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Abstract

Deblocking filter (DF) in High Efficiency Video Coding (HEVC) is only applied to all sam-
ples adjacent to prediction units (PU), or transform units (TU), which actually exists two
issues. The first one is that DF in HEVC does not fully exploit nonlocal similarity structure
information in video. The second one is that DF in HEVC does not consider the inside pix-
els, which often suffer from quantization distortion. To alleviate these issues, in this paper,
a structure-driven adaptive non-local filter (SANF) is proposed by simultaneously enforcing
the intrinsic local sparsity and the non-local self-similarity of each frame. Not only SANF
deals with the boundary pixels, but also the inside area, which is able to effectively reduce
block artifacts while enhancing the quality of the deblocked frames. Applying SANF to
luma and chroma components after DF, simulation results demonstrate that the proposed
SANF can save BD-rate reduction up to 10.3% with ALF off. For luma component, SANF
achieves 4.1%, 3.3%, 4.4% BD-rate saving for all intra, low delay B and random access
configurations, respectively with ALF off. Furthermore, the performance with ALF on is
also discussed.

1 Introduction

In April 2010, the ITU-T Video Coding Expert Group (VCEG) and ISO/IEC Moving
Picture Experts Group (MPEG) formed the Joint Collaborative Team on Video Cod-
ing (JCT-VC) to develop the new coding standard, which is known as high efficiency
video coding (HEVC) or H.265, formally published in 2013 [1]. Many new coding
tools and coding structures are adopted in HEVC, which enable a major advance in
compression relative to its predecessors.

In the HEVC video coding standard, the in-loop filters play an important role,
which are applied in the encoding and decoding loops, after the inverse quantization
but before saving the picture to the decoded picture buffer. HEVC standard specifies
two types of in-loop filters, a deblocking filter, which is applied first, and a sample
adaptive offset (SAO), which is applied to the output of the deblocking filter [2]. The
purpose of the deblocking filter is to attenuate the discontinuities at prediction and
transform block boundaries, while the SAO aims to further improve the quality of the
decoded picture by reducing the ringing artifacts and changes in the sample intensity
of areas of a reconstructed picture. Due to that the deblocking and SAO attenuate
different artifacts, their benefits are usually additive when exploited together.

In HEVC, both the motion prediction and transform coding are block-based. The
size of motion predicted blocks varies from 8x4 and 4x8, to 64x64 luma samples,
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while the size of block transforms and intra-predicted blocks varies from 4 x4 to 32x32
samples. These blocks are coded relatively independently from the neighboring blocks
and approximate the original signal with some degree of similarity. Since coded blocks
only approximate the original signal, the difference between the approximations may
cause discontinuities at the prediction and transform block boundaries [3] [4]. These
discontinuities are attenuated by the deblocking filter.

In HEVC deblocking, the vertical boundaries in a picture are filtered first, followed
by the horizontal boundaries. In a coding unit, the vertical boundaries between
the coding blocks are processed starting from the left-most boundary towards the
right-hand side. The horizontal boundaries are processed starting from the top-most
boundary towards the bottom [4]. Since the deblocking filter (DF) is only applied to
the boundaries between the coding units, prediction units, or transform units, which
actually exists two issues. On one hand, the simple DF in HEVC does not fully
exploit structure information in video. On the other hand, DF in HEVC does not
consider the inside area, which often suffer from quantization distortion. Therefore,
these two issues degrade the quality of the deblocking frames.

In the past several years, non-local self-similarity has been emerging as one of
the most properties of natural image and videos, which depicts the repetitiveness of
higher level patterns (e.g., textures and structures) globally positioned in images and
videos, and has achieved great success in various image/video restoration applications
[5-10]. In this paper, to enhance the quality of the deblocking frames, a non-local
structure-based filter (SANF) is proposed by simultaneously enforcing the intrinsic
local sparsity and the non-local self-similarity of each frame in video. SANF not
only deals with the boundaries, but also deals with the inside areas, which is able
to effectively reduce the artifacts while enhancing quality of the deblocked frames.
Experimental results demonstrate that, compared with the original HEVC reference
encoder implementation in all coding configuration, the proposed SANF can achieve
encouraging BD-rate saving by applying SANF after DF in HEVC.

The remainder of this paper is organized as follows. Section 2 elaborates the
proposed structure-driven adaptive non-local filter (SANF). Extensive experimental
results are reported in Section 3. In Section 4, we concludes this paper.

2 Proposed Structure-driven Adaptive Non-local Filter

In our latest work [10], a new sparse representation model in the unit of group instead
of block, named as group-based sparse representation (GSR), is proposed, which is
able to exploit the local sparsity and the nonlocal self-similarity of natural images
simultaneously in a unified framework. Motivated by the success of GSR in image
inpainting, deblurring and compressive sensing recovery applications, in this paper,
we propose to design the structure-driven adaptive non-local filter (SANF) on the
basis of GSR model [10]. In this paper, different from GSR [10], the proposed SANF
has the advantages of being non-iterative and being parameter-free to the QP. The
details are given below.
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Figure 1: Illustrations for the proposed structure-driven adaptive non-local filter (SANF).

2.1  Group Construction

In this subsection, we will show how to exploit non-local structure within each frame
in sequence to construct a group.

The basic idea of GSR is to adaptively sparsify the natural image in the domain
of group. Thus we first show how to construct a group. In fact, each group is
represented by the form of matrix, which is in fact composed of nonlocal blocks with
similar structure. To be concrete, as illustrated in Fig. 1, first, divide the frame
x € RY” with size N2 into K overlapped blocks of size /B, x v/Bs, and each block
is denoted by the vector x;, € RP ie. k=1, 2,..., K. Then, for each block x;,
denoted by small red square in Fig. 1, within the W, x W training window (big blue
square), search its ¢ best matched blocks, which comprise the set S, . Here, Euclidean
distance is selected as the similarity criterion between different blocks. Next, all the
blocks in Sy, are stacked into a matrix of size B x ¢, denoted by X, , which includes
every block in as its columns, i.e. X¢g,=[X¢, @ 1,X¢, ®2: - - - X, ®c)- The matrix Xg,
containing all the blocks with similar structure is named as a group. Note that, each
block x;, is represented as a vector, while each group X, is represented as a matrix,
as shown in Fig. 1. It is obvious to observe that each block corresponds to a group.

2.2 Group-based Filtering

This subsection will give the details about how to conduct effective filter based on
the group.

Given one frame x € RY” in the sequence, which comes from deblocking proce-
dure, first construct K groups according to the above subsection. For each group
Xe=[Xc, @1, X, @2+ - - - Xy ®c)» k=1, 2,..., K, we apply singular value decom-
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Figure 2: Relationship between quantization step (Qstep) and quantization parameter (QP).

position to it, yielding

Xa, = U656 VE, = ) Ve 00 (16,06, @i): (1)
i=1
where Txck:[Tka®l; Yo, @i Tka®m] is a column vector, ¢, =diag(Y, . )is
&

a diagonal matrix with the elements of Tka on its main diagonal, and ug, @i, Vo, @i
are the columns of Ug, and Vg, , separately.

In order to reduce the artifacts and enhance the quality, the hard thresholding
operation is applied to TXGk, ie.,

ag, = hard(Yxg . 7), (2)

where hard (x,a) = x ® 1 (abs (x) —a) denotes the operator of hard thresholding and
® stands for the element-wise product of two vectors. 7 denotes the threshold, whose
setting is elaborated in the next subsection.

After achieving oy, , then we obtain the deblocking group ng, expressed by

}A(G)C = Z aGk ®’L (qu ®ngk ®z) (3)
=1

This process is applied for all K groups to achieve ng, k=1, 2,..., K. At last,
all X, are averaged to get the filtered frame x.

2.8 Parameter T Estimation

From above description, the key for SANF is the setting of parameter 7 in Eq. (2).
This subsection will present the details to give an adaptive and robust estimate for 7
according to quantization parameter (QP) in video coding.

In this paper, we adopt Gaussian model to characterize the quantization noise
between the original frame and the compressed frame due to its simplicity and ef-
fectiveness. Therefore, the estimate for 7 is transformed to estimating the variance
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Figure 3: Agreement between the values of o estimated by Eq. (5) and the optimal ones
(found experimentally), which give the highest PSNR for the deblocked BasketballDrive and
FourPeople sequences using the proposed SANF.

o? of the quantization noise. Here, it is also worth emphasizing that the estimated

noise variance o2 is not the real estimate of the variance of the difference between the
original and the compressed images. Under assumption of Gaussian noise model, it
is just the variance of the hypothetical Gaussian noise, which determines the level of
adaptive smoothing that is able to reduce the artifacts generated by the quantization
process [11].

As we know, similar to H.264/AVC, a QP is used to determine the quantization
step size in HEVC. QP can take 52 values from 0 to 51 for 8-bit video sequences.
An increase of 1 in QP means an increase of the quantization step size (Qstep)
by approximately 12%. The resulting relationship between QP and Qstep for an
orthonormal transform is formuated by [1]:

Qstep = 2 S (4)

Fig. 2 also shows how Qstep increases non-linearly with QP. Since quantization
consists of division by the Qstep and subsequent rounding while inverse quantization
consists of multiplication by Qstep, we directly study the relationship between o and
Qstep.

First, we observe the optimal values of o found experimentally for the sequences
BasketballDrive and FourPeople compressed with different QPs (QP = 22, 27, 32,
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Table 1: Coefficients in Eq. (5) for estimate o in all configurations

Component Al LDB RA
Type alpha beta alpha beta alpha beta
Y 0.13 0.71 0.1045 | 0.487 | 0.1045 | 0.487
U 0.06623 | 0.8617 | 0.03771 | 0.8833 | 0.03771 | 0.8833
\Y 0.06623 | 0.8617 | 0.03771 | 0.8833 | 0.03771 | 0.8833

37) corresponding to different Qsteps calculated by Eq. (4), as illustrated in Fig. 3.
It can be inferred that different sequences with the same Qp or Qstep have similar
optimal values of o, which means that o is only related with QP or Qstep. Hence,
in this paper, we propose to estimate the optimal value of ¢ directly from Qstep by
curve fitting using the following empirical formulation:

o= ax* Qstep + 5. (5)
The values of the two coefficients in the linear model (5), i.e. « and 3, are
shown in Table 1. Note that LDB configuration and RA configuration share the same
coefficients. What’s more, in each configuration, U component and V' component
utilize the same coefficients.
The red curve in Fig. 3 expresses the relationship between the estimated o and
Qstep obviously. The value 7 is also has a linear relationship with o, expressed as

(6)

Finally, combining Eqs. (4) (5) (6), we further obtain the relationship between
the estimated 7 and QP below

T =0 % (B +¢).

(QP—4)
T=(x2 @

+ ) * (Bs + V). (7)

All samples processed by SANF would be further filtered by SAO and ALF (op-
tional) [12]. We compare SANF result with the original DF in terms of PSNR, choos-
ing the better one at encoder side and send flag to decoder. Extensive experiments
in Section 3 will verify the robustness and effectiveness of the proposed SANF.

3 Experimental Results

This section provides simulation test data to illustrate the benefits of structure-driven
adaptive non-local filter (SANF) with an analysis of the algorithm’s complexity in
both encoder and decoder side.

3.1 Test Conditions

Following are the experiment results conducted under the common test conditions
(CTC) [13] of HEVC, which consists of six different classes (from class A to class F)
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of resolutions. The resolutions of each classes are: class A is 2560 x 1600, class B is
1920 x 1080 class C is 832 x 480, class D is 416 x 240, class E is 1280 x 720. From
class A to class E, all sequences in these classes are natural videos. The sequences in
class F are not natural videos but for screen content coding (SCC) containing three
resolutions: 1280 x 720, 1024 x 768, 832 x 480. We run our experiments from class B
to class F.

Four utilized quantization parameter (QP) values are 22, 27, 32 and 37.
e Result using Bjontegaard’s method [14] in terms of BD-rate.

e Three different types of coding configurations are: all intra (Al), low delay B
(LDB), random access (RA).

e All three reference configurations are tested under main conditions (Main), NOT
under high efficient 10-bit conditions (Main10).

e The version of HEVC reference software [15] is HM12.0 (Anchor).

e For more persuasive analysis, ALF [16] has been added to the reference soft-
ware. BD-rate performance comparison was made when ALF turns on and off
respectively.

3.2 Objective Quality

Table 2 provides the PSNR results sequence-by-sequence. It is clear to observe that
SANF performs well on all test sequences under all configurations. Table 3 shows us
the performance of the proposed SANF under AI, LDB and RA configurations with
ALF off. Obviously, SANF achieves remarkable coding gains in all circumstances. In
particular, under Al configuration, SANF obtains 4.1%, 4.9%, 6,1% BD-rate reduction
in YUV components, respectively. In LDB configuration, there are 3.3% BD-rate
saving in Y component, and 4.4% and 5.1% BD-rate reduction in UV components.
In RA configuration, SANF obtains 4.4% 5.6% and 6.1% BD-rate reduction in YUV
components, respectively.

Table 4 further presents the corresponding simulation test performance with ALF
on. Although ALF has been removed from TMuC in the final draft of HEVC standard
(HM), its power can’t be ignored. From Table 4, it is obvious to see that the proposed
SANF still acquires convincing result in all configurations. The coding gains in Al
are 3.1%, 2.8%, and 3.9% for YUV components, respectively. In LDB configuration,
SANF obtains 2.8%, 3.7% and 4.1% for YUV components. As for RA, the coding
gains are 3.4%, 4.6%, and 5.1% for each component, separately.

Although the improvement of the proposed SANF with ALF on is not as much as
the improvement of the proposed SANF with ALF off, the proposed SANF with ALF
on still outperforms HEVC with ALF, which fully verifies that the nonlocal structure
property can obviously reduce the block artifact and the quantization noise. That
also indicates, there exists extensive prospect for post filter in the next generation
coding standard to explore.
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Table 2: Experimental results of SANF sequence by sequence, Anchor: HM12.0 with ALF off

Sequences Al LDP RA
Y 18] \% Y U Vv Y 18] \%
Kimono -3.8% -0.2% -0.2% -4.5% -7.0% -3.7% -3.6% -4.4% -1.3%
ParkScene -2.2% -0.1% -0.0% -0.4% -0.0% -0.2% -1.8% -0.8% -0.3%
Class B Cactus -3.6% | -1.4% -7.0% | -3.5% | -3.3% -4.5% -5.0% -5.8% -5.9%
BasketballDrive -3.2% -7.3% -9.3% -2.7% -6.2% -9.0% -2.9% -5.6% -8.4%
BQTerrace -3.3% -2.2% -2.8% -4.9% -1.3% -1.2% -8.2% -3.1% -3.0%
BasketballDrill -5.0% -8.7% -11.0% | -1.2% -5.1% -6.0% -2.1% -7.2% -9.3%
Class C BQMall -4.9% -4.8% -6.3% -3.3% -4.1% -5.1% -3.9% -4.4% -4.8%
PartyScene -2.0% -2.2% -3.0% -0.2% -0.3% -0.4% -0.7% -1.0% -0.9%
RaceHorsesC -2.6% -4.0% -7.2% -3.0% -4.0% -7.6% -3.2% -4.2% -8.7%
BasketballPass -41% | -5.6% -6.1% | -1.7% | -3.1% -2.6% -2.4% -4.4% -3.7%
Class D BQSquare -2.0% -0.7% -3.8% -0.7% -0.6% -1.8% -1.3% -0.9% -1.4%
BlowingBubbles -2.5% -5.1% -6.2% -0.9% -2.9% -2.2% -1.5% -3.5% -2.4%
RaceHorses -3.7% -6.2% -7.4% -2.9% -3.3% -4.8% -3.1% -5.0% -6.3%
FourPeople -6.8% | -6.8% 1A% | -7.7% | -8.2% -9.1% -9.6% | -10.0% | -10.5%
Class E Johnny -7.7% | -10.2% -9.9% 7.2% | -121% | -11.4% | -10.3% | -13.6% | -13.4%
KristenAndSara -6.6% | -8.6% -9.3% | -7.4% | -82% | -10.9% | 10.0% | -10.8% | -12.3%
BasketballDrillText | -4.8% -7.9% -9,4% -1.3% -4.8% -4.8% -2.3% -7.0% -8.2%
ChinaSpeed -1.8% -3.1% -3.1% -1.6% -0.5% -2.3% -2.2% -4.0% -4.1%
Class F SlideEditing -2.2% -0.0% -0.7% -2.0% -0.2% -0.3% -2.6% -0.2% -0.4%
SlideShow -5.0% -6.4% -6.7% -4.7% -5.8% -6.9% -4.9% -8.7% -8.8%
Overall -4.1% -4.9% -6.1% -3.3% -4.4% -5.1% -4.4% -5.6% -6.1%
Table 3: Experimental results of SANF, Anchor: HM12.0 with ALF off
Sequences Al LDB RA
Y U A\ Y U A\ Y U A\
Class B -32% | -2.2% | -3.9% | -3.2% | -3.5% -3.7% -4.3% -3.9% -3.8%
Class C -3.6% | -4.9% | -6.9% | -1.9% | -3.4% -4.8% -2.5% -4.2% -5.9%
Class D 3.1% | -4.4% | -5.9% | -1.5% | -2.5% -2.8% -2.1% -3.4% -3.4%
Class E -71% | -85% | -8.9% | -7.4% | -9.5% | -10.5% | -10.0% | -11.4% | -12.1%
Class F -3.5% | -4.4% | -5.0% | -2.4% | -2.8% -3.6% -3.0% -5.0% -5.4%
Overall 4.1% | -4.9% | -6.1% | -3.3% | -4.4% -5.1% -4.4% -5.6% -6.1%
Table 4: Experimental results of SANF, Anchor: HM12.0 with ALF on
Sequences Al LDB RA
Y U A Y U A\ Y U \%
Class B -1.9% | -1.0% | -2.5% | -2.1% | -2.9% | -3.3% | -2.6% | -3.0% | -3.8%
Class C -3.1% | -2.6% | -5.0% | -2.0% | -4.0% | -5.1% | -2.2% | -4.3% | -5.9%
Class D -2.6% | -1.6% | -3.1% | -1.6% | -2.5% | -3.0% | -1.9% | -3.6% | -3.8%
Class E -4.9% | -4.5% | -3.9% | -5.5% | -5.5% | -5.6% | -7.5% | -7.5% | -6.8%
Class F -3.1% | -4.3% | -5.0% | -2.8% | -3.56% | -3.6% | -2.9% | -4.7% | -5.3%
Overall -3.1% | -2.8% | -3.9% | -2.8% | -3.7% | -4.1% | -3.4% | -4.6% | -5.1%

3.3 Subjective Quality

We further present the subjective quality in Fig. 4, which shows the reconstructed
frames from sequence Johnny and sequence KristenAndSara. Obviously, under the
cases of with ALF off or with ALF on, the proposed SANF not only processes the
pixels near the boundary of transform units and prediction units, but also filters the
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(a) (b) () (d)

Figure 4: Visual comparisons between anchor and proposed SANF of frames from sequences
Johnny and KristenAndSara. (a) HM12.0 (LDB), ALF-OFF, QP = 37, PSNR = 36.42 dB
(b) SANF (LDB), ALF-OFF, QP = 37, PSNR = 36.64 dB (c¢) HM12.0 (AI), ALF-ON, QP
= 32, PSNR = 39.65 dB (d) SANF (AI), ALF-ON, QP = 32, PSNR = 40.07 dB. Obviously,
SANF has much better quality than anchor in PSNR and visual quality.

pixels inside these blocks, providing better results on both edge and texture areas.

Finally, as for the computation complexity, nonlocal similarity property requires
overlapped block-matching search in search window for each block of each frame.
Therefore, the proposed algorithm can be regarded as a picture-level in-loop filter
in video coding process. The encoding computation complexities of the proposed
SANF in three configurations are 289% (AI), 126% (LDB) and 148% (RA) against
the anchor encoder respectively with ALF off. When ALF turns on, the encoding
computation complexities becomes 219% (AI), 131% (LDB) and 136% (RA) against
the anchor encoder in HM12.0 with ALF on. As for the complexity of decoder side,
the decoding computation complexities in all configurations take more than ten-times
those of the HM12.0 decoder with ALF on/off.

4 Conclusion

In this paper, to improve the in-loop filter performance, a structure-driven adaptive
non-local filter (SANF) is proposed by simultaneously enforcing the intrinsic local
sparsity and the non-local self-similarity of each frame in video. SANF not only deal-
s with the boundaries, but also inside area, which is able to effectively reduce the
artifacts while enhance quality of the deblocked frames. Experimental results demon-
strate that, the proposed SANF surpasses HEVC reference software convincingly.
Although with high complexity, the proposed SANF shed light on the important role
of post processing filter especially for future video coding standard. On going work
is to address the algorithm parallelization and optimization for accelerating SANF.
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