knowledge, e.g., X0 is low-rank, then
estimation may be feasible.

While our interest here is not in recommender systems or
collaborative filtering per se, we nonetheless evaluate BARM
using the 1M MovieLens dataset8 as this appears to represent
one of the most common evaluation benchmarks. We emphasize
at the outset that the strict validity of any low-rank assumptions
underlying this data is debatable, and it remains entirely unclear
whether the true globally optimal or lowest rank solution consis-
tent with the observations, even if computable, would necessar-
ily lead to the best prediction of the unknown ratings. In fact, the
reported performance of various existing rank-minimization al-
gorithms tends to cluster around almost the same value, implying
that collaborative filtering may not provide the most discrimina-
tive data type with which to compare. In most cases, it appears
that tuning parameters and other heuristic modifications play
a larger role than the underlying algorithmic distinctions fun-
damental to finding optimal low-rank estimates. Nonetheless,
we apply BARM for completeness and convention, adopting an
additional simple mean-offset estimation term from [25] that is
particularly suitable for this problem.

In [6], IRLS0 is compared with only two other algorithms on
MovieLens data, but the performance is no better. Therefore,
we choose to compare directly with [25], which both derives
an IRLS-like algorithm and shows comparisons with a much
wider variety of alternative algorithms using a strict evalua-
tion protocol that is standard in the literature. Specifically, the

8http://www.grouplens.org/
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Fig. 9. Image rectification comparisons using a landmark photo. Top: Original image with observed region (red box) and estimated transformation (green box).
Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

1M MovieLens dataset, which contains 1 million ratings in the
range {1, . . . , 5} for 3900 movies from 6040 unique users, is
assessed under two test-protocals: weak generalization, which
measures the ability to predict other items rated by the same
user, and strong generalization, which measures the ability to
predict items by novel users. 5 000 users are randomly selected
for the weak generalization, and likewise 1 000 users are ex-
tracted for the strong generalization. Each experiment is then
run three times and the averaged results are reported. The per-
formance metric is normalized mean absolute error (NMAE)
given as

NMAE =

(∑
i,j∈supp(X0 )

|(X0 )i j − X̂ i j |
|supp(X0 )|

)

(rtmax − rtmin)
,

where rtmax and rtmin are the maximum and minimum ratings
possible.

We followed the same setup and reported results using BARM
in Table III along with results from [25] for comparison. This
includes the additional algorithms URP [26], Attitude [27],
MMMF [28], IPCF [29], E-MMMF [30], GPLVM [31], NBMC
[32], and IRLS/GM [25], [6]. From this table we observe that
for the easier weak generalization problem BARM is a close
second best, while for the more challenging strong generaliza-
tion BARM is actually the best. Of course it is also immediately
apparent that all algorithms fall within a relatively narrow per-
formance range of approximately five percentage points. Con-
sequently, we cannot unequivocally conclude that the attributes
of BARM which make it suitable for optimally minimizing rank

TABLE III
COLLABORATIVE FILTERING ON 1M MOVIELENS DATASET. RESULTS FROM

[25] ARE IN ITALIC FOR COMPARISON PURPOSES

Weak NMAE Hard NMAE

URP 0.4341 0.4444
Attitude 0.4320 0.4375
MMMF 0.4156 0.4203
IPCF 0.4096 0.4113

E-MMMF 0.4029 0.4071
GPLVM 0.4026 0.3994
NBMC 0.3916 0.3992

IRLS/GM 0.3959 0.3928

BARM 0.3942 0.3898

necessarily translate into a truly significant practical advantage
on this collaborative filtering task. But we would argue that the
same holds for any matrix completion algorithm.

VIII. CONCLUSION

This paper explores a conceptually-simple, parameter-free
algorithm called BARM for matrix rank minimization under
affine constraints that is capable of successful recovery empir-
ically observed to approach the theoretical limit over a broad
class of experimental settings (including many not shown here)
unlike any existing algorithms, and long after any convex guar-
antees break down. Our strategy in this effort has been to
adopt Bayesian machinery for inspiring a principled cost func-
tion; however, ultimate model justification is placed entirely in
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theoretical evaluation of desirable global and local minima prop-
erties, and in the empirical recovery performance that inevitably
results from these properties. Although in general non-convex
algorithms are exponentially more challenging to analyze, in
this regard we have at least attempted to contextualize BARM
in the same manner as convex optimization-based approaches
such as nuclear-norm minimization.

APPENDIX A

Here we provide brief proofs of Lemmas 1 and 2 as well as
Theorem 1. We also address the augmented update rules that
account for the revised, symmetrized cost function discussed in
Section V.

A. Proof of Lemmas 1 and 2

Regarding Lemma 1, this result mirrors related ideas from
[16] in the context of Bayesian compressive sensing. Hence,
while a more rigorous presentation is possible, here we de-
scribe the basic aspects of the adaptation. At any candidate
minimizer of (10) in the limit λ → 0, define W such that
AΨA	 = WW	. To be a minimizer, global or local, it must
be that b ∈ span[W ]. If this were not the case, then L(Ψ,ν)
would diverge to infinity as λ → 0 because bT Σ−1

b b progresses
to infinity at a faster rate than log |Σb | can compensate by ap-
proaching minus infinity. Intuitively, in much the same way
argminz

1
z + log z = 1, meaning the optimal z must lie in the

‘span’ of 1 else the overall objective will be driven to infinity.
Consequently, the only way to minimize the cost in the limit

as λ → 0 is to consider low-rank solutions within the constraint
set that b ∈ span[W ], and it is equivalent to requiring that
bT Σ−1

b b ≤ C for some constant C independent of λ (which
ultimately corresponds with maintaining A(X) = b in the limit
as well).

In this setting, while 0 ≤ bT Σ−1
b b ≤ C is bounded, the sec-

ond term in L(Ψ,ν) can be unbounded from below when
rank[Ψ] is sufficiently small. To see this note that

log |Σb | =
p∑

i=1

log
(
σi

[
AΨA	]

+ λ
)
, (23)

where σi [·] denotes the i-th singular value of a matrix. While
the maximum rank of AΨA	 is obviously p, if r � rank [Ψ] <
p/m and spark [A] = p + 1 (maximal spark) as stipulated in the
lemma statement, then rank

[
AΨA	]

= mr and (23) becomes

log |Σb | =
mr∑

i=1

log
(
σi

[
AΨA	]

+ λ
)

+ (p − mr) log λ.

(24)
Note that the spark assumption accomplishes two objectives

in this context. First, it guarantees that a high rank Ψ cannot
masquerade as a low rank Ψ behind the nullspace of some col-
lection of columns Ai . Secondly, it ensures that after assuming
r < p/m, then rank

[
AΨA	]

= mr.
Consequently, in the limit where λ → 0 (with the limit being

taken outside of the minimization), (23) effectively scales as
(p − mr) log λ, and hence the overall cost is minimized when

Ψ has minimal rank. This in turn ensures that the corresponding
X will also have minimal rank, completing the proof sketch for
Lemma 1.

Finally, Lemma 2 follows directly from the structure of the
L(Ψ,ν) cost function via simple reparameterizations. �

B. Proof of Theorem 1

To begin we assume that bi �= 0, ∀i, where bi denotes the
sub-vector of b such that bi = Aix:i . If this were not the case
we can always collapse X by the corresponding column (which
is indistinguishable from zero) and achieve an equivalent result.
Given the assumptions of Theorem 1, the BARM cost function
becomes

L (Ψ,ν) =
m∑

i=1

b	i
(
νiAiΨA	

i

)−1
bi + log

∣∣νiAiΨA	
i

∣∣ .

(25)
If there exists a feasible rank one solution to b = Avec

[X], then there also exists a set of Ψ′
i = νiΨ such that bib

	
i =

AiΨ′
iA

	
i for all i. To see this, note that bib

	
i = Aix:ix

	
:i

A	
i . Because rank[X] = 1, it also follows that bib

	
i = αiAiX

X	A	
i , where αi = ‖ x:ix

	
:i ‖/‖ XX	 ‖. Therefore Ψ′

i =
νiXX	 achieves the desired result with νi = αi .

Now suppose we have converged to any solution {Ψ̂, ν̂} with

rank[Ψ] > 1 and associated Ψ̂ = I ⊗ Ψ̂. Note that since bi �=
0, νi > 0 for all i, otherwise a local minimum is not possible
(the cost function would be driven to positive infinity).

Define Σ̂bi
= ν̂iAiΨ̂A	

i . Additionally we can assume that
b	i Σ̂−1

bi
is finite, meaning that bi lies in the span of the singular

vectors of Σ̂bi
. (If this were not the case, the cost would be

driven to infinity and we could not be at a minimizing solution
anyway.) If {Ψ̂, ν̂} is a local minimum, then {λ1 = 1, λ2 = 0}
must be a local minimum of the revised cost function

L (λ1 , λ2) =
m∑

i=1

b	i

(
λ1Σ̂bi

+ λ2bib
	
i

)−1
bi

+ log
∣∣∣λ1Σ̂bi

+ λ2bib
	
i

∣∣∣ . (26)

This is because bib
	
i represents a valid set of basis vectors for

updating the covariance per the construction above involving
Ψ′

i . First consider optimization over λ1 . If λ1 = 1 is a local
minimum, then by taking gradients and equating to zero, we
require that

m∑

i=1

b	i Σ̂−1
bi

bi =
m∑

i=1

rank
[
Σ̂bi

]
. (27)

Likewise, taking the gradient with respect to λ2 we obtain

∂L (λ1 , λ2)
∂λ2

∣∣∣∣
λ1 =1,λ2 =0

=
m∑

i=1

b	
i Σ̂−1

bi
bi −

m∑

i=1

(
b	i Σ̂−1

bi
bi

)2
.

(28)
The nullspace condition (a very mild assumption) ensures

that
∑m

i=1 rank[Σ̂bi
] = k for some k > m when rank[Ψ] > 1.

To see this, observe that to achieve
∑m

i=1 rank[Σ̂bi
] = m when

rank[Ψ] > 1 requires that Ψ = uu	 + WW	 where u is a
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vector and W is a matrix (or vector) with columns in null[Ai ],
∀i. If any such W is not in this nullspace for some i, then given
that pi > 1, the associated AiΨA	

i will have rank greater than
one, and the overall rank sum will exceed m.

Consequently, (28) will always be negative. This is because
if

∑m
i=1 zi = k for any set of non-negative variables {zi}, the

minimal value of
∑m

i=1 z2
i occurs when zi = k/m, ∀i. In our

case, this implies that

m∑

i=1

(
b	

i Σ̂−1
bi

bi

)2
≥

m∑

i=1

(k/m)2 > k > m. (29)

Therefore we can add a small contribution of bib
	
i to each

Σ̂bi
and reduce the underlying cost function. Hence we cannot

have a local minimum, except when Ψ is equal to some Ψ∗

with rank[Ψ∗] = 1. Moreover, we may directly conclude that

x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is feasible and rank[X∗] = 1 with

x∗ = vec[X∗].
Regarding the last part of the theorem, we consider only

f that are concave non-decreasing functions (this is the only
reasonable choice for shrinking singular values to zero, and
the more general case naturally follows anyway with additional
effort, but minimal enlightenment). Without loss of generality
we may also assume that f(0) = 0 and f(1) = 1; we can always
apply an inconsequential translation and scaling such that these
conditions hold.9 Simple counter examples then demonstrate
that f(ε) must be greater than some constant C independent of
ε for all ε sufficiently small. To see this, note that we can always
rescale elements of A such that a solution with rank greater
than one is preferred unless this condition holds. However, such
an f , which effectively must display infinite gradient at f(0) to
guarantee a global solution is always rank one, will then always
display local minima for certain A. This can easily be revealed
through simple counter-examples. �

C. Symmetrization Update Rules

These iterative update rules follow from alternative upper
bounds tailored to the symmetric version of BARM. When both
Ψr and Ψc are fixed, x is updated via the posterior mean cal-
culation

x̂ = vec
[
X̂

]
=

1
2

(
Ψr + Ψc

)
A	

×
[
λI + A

1
2

(
Ψr + Ψc

)
A	

]−1

b. (30)

where Ψr = Ψr ⊗ I and Ψc = I ⊗ Ψc . Likewise we update
∇Ψ−1

r
and ∇Ψ−1

c
using

∇Ψ−1
r

=
n∑

i=1

Ψr − ΨrA
	
ri
(
AΨrA

	 + λI
)−1

AriΨr , (31)

∇Ψ−1
c

=
m∑

i=1

Ψc − ΨcA
	
ci
(
AΨcA

	 + λI
)−1

AciΨc , (32)

9The log function is a limiting case, but what follows holds nonetheless.

where Ari ∈ Rp×m is defined such that A = [A	
r1 , . . . ,A

	
rn ]

	

and Aci ∈ Rp×n is defined such that A = [Ac1 , . . . ,Acm ]. Fi-
nally given these values, with X, ∇Ψ−1

r
and ∇Ψ−1

c
fixed, we can

compute the optimal Ψr and Ψc in closed form by optimizing
the relevant Ψr - and Ψc -dependent terms via

Ψopt
r =

1
n

[
X̂

	
X̂ + ∇Ψ−1

r

]
, (33)

Ψopt
c =

1
m

[
X̂X̂

	
+ ∇Ψ−1

c

]
. (34)

In practice the simple initialization Ψr = I and Ψc = I is
sufficient for obtaining good performance.
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