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Abstract

Towards mobile visual search, compact visual descriptors have been well advocated in both
academic and industry endeavors. Moving Picture Experts Group (MPEG) initiated the
remarkable Compact Descriptors for Visual Search (CDVS) standard activity in Jan. 2010
to push forward the frontiers of compact descriptors in mobile internet industry. In Oct.
2014, MPEG CDVS successfully entered the Final Draft of International Standard. CDVS
made a series of significant breakthroughs in high performance and low complexity compact
descriptors. In this paper, we give an overview of the MPEG CDVS standard, with emphasis
on the development of the core techniques and their technical merits.

1. Introduction

Handheld devices like smart phone have great potentials for mobile visual search and
augmented reality applications. However, online visual querying involves transfer-
ring query images from a mobile device to a remote server. The time consuming
query delivery over a slow wireless link may significantly degenerate the quality of
user experience. Distinct from processing a textual query, conventional visual search
systems have to spend non-negligible computation on extracting features prior to the
retrieval. Moreover, frequently sending entire images throughout a 3G or 4G network
may incur serious power consumption. Even for on-device local search, the state-of-
the-art image representations like the Bag-of-Words (BoW) [1][2] and the aggregated
descriptor of local features [3][4] are unsuitable in terms of computational complexity.

To address these challenges, recent research works [5][6][7][8][9][2] have proposed
to extract compact visual descriptors directly at the mobile end, and to send the
descriptors at low bitrates to the remote server for scalable visual search. The de-
scriptors shall be compact, discriminative, and meanwhile efficient in extraction to
reduce the overall query delivery latency. Compact descriptors benefit three typical
mobile visual search architectures as follows: 1) Send descriptors as queries; 2) Per-
form local search first; 3) Send images as queries. For architecture (3), although the
query is not in the form of descriptors, the negative impact on search performance
from noisy local features extracted from a highly compressed query image can be
significantly reduced by the selective aggregation of local feature descriptors [10][11].

In order to push forward the frontiers of compact descriptors in mobile inter-
net industry, Moving Picture Experts Group (MPEG), the formal title “ISO/IEC
JTC1 SC29 WG11”, initiated the CDVS standard activity at the 91st MPEG meet-
ing (Kyoto, Jan. 2010)[12]. By thoroughly analyzing, comparing, and testing the
state-of-the-art visual search technologies, and performing competitive collaboration
experiments to improve the core techniques within a rigorous evaluation framework
[13], CDVS made a remarkable breakthrough in high performance and low complexity
compact descriptors. This paper presents an overview of MPEG-7 CDVS standard
including development progress, technical merits, and performance evaluation.
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2. Scope of MPEG-7 CDVS Standard

The objective of CDVS standard is to provide standardized description of stored or
streamed images that helps to design efficient and interoperable visual search applica-
tions, allowing visual content matching in images. Visual content matching includes
matching of views of textured rigid objects, landmarks, and printed documents. The
requirements include robustness, sufficiency, compactness, scalability, image format
independence, extraction complexity, matching complexity, and localization [14].

The CDVS standard as MPEG-7 Part 13 specifies the bitstream (i.e., binary
representation syntax) of descriptors and the descriptor extraction process [11]. As
a normative part, the syntax of descriptors shall conform to the MPEG-7 CDVS
standard. Extraction of the CDVS descriptor is normative as well to ensure interop-
erability. See Figure 1. How the CDVS descriptor is used for search and filtering of
content, like CDVS adopted Multi-Block Index Table (MBIT) indexing structure [15]
towards a large scale search, or two-way pairwise matching algorithm [16] to improve
matching accuracy, is not specified by MPEG-7 CDVS standard [11].

3. Development of MPEG-7 CDVS Standard

MPEG-7 CDVS standard activity develops specification based on a well-defined M-
PEG standard development framework, following the steps: requirements for technol-
ogy is specified [14], technology is requested through an official “Call for Proposals”
[17], and the technology proposed to MPEG is evaluated by MPEG experts based on
pre-defined performance criteria [13]. Key participants include Stanford Univ., Peking
Univ., Surrey Univ., Telecom Italia, Visual Atom, Qualcomm, STMicroelectronics,
Huawei, Nokia, NEC, Samsung, ETRI, etc. CDVS standard entered the committee
draft (CD) on the 106th meeting (Geneva, Oct. 2013), the Draft of International
Standard (DIS) on the 108th meeting (Valencia, Apr. 2014), and the Final Draft of
International Standard (FDIS) on the 110th meeting (Strasbourg, Oct. 2014).

Between the 91st and 108th MPEG meeting, the MPEG-7 CDVS received in to-
tal 366 input contributions, in which there were 99 proposals on core experiments.
From the 99th meeting (San Jose, Feb. 2012), MPEG-7 CDVS standard entered
the collaborative development through the definition of a Test Model (TM). A series
of core experiments including CE1-Global Descriptor, CE2-Local Descriptor Com-
pression, CE3-Feature Point Location Coding, CE4-Key Point Detection, CE5-Local
Descriptor, CE6-Retrieval, CE7-Feature Selection, CE8-Combining Local and Global
Descriptors for Pairwise Matching were carried out to specify and implement feature
extraction and encoding algorithms. The latest software reference model TM 11.0
was released after the 109th meeting (Sapporo, Jul. 2014) [11].

Significant performance improvements have been made in developing CDVS, i.e.,
mean Average Precision (mAP) 0.72 vs. 0.85, the success rate of Top Match 0.81 vs.
0.91, True Positive Rate (TPR) 0.90 vs. 0.93, between TM 1.0 and TM 11.0. To meet
the requirement of minimum memory consumption, CDVS made substantial efforts
in memory reduction with regard to CE1-Global Descriptor, CE2-Local Descriptor
Compression, CE4-Key Point Detection. For CE2, the memory cost was reduced from
∼380MB to ∼1KB [18][19]; for CE4, the memory cost from ∼20MB down to 957KB
[20]. For CE1, compared with the state-of-the-art [3][4], CDVS made a breakthrough
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Figure 1: The MPEG-7 CDVS encoding process.

in memory reduction from hundreds of MB to 42KB [21]. The time cost of the CDVS
encoding process was reduced from ∼500ms to ∼150ms (tested on a Windows PC
with Intel Core CPU i5 3470 3.2GHz), which was mainly attributed to the speedup of
key point detection in CE4 [20][22] as well as local feature description. Aside from the
normative encoder part, CDVS has developed efficient and effective pairwise matching
and retrieval pipelines as an informative part. Pairwise matching costs ∼0.5 ms per
image pair, and retrieval costs ∼2.02 sec. per query (with the best performance) and
∼0.2 sec. per query (with an mAP drop of 0.01) over 1 million image dataset.

4. CDVS Encoding

4.1 Interest Point Detection

Local feature extraction involves detecting interest points and describing the invariant
feature of each interest point [23]. CDVS encoding starts with interest point detection.
A scale-space is represented as an image pyramid in which an image is successively
filtered by a family of smoothing kernels at increasing scale factors. The normalized
derivatives of each scale in an image pyramid are generated, where extrema detection
is performed by searching for local extrema to identify interest points[23].

CDVS contributed to the state-of-the-art scale-space representation from two as-
pects: (1) how to construct a scale-space at low complexity, and (2) how to identify
interest points within a scale-space. CDVS proposed a novel block-wise scale-space
representation and applied Laplacian of Gaussian (LoG) filtering to implement a block
based frequency domain LoG (BFLoG) detector [24][20][25][22]. BFLoG has signifi-
cantly reduced the footprint of filters and buffers to 956KB, which is much smaller
than a normal image-wise scale-space with 12.9MB in the baseline DoG [23]. In ad-
dition, the frequency domain filtering brought about substantial time cost reduction
by a ratio of 53% on average [22]. To identify interest points, CDVS proposed a
low-degree polynomial (ALP) approach [26] to approximate the LoG filtering result-
s by polynomials, used to find extrema in the scale space and to refine the spatial
position of the detected points. ALP provided an alternative interest point detector
that was distinct from the prior art solutions like the canonical local extrema detec-
tion, i.e., comparing the response values of a point to its scale and spatial neighbors
(say, 3×3×3). Finally, BFLoG and ALP [26] were integrated, where the block-wise
processing involved LoG filtering, extrema detection, and orientation assignment.
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BFLoG [20][22] subdivides the original scale space into overlapping blocks and
performs interest point detection for each block independently, thereby significantly
reducing the memory cost from filters and buffers. Meanwhile, the block-wise scale-
space allows for the frequency domain filtering mechanism, thereby reducing time
cost. In the spatial domain, each point of an input image is smoothed by its neighbor
region where the region radius increases with the scale factor. By contrast, the
equivalent of convolution in frequency domain is independent of the scale factor, in
which the convolution involves just one dot product operation per point, a Discrete
Fourier Transform (DFT), and an Inverse Discrete Fourier Transform (IDFT). As each
block is of a uniform size, convolution filters can be pre-computed with respect to
different scale factors. BFLoG proposed to derive the optimal block-wise scale-space
decomposition by resolving the problem of minimizing the distortion of scale-space,
subject to the complexity constraint. CDVS figured out the optimal block setting
with the block size of 128×128 pixels, and the overlap of 16 pixels [22][24].

4.2 Local Feature Selection

Interest point detection produces a number of local features which may be greater
than the number of local features that is possible to store at a given CDVS image de-
scriptor length, for example, 512 bytes, 1KB, 2KB, 4KB, etc [13]. Therefore, a subset
of local features shall be selected on the basis of a relevance measure that is computed
for each of the detected local features. Only the most relevant features are packed
into the compressed local feature descriptors, or aggregated to form the global feature
descriptor. Besides the issue of limited descriptor length, incorporating distracting or
unnecessary local features may degrade the discriminating power of compact descrip-
tors. For example, a substantial performance improvement on Holiday dataset from
59.5% up to 67.1% mAP by the selective aggregation of local features was reported in
[10]. In addition, subset selection may save considerable computation of local feature
description, which is the most time consuming part in the CDVS encoding process.

CDVS has shown that the characteristics of interest points, including the scale,
the orientation, the output (also called peak) of the LoG, the distance to the image
centre, the ratio of the squared trace of the Hessian, and the second derivative of
the scale space function with respect to the scale, embody the probabilistic relevance
of correct feature match [27]. By assuming these characteristics are conditionally
independent, CDVS learnt the conditional distribution, with respect to each interest
point characteristic, to estimate the probability of a feature being matched correctly
to some feature in some unknown image. The relevancy for a given feature in an
image was obtained by multiplying its conditional probabilities. In order to model
the conditional probabilistic distributions, CDVS produced an external training set
of matched and non-matched features from matching pairs of images (both images
in the pair depict the same object or scene), where a distance ratio test, followed by
a geometric consistence check like RANSAC or faster algorithms [28], was applied to
determine the correct or incorrect feature matches. For geometric verification, the
minimum number of supporting inliers to consider a match pair of images as valid
was set to 30, which was much higher than the minimum number of supporting inliers
(say, 5 inliers empirically set by CDVS TM) in pairwise matching or retrieval tasks,
to obtain the positive samples of feature matches as accurate as possible.
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The issue of local feature selection is distinct from the problem of feature subset
selection in classic supervised learning tasks [29]. CDVS did not explicitly classify an
interest point instance as belonging to irrelevant or redundant features in the context
of predicting the class of a pair of images (say, matching versus non-matching) or other
class labels. This approach made an empirical assumption that the characteristics of
correctly matched features behave, in a statistical sense, consistently across various
datasets. By modeling feature relevance values with the conditional distribution,
CDVS actually introduced a low complexity approximation of the pairwise matching
algorithm to determine valid inliers from the statistical point of view.

4.3 Local Feature Descriptor Compression

Compression can significantly alleviate the storage requirement of local feature de-
scriptors. In contrast to 1024 bits per uncompressed local feature descriptor, CDVS
has obtained the compactness of 32, 32, 65, 103, 129, 205 bits per local feature descrip-
tor on average at the descriptor length of 512 bytes, 1KB, 2KB, 4KB, 8KB, 16KB,
respectively. CDVS evaluation performed comprehensive performance and complexity
study from the perspectives of both vector quantization (VQ) and scalar quantization
(SQ). For the CDVS standard specification, scalar quantization was finally adopted.

Since TM 3.0, CDVS adopted a novel scalar quantization based local descriptor
compression scheme [18][19]. There are two major stages, namely, the descriptor
transform, which entails additions and subtractions of Histogram of Gradient (HoG)
bin values, and the ternary scalar quantization of the transformed elements, which
entails L1-norm based comparison operations. This scheme is hardware favorable due
to fast processing (in terms of transform, quantization and distance calculation), nice
scalability (in terms of bitrate transcoding) directly in the compressed domain, as
well as the minimum memory cost. The primary memory resource is 128 (elements
from the transformed descriptor) × 2 (ternary SQ thresholds) = 256 bytes [18].

The descriptor transform may impact the recognition performance, as resolving a
set of linearly uncorrelated elements (e.g., principle components) and then allocating
more bits to the elements with higher variance may increase the discriminative power
of the quantized descriptor, especially at lower bitrates. Instead of directly applying
a PCA transform to the original descriptor, CDVS employed the subspace decompo-
sition idea of product quantization, and proposed two sets of linear bin combination
patterns (akin to an approximated PCA transform) to derive uncorrelated compo-
nents (also physically meaningful) of the HoG histograms for the 16 non-overlapping
subregions, respectively. The memory cost of descriptor transform is nearly zero. In
order to further compress the transformed descriptor, CDVS performed element wise
ternary quantization and prefix coding. To fulfill the rate scalability, a set of rules
were abstracted to progressively select a subset of elements for different bitrates in
the compressed domain based on some statistical importance criteria.

However, as vector quantization has been widely used in the state-of-the-art Bag-
of-Words models, CDVS performed extensive experiments to investigate technical
merits and limitation till TM 5.0. In particular, CDVS presented a Multi-stage Vector
Quantizer (MSVQ) [30] to substantially reduce the memory requirement of Look-Up
tables (i.e., 38KB [30], versus 60∼150 MB for storing a large codebook containing
0.1∼1 million words) while maintaining comparable matching performance. MSVQ
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involves the first stage tree structured quantizer for the original feature vector and the
second stage product quantizer for the residuals. Searching for the nearest codeword
is time consuming, as the L2 norm involves complex operations like subtraction and
multiplication. However, as VQ is simple, efficient and widely used in Bag-of-Words
models, MSVQ was adopted by TM 4.0 as a reference software implementation.

4.4 Local Feature Descriptor Aggregation

State-of-the-art image retrieval systems are built upon a visual vocabulary model
with an inverted indexing structure, which quantizes the local features of query and
database images into visual words [1]. Each database image is then represented as a
BoW histogram (i.e., a compact image-level representation) and is invert indexed by
visual words in the image. To improve search performance, existing BoW approaches
introduce a large vocabulary tree (VT) (say, 1 million visual words) [31] to perform
fine-grained quantization of local features, soft word assignment to reduce quantiza-
tion errors, as well as hamming-embedding to allow for a smaller vocabulary [32].
However, to yield higher search performance usually incurs very high memory usage
from storing a larger codebook and an inverted index file, given the large number of
visual words and images in which the words may appear. The requirement of low
memory complexity (say, CEs encourage a minimum level of 1 MB for the whole
encoding process) of the CDVS standard makes conventional BoW approaches no
longer suitable for generating a compact image descriptor by simply composing the
quantized local descriptors of a query image. In particular, frequently updating an
inverted index may consume enormous resources. This prohibits the application of
BoW approaches in real-time indexing scenarios where newly arriving content must
be indexed and made available for search immediately upon arrival, or local search
scenarios on resource-constrained devices like mobile phones, set-top boxes, etc.

Since TM 2.0, CDVS has been dedicated to high performance and low complexity
aggregation techniques to derive a global descriptor from local feature descriptors.
A novel “Global + Local” strategy was established at the MPEG 100th meeting,
which combining an image signature obtained by aggregating uncompressed local
descriptors and a subset of compressed local descriptors to form compact descriptors
at different bitrates. A novel compact signature Residual Enhanced Visual Vector
(REVV) [7][33] was adopted by TM as a reference aggregation technique. Towards
low memory complexity, REVV elegantly improved the Vector of Locally Aggregated
Descriptor (VLAD) [3] with key enhancements in residual aggregation, dimensionality
reduction, and signature comparison. Another competitive contribution robust visual
descriptor (RVD) [34] introduced the soft assignment of quantized words to REVV.
The ”Global + Local” solution is cost-efficient in processing and storing the index in
limited amount of memory, in addition to high matching and retrieval performance.

In the standard specification, Fisher kernel [4][35] was employed to aggregate local
feature descriptors by deriving the Fisher vector (FV) representation. VLAD may be
considered as a non-probabilistic simplified version of FV. Finally, the Scalable Com-
pressed Fisher Vector (SCFV) [36][37][38][21][39] was adopted by the CDVS standard.
SCFV incorporated valuable elements of REVV like learning correlation weights for
signature comparison. The primary memory resource is 4,224 bytes (PCA projection
matrix) + 37,888 bytes (GMM parameters) = 42, 112 bytes [21].
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FV employs a Gaussian Mixture Model (GMM) to estimate the distribution of
local feature descriptors over a training feature set. The gradient vector [4][35] of the
set of local descriptors in a query image with respect to the mean (1-order) and vari-
ance (2-order) parameters of the GMM are computed to form the FV representation.
Actually, both the BoW histogram and the Fisher Vector belong to the representa-
tion of aggregating local feature descriptors. BoW encodes the 0-order statistics by
counting word occurrence, while FV encodes the 1-order and 2-order statistics in ad-
dition to the 0-order statistics. FV incorporates the soft assignment of a local feature
descriptor to multiple Gaussians (words). Accordingly, FV yields better performance
than BoW by using a much smaller vocabulary (containing a few hundreds of words
or Gaussian centroids). Memory complexity is much reduced as well.

SCFV further proposed to compress the raw FV by an one-bit scalar quantizer.
The binary code supports fast Hamming distance computing. To make economic
use of bit budget between local and global descriptors, SCFV offered a rate scalable
representation (with an average size of 304, 384, 404, 1117, 1117, 1117 bytes for six
bitrates, respectively) by selecting a subset of Gaussian centroids in the GMM and
retaining the gradient vector for these selected centroids. When additional bit budget
is available at higher bitrates (4KB and more), the discriminative power of SCFV can
be enhanced by adding the gradient vector with respect to the variance [36].

4.5 Local Feature Location Compression

Geometric verification is crucial to eliminate false feature matches and to improve the
recognition performance. For example, in TM 11.0, the geometric re-ranking yields
remarkable mAP improvements of +3.76%, +4.62%, +1.73%, +3.78%, +4.73% at
4KB bitrate for all the CDVS datasets Graphics, Paintings, Video Frames, Landmark,
and Common Object. Geometric consistency check consists of the ratio test and the
geometric model verification. The local feature location information is required to
estimate a geometric transformation model by RANSAC or faster algorithms [28].

CDVS proposed a novel local feature location lossy compression scheme [40][41].
An image is subdivided into a matrix of non-overlapping blocks of size 3×3. The
location information is converted into a location histogram containing the histogram
map and the histogram count. The histogram map is formed by the map of empty
and non-empty histogram blocks, while the histogram count is the number of features
in the non-empty block. The histogram count is encoded using a 64-symbols, single
model, and static arithmetic coding scheme. The histogram map is encoded using
a binary context-based arithmetic coding scheme. CDVS has yielded the rate of ∼6
bits per feature versus ∼12 bits per feature with lossless coding (i.e., block size 1×1).
However, for bitrates 2KB or more, the addition of 5% more local features from lossy
coding does not impact matching accuracy (say, TPR gain < +0.25%). Though loss-
less coding has good potentials to improve the localization accuracy in some promising
applications like robotic navigation, CDVS evaluation framework limits further study
due to the issues of dataset annotation and performance measurements.

5. CDVS Performance Evaluation

The MPEG-7 CDVS benchmark involves a million-scale image dataset including 8,314
query images vs. 18,840 reference images categorized into Graphics, Painting, Frame,
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Figure 2: The retrieval performance improvements with milestone technology adoption.

Landmark, Common Objects, 10,155 matching pairs vs. 112,175 non-matching pairs,
and a distractor set FLICKR1M of 1 million images collected from Flickr. The mean
Average Precision and the success rate of Top Match, are used to evaluate the retrieval
performance, while the True Positive Rate at less than 1% False Positive Rate is
applied to evaluate the pairwise matching performance. Readers are referred to [13]
for more details on the CDVS evaluation framework.

Remarkable performance improvements have been made in developing the CDVS
standard. Comparing TM 1.0 (TMuC) to TM 11.0, the average performance gains
over all bitrates and datasets are mAP 0.72 vs. 0.85, the success rate of Top Match
0.81 vs. 0.91, TPR 0.90 vs. 0.93. Figure 2 illustrates the retrieval performance com-
parison, in which the substantial performance improvements were mainly attributed
to the adoption of the milestone global descriptors REVV, SCFV (128 Gaussians),
improved SCFV (512 Gaussians). In particular, feature selection consistently played
an important role. Compared to the aggregation of randomly sampled local features,
the selective aggregation led to a remarkable mAP increase of over 0.25 [10]. In
addition, memory usage substantially decreased from over 400MB down to ∼1MB .
Several technical breakthroughs in local feature descriptor compression, local feature
descriptor aggregation SCFV, as well as interest point detection BFLoG ALP, con-
tributed to the minimum primary memory use of ∼1KB, ∼40KB, ∼957KB in these
modules, respectively. Overall, descriptor transform, scalar quantization, as well as
subdividing (or tiling) process played a significant role in complexity reduction.

6. Summary

We have reviewed the scope and development of the MPEG-7 CDVS standard. CDVS
made remarkable progress in high performance and low complexity compact descrip-
tors. Several issues remain open, including but not limited to the “true” minimum
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Figure 3: The performance of MPEG-7 CDVS Test Model 11.0.

normative part with sufficient interoperability, the flexibility of feature selection to
maximize search performance with a toleration of minor interoperability loss, the
scalability in dealing with a very large scale image dataset (say, 100 millions), etc.
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