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Abstract—1In this paper, we propose a novel image interpola-
tion algorithm via graph-based Bayesian label propagation. The
basic idea is to first create a graph with known and unknown
pixels as vertices and with edge weights encoding the similarity
between vertices, then the problem of interpolation converts to
how to effectively propagate the label information from known
points to unknown ones. This process can be posed as a Bayesian
inference, in which we try to combine the principles of local
adaptation and global consistency to obtain accurate and robust
estimation. Specially, our algorithm first constructs a set of local
interpolation models, which predict the intensity labels of all
image samples, and a loss term will be minimized to keep the
predicted labels of the available low-resolution (LR) samples
sufficiently close to the original ones. Then, all of the losses
evaluated in local neighborhoods are accumulated together to
measure the global consistency on all samples. Moreover, a graph-
Laplacian-based manifold regularization term is incorporated to
penalize the global smoothness of intensity labels, such smoothing
can alleviate the insufficient training of the local models and
make them more robust. Finally, we construct a unified objective
function to combine together the global loss of the locally linear
regression, square error of prediction bias on the available
LR samples, and the manifold regularization term. It can be
solved with a closed-form solution as a convex optimization
problem. Experimental results demonstrate that the proposed
method achieves competitive performance with the state-of-the-
art image interpolation algorithms.

Index Terms—Image interpolation, graph, label propagation,
local adaptation, global consistency, regression.

I. INTRODUCTION

MAGE interpolation, which is the art of rescaling a low-
resolution (LR) image to a high-resolution (HR) version,
has become a very active area of research in image processing.
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The interest in image interpolation is born not only in the
great practical importance of enhancing resolution of images,
such as in the fields of digital photography, computer vision,
computer graphics, medical imaging and consumer electron-
ics, but also the important theoretical value of using image
interpolation to understand the validity of different image
models in inverse problems. In the last several years, there
have been a great deal of works on image interpolation.
In general, image interpolation techniques can be catego-
rized into three families: upscaling-based methods [1]-[13],
reconstruction-based methods [14], [15], and learning-based
methods [16]-[18].

Considering the underlying image model during
interpolation, most of image interpolation algorithms could be
categorized as globally nonadaptive and locally adaptive ones.
A globally nonadaptive algorithm trains the interpolation
model using the whole image sample set, while a locally
adaptive algorithm trains the model by using only useful local
information. The representative globally nonadaptive methods
are those based on classical data-invariant linear filters, such
as bilinear, bicubic [2], and cubic spline algorithms [3]. These
methods have a relatively low computation complexity but
suffer from the inability to adapt to varying pixel structures,
which results in blurred edges and annoying artifacts.

The locally adaptive algorithms usually demonstrate better
empirical results than globally nonadaptive ones since it is
much easier to seek some functions that are capable of pro-
ducing good predictions on some specified regions of images.
In the literature, many locally adaptive learning methods have
been proposed with great success. Li and Orchard [4] propose
to estimate local covariance coefficients from a LR image,
and then project the estimated covariance to the HR image
to adapt the interpolation. The improved new edge-directed
interpolation (INEDI) method [5] modifies NEDI by varying
the size of the training window according to the edge size and
achieves better performance. In [6], a method named ICBI is
proposed to use local second order information to adapt the
interpolation and an iterative refinement is further exploited to
remove artifacts while preserving image features and texture.
In [7], Zhang and Wu propose the named SAI algorithm, which
learns and adapts varying scene structures using a locally
linear regression model, and interpolates the missing pixels in
a group by a soft-decision manner. Liu ef al. in [8] propose an
effective image interpolation algorithm based on regularized
local linear regression (RLLR), in which the ordinary least
squares error norm is replaced with the moving least squares
error norm leading to a robust estimator of local image
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structure. Similar to RLLR, Hung and Siu in [9] extend the
SAI algorithm in a weighted manner to get more robust results.
Although the local model based methods achieve wonderful
performance, the description ability of this family of models
is limited. It is difficult to guarantee that the interpolated
image is best under the global view. Another problem for
local learning is that in some cases the number of samples is
not enough to sufficiently train the interpolation model, which
will result in over-fitting the data. Therefore, how to improve
the performances of the local learning algorithms is still a
challenging problem.

After reviewing the global and local methods, a natural
question is if combining the robustness of global models with
the flexibility of local models can lead to a more effective
solution. From a statistical perspective, image interpolation
is an ill-posed problem. The key to this task is the prior
assumption about the properties that the intensity labels should
have over the image sample set. One common assumption for
natural images is intensity consistency [4], [19], which means:
1) nearby points are likely to have the same or similar intensity
labels; and 2) points on the same structure (manifold) are likely
to have the same or similar intensity labels. Note that the first
assumption means natural images are locally smooth, which
defines the local consistency; while the second one means
natural images possess the non-local self-similarity property,
which defines the global consistency. Accordingly, it is a
reasonable idea to consider both local and global information
contained in images during model learning.

Alternatively, from a machine learning perspective, the
available LR image pixels can be regarded as labeled samples
while the missing HR pixels as unlabeled ones. In the field
of machine learning, the success of semi-supervised learn-
ing [20]-[25] is plausibly due to effective utilization of the
large amounts of unlabeled data to extract information that
is useful for generalization. Therefore, it is reasonable to
leverage both labeled and unlabeled data to achieve better
predictions. This is especially useful for interpolation on
some bridge regions (i.e., regions connecting two different
objects), where the number of labeled points is usually not
enough to train a robust predictor. We model the whole
image sample set as a undirected graph with the vertex set
corresponding to the labeled and unlabeled samples, and the
edge set representing the relationships between vertices. In this
way, we can model the geometric relationships between all
data points through the graph. Moreover, the reference [20]
states that predicting the labels of the unlabeled data on a
graph is equivalent to propagating the labels of the labeled
data along the edges to the unlabeled ones. Therefore, the
task of image interpolation converts to the problem of graph-
based label propagation, that is, how to effectively propagate
the label information from the known LR samples through
the graph to the missing HR ones to get accurate and robust
estimation.

According to the intuition stated above, in this paper, we
propose a novel image Interpolation algorithm via Graph-
based Bayesian Label Propagation (IGBLP). We formulate the
process of label propagation as a Bayesian inference. The aim
is to obtain a labeling of the vertices that is both smooth over
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the graph and compatible with the labeled data. Specially,
the proposed method predicts the intensity label of a data
point according to its local neighborhood in a linear way, and
then uses a global optimization to ensure robust predictions.
In each neighborhood, an optimal model is estimated via
regularized locally linear regression. With this model, the
intensity labels of all samples in the neighborhood can be
predicted. A loss term will be minimized to keep the predicted
labels of available LR samples sufficiently close to the original
ones. Then, all of the losses evaluated in local neighborhoods
are accumulated together to measure the global consistency
on the label and unlabeled data. Moreover, a graph-Laplacian
based manifold regularization term is incorporated to penalize
the global smoothness of intensity labels, such smoothing
can alleviate the insufficient training of the local models
and make them more robust. Finally, we propose a unified
loss function to combine together the global loss of the
locally linear regression, square error of intensity labels of
the available LR samples and the manifold regularization
term, which could be solved with a closed-form solution as
a convex optimization problem. In this way, a graph-based
label propagation algorithm with local and global consistency
is developed.

The rest of this paper is organized as follows. Section II
introduces the general framework of Bayesian label propa-
gation for interpolation. Section III presents how transductive
regression can be performed with local and global consistency.
Section IV details the convex optimization solution of the
proposed algorithm. Experimental results are presented in
Section V. Section VI concludes the paper.

II. GRAPH-BASED BAYESIAN LABEL PROPAGATION
FOR INTERPOLATION

The problem of image interpolation could be defined
as follows: given an image sample set including n pixels
X = {x1,X0,...,X,X/41,..., Xy} € N2, of which X; =
{x1,x2,...,x;} are the available LR samples with intensity
values labeled by y; = {yi}ﬁzl; and Xy = {Xj+1,...,X,} are
the missing HR samples, their intensity values are unlabeled.
Given the dataset D = [X = X U Xy, y.], the task of
image interpolation converts to infer the posteriori probability
p(yy|D), where y;; = {y;:}/_,, is the labels of the remaining
n — [ missing samples in Xy. By the fact that unlabeled
samples are given beforehand and no other test samples will
ever be considered, this is a transductive regression problem.

We model the whole image sample set as a undirected graph
G = (V, £) with the vertex set V = X corresponding to the
labeled and unlabeled pixels, and the edge set £ € V x V
representing the relationships between vertices. Each edge is
assigned a weight W;; which reflects the affinity of x; and x;.
In this way, we can model the geometric relationships of all
samples in the form of a graph. Through the defined graph,
predicting the labels of the unlabeled data is equivalent to
propagating the labels of the labeled data along the edges to
the unlabeled ones.

To leverage both labeled and unlabeled samples, we assume
that the hard intensity label y; depends upon the hidden soft
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label f; for all i, then the posterior can be written as:

p(yuID) = /f Pyl p(E|D)E, (0

where f = {fi1, fa,..., fu} are the soft labels, which are
defined as outputs of the prediction functions, i.e., the esti-
mates of true labels of all samples in the graph. In this way, all
samples in the graph including labeled and unlabeled ones are
participated into the inference process. We first approximate
the posterior p(f|D) and then use the result of Eq. (1) as the
estimated intensity labels of missing HR samples. Using the
Bayes rule we can write p(f|D) as:

p(£|1D) = p(f1X,yr) o p(EIX)p(y.If). 2

The term p(f|X) is the probability of the soft labels given
the sample set. It can be regarded as the prior. One commonly
used prior assumption for natural images is insistency consis-
tency [4], [19], which states: 1) nearby points are more likely
to have the same or similar intensity labels; and 2) points
on the same manifold are more likely to have the same or
similar intensity labels. This prior term means that it should
give higher probability to the labeling that respects the local
smoothness and global consistency of the data graph. Equiv-
alently, we can interpret this probability in an exponential
form [25]:

1
p(f]X) ocexp (—EF(f, X)), 3

where F(-,-) is a general form of the regularization function.

The second term p(yp|f) is the likelihood that incorporates
the information provided by the LR intensity labels. Assuming
conditional independence of the observed labels given the
hidden soft labels, the likelihood can be written as:

puit) =1 _, pOil. o)

The likelihood models the probabilistic relation between the
observed label y; and the hidden label f;, which can also be
interpreted in an exponential form:

1
p(ilfi) ocexp (_Eﬁ(}’i, fi)), ®)

where L(-, -) is a general form of the loss function.
With the above definition, we can easily derive the following
result:

pEID) ccexp {— (ZI, L0 ) +2FE X))}, ©)

III. TRANSDUCTIVE REGRESSION WITH LOCAL
AND GLOBAL CONSISTENCY

As stated in the above section, maximum a posteriori
probability (MAP) estimate is equivalent to minimizing an
augmented optimization objective function. As a consequence,
the problem of posterior inference converts to how to appro-
priately define and combine the loss and regularization terms,
which should thoroughly respect the statistical property of the
target image. In the following, we will show how to define
the loss and regularization terms from the principle of local
adaptation and global consistency.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 3, MARCH 2014

A. The Principle of Global Consistency

Keep in mind that the desired soft labels should be both
smooth over the graph and compatible with the labeled data.
First, let us consider the definition of loss function (i.e., the
likelihood) from the principle of global consistency. Given
labeled samples {Xr,y.} = {(xX1,y1),--., (X1, y1)}, we try
to select a good interpolation model f by minimizing the
following global loss function:

1
Te =D LG, £, W) + 21 f 115 @

i=1

where L(-,-) measures the bias of estimated soft labels
from the original ones, w is the parameter vector of the
interpolation model, ||f||= is the induced norm of f in the
functional space F (e.g., F can be a reproducing kernel Hilbert
space (RKHS) induced by some kernel k), which reflects
the complexity of the predictor f. Clearly, Eq. (7) is in a
supervised and global manner, which only utilizes labeled
samples to train one interpolation function for the whole image
samples.

Then, let us consider the definition of regularization term
(i.e., the prior term). From a geometric perspective, there
is a probability distribution p on X x 9 to generate image
samples. The available LR samples are (x, y) pairs generated
according to p(X, y), the rest missing HR samples are simply
drawn according to the marginal distribution p(x) of p. One
might hope that knowledge of the marginal p(x) can be
exploited for better model learning. In the field of machine
learning, Belkin er al. [24] propose a geometric framework
for learning from labeled and unlabeled examples. They state
that there is a specific relationship between the marginal
distribution p(x) and the conditional distribution p(y|x). It
assumes that if two points x; and x, are close in the intrinsic
geometry of p(x), the conditional distribution p(y|x;) and
p(y|x2) should be similar. In another word, p(y|x) should vary
smoothly along the geodesics in the intrinsic geometry of p(x).
According to the geometric intuition stated above, we extend
the framework of model learning from supervised to semi-
supervised by incorporating additional information about the
geometric structure of the marginal p(x), which seeks a global
optimal interpolation function f by minimizing the following
objective function:

1
Re =D LGi, f&xi, W) +yall fIIF+ 71l F17 8)
i=1

where the additional penalty term || f ||% reflects the intrin-
sic geometric information of the marginal distribution p(x).
In most cases, the marginal distribution p(x) is unknown.
Therefore, we have to attempt to get empirical estimates
of p(x) and ||f||%. We assume the support of p(x) is a
compact submanifold M € R", then naturally || f II% can be
approximated by

113 = / IV 1P dp(x), ©
xeM
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where Vo f denotes the gradient of f with respect to M.
Intuitively, ||f II% measures how f varies on M, i.e., the
smoothness of f.

In the case of digital image, we can derive the discretized
form for gradient as follows:

J&xi) = f&x))
d(xi,X;)
where d(x;,Xx;) represents the distance between x; and X;.

Then we can rewrite ||f||% as:

Vmf = , (10)

If1z =D (Fo) — fFx))°Wy = £TLE, (1)

ij=1

where W;; is in inverse proportion to dz(x,-,x ). Wi s
the edge weight in the data adjacency graph which reflects
the affinity between x; and x;. In graph construction, edge
weights plays a crucial role. In this paper, we combine the
edge-preserving property of bilateral filter [27] and the robust
property of non-local-means weight [19] to design the edge
weights, which are defined as follows:

oI —xill?
c P g2

I G- |ISW(x)) — SW(x)|?
X exp | —

W,‘j =

5 ] , €>0, (12)
€

where the first exponential term considers the geometrical
nearby, and the second one considers the structural similarity.
The structural similarity of x; and x; is computed by com-
paring the similarity of windows SW(x;) and SW(x;), which
are the local patches centered on x; and x;. G is a Gaussian
kernel used to further take into account the distance between
the central pixel and other pixels in the local patch. We define
L =D — W e 9" as the graph Laplacian where D is
a diagonal matrix with D(i,i) =>_ j Wij. Through the graph
Laplacian, the label information is propagated from labeled
samples to unlabeled ones.

B. The Principle of Local Adaptation

The objective function defined above provides us an excel-
lent framework to learn from both labeled and unlabeled
samples. However, the structural loss is defined in a global
way, i.e., for the whole image, we only need to pursue one
interpolation model f. Actually, as pointed out by [26], it
is usually not easy to find a unique function which holds
good predictability in the entire data space. But it is much
easier to seek some models that are capable of producing
good predictions on some specified regions of the input space.
Accordingly, we resort to the local learning strategy to improve
the accuracy of predictions. More specially, for each data point
x; € X, we consider the linear affine transformation model
f(-; w;, by) defined as follows:

i3 wi, bi) = w] ©(x;) + b;, (13)

where w; and b; are the weight vector and bias of the
linear estimator, ®(x;) € RIx1 s the intensity label vec-

tor of 8-connected neighboring samples of x; [7]; f(x;)
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is the estimated intensity label of x;, which is obtained
by a weighted aggregation of the pixels in its local
neighborhood.

To compute the model parameters, we split the whole input
space N into ¢ overlapped local neighborhoods and formulate
model learning as a set of ¢ optimization problems. It is usually
more effective to minimize the following local cost function
for each neighborhood N;(1 <i < ¢):

!
N/ :ZIC(xj—ci, )L, FXj3 Wi, b))+ all fwii 1
j=1
(14)

where K(x; — ¢;,¢) is the similarity kernel centered at ¢;
with width &, which is defined in the same form as the edge
weight W;;:
1 IIx; — el |?
K(xj —cire) = aexp[—igz

{ G- ISW(x;) — SW(c;)I)?
X exp|— 5
&

], e > 0. (15)

As shown in the above equation, K includes two parts, which
play dual role in model learning: the first exponential function
is to choose samples located in the local neighborhood N;
centered on ¢;; the second exponential function is actually
the form of non-local-means weight [19], which is to choose
samples with similar structure and therefore can reduce the
influence of outlier in regression.

In this way, we define a function fy, , with parameter
(w;, b;) for each local region N;, that is, we define ¢ local
interpolation functions {fw, 5 }f_,. Intuitively, similar local
neighborhoods should share similar model parameters. There-
fore, it is natural to add together the losses estimated on all
of the ¢ neighborhoods, and the total local structural loss is
defined as

c c [
=20 =2 D Kxj—ci,e)L0yj, f(Xj; Wi, bi))
i=1 i=1 j=1

+yall fvi i 115 (16)

By minimizing the above objective function, a collaborative
model learning mechanism is achieved.

Now let us return to the semi-supervised learning scenario,
which aims to learn from both labeled and unlabeled data
samples. As shown in Eq. (1), we introduce a set of soft labels
{f1, f2,..., fu} into the loss function such that f; directly
determines the final estimated label of x;. Then we can
redefine the total local loss as

Ji= > D Kxj — i, ) L(fj, f(Xjs Wi, b))
i=1 j=1

+yall i |1 5 (17)

[3pt] In this way, interpolation models are trained locally using
all samples in the neighborhood. Note that by minimizing
Ji we can obtain the optimal {f;}! | and {w;, b;};_,. The
advantage of this approach is that while it may be nontrivial
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to produce an image with the desired property everywhere, it
is often easier to obtain the property locally.

C. Local and Global Consistency

Recalling the graph-Laplacian regularization framework
introduced in the global principle, we also expect f; to
have some geometrical properties. More concretely, we hope
{fi}i_, to be sufficiently smooth with respect to the intrinsic
data graph. Therefore, we finally combine the local and global
principle and construct a unified objective function which uses
both labeled and unlabeled data and achieves local and global
consistency:

1
R=> LGi, fxi, W)+ 1

i=1

D D K& — i e) LS £ )i Wis b)) +yall fws |5
i=1 j=1

+y/f7LE, (18)

where the first term is called the prediction loss, which
measures the inconsistency between the predicted and initial
labels on known LR samples X; . The second term is called the
total local structural loss, which is defined to reflect the idea
that we split the input space into ¢ local neighborhoods and
perform model learning collaboratively. This term punishes the
predictability and complexity of the local prediction functions,
which is therefore called the local regularization. The third
term is called manifold regularization, which creates the
dependency between different local models, and therefore, can
tie the individual local model learning together. It penalizes the
smoothness of the intensity labels over the entire data graph,
thus is referred to as the global regularization.

IV. CONVEX OPTIMIZATION

In the previous section, we introduce the global and local
principal for image interpolation, and construct a unified
framework to perform graph-based label propagation with
local and global consistency. To derive a practical image
interpolation algorithm, we should derive an efficient solution
for the objective function defined in Eq. (18). In the following,
let us take this issue into account.

A. The Derivation of Analytical Solution

Now return to the total local loss defined in Eq. (17). With
the loss function L(-,-) defined as square loss like that in
the least square regression, the total local loss can be further
formulated as

G=3 3 0sx) (W) +bi— )

i=1x;eN(x)
+yA||fW,‘,bi||2, (19)
where
G-|ISW(x;) — SW(x;)||?
0(xi, %)) = exp [_ I (inz )| ] o0
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is the non-local-means part of X, which plays the same role
as moving weights in moving least squares [28]; and N (x;)
represents the local neighborhood centered at x;. Similarly, the
local structural loss in each neighborhood define in Eq. (14)
can be rewritten as

d= 3 00 (W) b £)

XjEN(X,‘)
+yall o |17 1)
Let
o’ 1
Gi = [ml Id 0 } 5 (Di = [(D(Xh)a CD(Xiz)a ey (D(Xl'ni)]a

£ = Ufis s ooos fin 0717,

where x;; is the j-th neighbor of x;, n; is the cardinality of
Nx), 1 =1[1,1,...,11" € %> and 0 is a d x 1 zero
vector, Eq. (21) can be formulated in the matrix form as

T

where V = diag(H(Xi,xil),...,H(Xi,xi”’_),1,...,1) €

Rnitd)x(ni+d) Y s a diagonal matrix, so the above equation
can be further formulated as

B T
j;'ziv%(;i[;j} _v%ft-] [V%Gi[X’}—V%E]. @4)
l i l

(22)

Let 6, = V%G,- and E = V%E, the above equation becomes

efelz]-f el )

To derive the optimal transformation parameters [w; b7, we
take the derivative of the loss function jl" with respect to
[w; b;]7 and set the derivative to 0, then the optimal solution
can be represented by

*
] -@een
L

(25)

(26)

With this solution, the total structural loss defined in Eq. (19)
becomes

J=>7=>1G'Gif, @7
i i

where (}\l =1- E}T(ETE)’IET. It can be easily demon-

e~

strated that G; is a orthogonal projection matrix. With the
property of orthogonal projection matrix, [J; can be rewritten

as:
Ji=Y.J =Dt Gif.
i i

We split the matrix f}\l into four blocks after the n;-th row

and column:
a-[2 3]
 — )

(28)

C: D (29)
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where A; € W1 Let f; = [fil,fiz,...,fini]T and K =
diag(0(xi,x;,), 0(Xi, Xj), ..., 0(x;, Xiy, )) € N *Mi | then

1 1

7 _vis | K2 fi | _ | K2f;

fl_VZfl_[ Id:||:0:|_|: 0 ] G0
According to Eq. (29) and Eq. (30), we can derive

sTee el or [Ar B | [K2f

- il B[S,

T v L 1 e
= fi K2A;K2f; = fi Af;. 31

For the derivation of A;, please refer to Appendix.

Define the vector f = [flT, fg R fCT] as the concatenated
label vector in all of ¢ local neighborhoods, and define the
selection matrix S as a 0-1 matrix with S;; = 1 if x; € N(x;),
so f = Sf. We further define the block-diagonal matrix

Al 0
G= . , (32)
0 A
then Eq. (28) can be rewritten as
Jr = ' STGSE. (33)
Let
M = S"GS, (34)
so finally Eq. (19) can be rewritten as
T = fTMf. (35)

Finally, the objective function formulated in Eq. (18) can
be rewritten as the following matrix form:

R==E-y JE—y) + A MFf + y, £ LE, (36)

where y = [y;, 0] and y; records the intensity labels of the
labeled image samples, J € R"*" is a diagonal matrix whose
diagonal elements are one for labeled samples and zero for
unlabeled data.

Theorem 1. Minimization of the objective function in
Eq. (36) is a convex optimization problem.

Proof: First, we compute the first-order derivative of R

with respect to f:

S = 20—y + A MY 2L = 0,

Then, we compute the second order derivative of R with
respect to f:

OR

of?

Due to the second-order derivative of R with respect to f is a

positive definite matrix, the objective function in Eq. (36) is

(37

=2+ M+M")+2y/L>0 (38)

proved to be a convex optimization problem [32]. ]
Setting the first-order derivative to zero:
oR .
E:ZJ(f—y)wL/l(MwLM W+2yLE=0, (39)
the optimal f can be finally represented as:
—1
=220+ M+M)+2yL) Jy.  (40)
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Since f in Eq. (40) is linear with respect to all known
values, the final solution is actually in an analytical form,
and can be computed efficiently without any iterative process.
After deriving f, we choose the values corresponding to the
unlabeled samples in f as the estimated intensity values of
the missing HR samples, and keep the original values of LR
samples unchanged.

B. Complexity Analysis and Discussion

The result in Eq. (40) gives a closed-form solution based on
the inversion of a matrix in )R"**". Let T (n) be the complexity
of computing the inverse of a matrix in R"**", and T(n) =
O(n?) using standard method or T'(n) = O(n*>37%) with the
method of Coppersmith and Winogard, where » is the number
of labeled and unlabeled samples in the input space. To achieve
good tradeoff between effectiveness and efficiency, we use the
same strategy as non-local-means [19], i.e., not use the whole
image but a large neighborhood as the input space N.

To gain some insight into our method, we investigate the
proposed method from a co-regularized perspective. The last
two terms in Eq. (36) can both be reviewed as regularization
terms contained with different regularization matrices, one is
derived from the view of local adaptation and the other is
from global consistency. Benefiting from the co-regularization
terms, our method achieves good tradeoff between adaptation
and robustness. The interpolation models induced from the
local view enjoy the flexibility to adapt to the local statistics of
images. However, local adaptation alone is not enough. It may
run into the risk of over-fitting the data. To alleviate this issue,
the global regularization term is introduced to enforce that a
good labeling should not change too much between similarity
points (similarity is measured by the edge weights in the
graph). Consequently, the global term ensures the interpolation
functions vary smoothly with respect to the intrinsic structure
collectively revealed by both measured and unmeasured pix-
els. In a nut shell, different types of regularization matrices
can better reveal complementary information and thus could
provide a more accurate and robust predictor. For clarity, the
algorithm flow is shown in Algorithm 1.

An intuitive understanding about why our method works
well is shown as follows. In NEDI and SAI, only one local
neighborhood is used as the training window to learn model
parameters. As illustrated in Fig. 1, the red window represents
such a single local neighborhood. However, it usually runs into
the risk of over-fitting the data, which reduces the accuracy
of model and further degrades the quality of reconstructed
HR images. To alleviate this issue, we split the whole input
space into a set of overlapped local neighborhoods to carry
out models learning collaboratively. As illustrated in Fig. 1,
the blue window denotes the input space, where multiple local
neighborhoods are utilized for model learning including not
only the red window but also many black ones. More specially,
similar local neighborhoods are enforced to share similar
model parameters. Such a collaborative learning mechanism
is achieved by the global regularization term, in which the
edge weight (defined in Eq. (12)) is computed to reflect the
affinity of any vertices even that they are far away from
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Algorithm 1 Algorithm of Image Interpolation via Graph-
Based Bayesian Label Propagation

Input:
X = {x1,X2, "+, X1, X141, ,Xn} € N2,
the first [ points are available LR samples, their intensity
values are {yi}ézl;
Output:
The intensity values {y;};_,,, of the rest n — I missing
HR samples {x;}
Procedure:
Stepl:
1: Construct the similarity kernel matrix K according to
Eq.(20);
: Construct F; and e according to Eq.(43);
: Construct A; according to Eq.(45);
: Construct the matrix G according to Eq.(32);
: Construct the matrix S with S;; = 1 if x; € N(x;),
S;; = 0 otherwise;
6: Construct the matrix M according to Eq.(34);
Step 2:
7: Construct the graph-Laplacian matrix L = D — W, where
the matrix W is constructed according to Eq.(12), and D
is a diagonal matrix with D(i,i) =3, W;;
Step 3:
8: Compute the label vector f according to Eq.(40), and
choose the corresponding values as the estimated intensity
of unlabeled samples.

n
=141

[V NS )

The input space

The local
neighborhood

Fig. 1.

Illustration of collaborative model learning.

each other. Through creating the dependency between different
local models, the individual local model learning problems are
tied together. In this way, we can effectively reduce the risk
of overfitting and enhance the accuracy and robustness of the
learned interpolation model.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to demon-
strate the performance of the proposed image interpolation
algorithm. Given the fact that numerous image interpola-
tion algorithms have been developed during the last two
decades, it would be virtually impossible for us to perform a

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 3, MARCH 2014

thorough comparative study of the proposed algorithm. Here,
the proposed IGBLP algorithm is compared with linear inter-
polator Bicubic [2], as well as recent state-of-the-art methods
including new edge directed interpolation (NEDI) [4], direc-
tional filtering and data fusion (DFDF) [12], improve NEDI
(INEDI) [5], iterative curvature-based interpolation (ICBI)
[6], sparse coding based super-resolution (ScSR) [18], soft-
decision adaptive interpolation (SAI) [7], regularized local
linear regression (RLLR) [8]. In our experiments, Bicubic
interpolation is performed with the MATLAB built-in function,
and the source codes of other compared methods are kindly
provided by their authors. For thoroughness and fairness of
our comparison study, we test seven widely used images
in the literature and one texture image, as illustrated in
Fig. 2. The source code of this paper can be available from
http://homepage.hit.edu.cn/pages/xmliu

A. Comparison With State-of-the-Arts

We first report the comparison results when the scaling
factor § is two. Following the same setting as NEDI and
SAI, we downsample these HR images by a factor of two
in both row and column dimensions without antialiasing
filtering to get the corresponding LR images, from which the
original HR images are reconstructed by the algorithms under
consideration.

Since the original HR images are known in the simulation,
we can compare the interpolated results with the true images,
and measure the objective quality of those interpolated images.
Table I tabulates the objective quality comparison of the nine
different methods when applied to the eight test images of
Fig. 2. Since PSNR is an average quality measurement over
the whole image, we also use edge PSNR (EPSNR) as the
measurement to test the reconstruction fidelity of image edges.
In our study, the Sobel edge filter is used to locate the edge in
the original image, and the PSNR of the pixels on the edge are
used to generate the EPSNR. From Table I, it can be observed
that for most instances the proposed algorithm works better on
PSNR than other eight methods. Compared with global meth-
ods, such as Bicubic, the proposed method can significantly
improve the objective quality of generated HR images. The
average PSNR gain is 0.88dB. Our method also outperforms
the edge detection based local methods, such as DFDF, for
which the average PSNR gain is 1.02dB. Compared with NEDI
and its variance INEDI, our method achieves higher objective
performance, the average PSNR gains are 1.96dB and 1.02dB
respectively. ScSR exploits an example training set to learn the
coupled low- and high-resolution dictionaries, and enforce that
sparse representations between the low- and high-resolution
image patch pair with respect to their own dictionaries should
be the same. The assumption of “the same sparse repre-
sentation” is too strong. When the approximation atoms are
not correctly selected, it produces poor results. By exploiting
labeled and unlabeled samples together and keep local and
global consistency in transductive regression, our method leads
to a significant performance benefits compared with SAI and
RLLR, both of which are state-of-the-art locally adaptive
model based methods. The average PSNR gains are 0.7dB and
0.45dB, respectively. The proposed method also achieves the
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Fig. 2.

Eight sample images in the test set.

TABLE I
OBJECTIVE QUALITY COMPARISON OF NINE INTERPOLATION ALGORITHMS (IN dB)

Bicubic NEDI DFDF INEDI

ICBI ScSR SAI RLLR IGBLP

Images

PSNRJEPSNR||[PSNR|EPSNR|[PSNR|EPSNR|[PSNRIEPSNR|[PSNREPSNR|[PSNRIEPSNR|[PSNR|EPSNR||[PSNR|EPSNR|[PSNR|EPSNR

Baboon |21.63| 18.10 ||19.91| 17.75 |[19.87| 18.01 ||19.55| 18.06

19.06

16.56 {{20.33| 15.77 ||19.92| 18.04 ||20.67| 18.77 ||22.16| 18.45

Monarch(|29.34| 21.99 |{29.35| 21.28 ||29.89| 21.43 |{29.91| 21.88

29.82

20.54 ||26.14| 14.98 ||30.36| 21.89 ((30.53| 22.02 ||30.83| 22.14

Lena ||33.98| 28.36 ||33.57| 27.75 ||33.96| 28.10 ||34.11| 27.86

34.05

26.99 ||29.47| 19.35 ||34.72| 28.97 ||34.41| 28.65 ||34.77| 28.81

Airplane||30.17| 19.37 ||28.74| 15.42 ||30.53| 19.44 ||30.66| 19.65

30.08

18.68 [[27.13| 14.14 ||30.72| 19.25 ||30.97| 19.86 ||31.04| 19.82

Peppers ||31.59| 22.41 {|29.30| 17.83 ||31.87| 22.53 ||32.05| 22.43

31.70

22.18 [[28.01| 16.39 ||31.84| 22.08 ||32.15| 22.77 ||32.28| 22.75

Splash ||33.65| 19.76 ||33.38| 15.49 ||33.79| 19.79 ||33.69| 21.28

33.32

21.29 [30.38| 15.19 ||33.54| 19.14 ||33.99| 19.87 ||34.08| 19.77

Tower ||39.84| 28.51 ||39.85| 28.36 {|39.69| 27.64 ||40.74| 28.19

38.94

25.93 ||31.68| 18.43 ||41.49| 28.82 ||41.97| 29.43 ||42.85| 29.48

Fiber ||24.25| 25.94 ||21.76| 19.88 ||23.83| 25.41 ||22.71| 22.38

23.41

21.32 ||20.74| 16.91 ||23.38| 23.73 ||23.29| 21.02 ||23.49| 24.84

Average |130.56| 23.06 ||29.48| 20.47 ||30.42| 22.79 ||30.42| 22.71

30.04

21.68 [[26.73| 16.39 ||30.74| 22.74 (|30.99| 22.79 ||31.44| 23.26

TABLE II
PERFORMANCE COMPARISON OF NINE INTERPOLATION ALGORITHMS THROUGH SSIM AND FSIM

Bicubic NEDI DFDF INEDI

ICBI ScSR SAI RLLR IGBLP

Images

SSIM‘FSIM SSIM‘FSIM SSIM‘FSIM SSIM‘FSIM

SSIM[FSIM

SSIM‘FSIM SSIM‘FSIM SSIM‘FSIM SSIM‘FSIM

Baboon

0.6021]0.9021[]0.5416]0.8369][0.5326]0.8364][0.5364]0.8357][0.5073]0.8359][0.4455[0.8153]]0.5552]0.8046]]0.5602[0.8461[|0.6253]0.9081

Monarch|(0.8397|0.9707||0.8537|0.9704{|0.8509|0.9727/|0.8553]0.9743|(0.8379/0.9709|0.7956(0.9445|(0.8601|0.9741||0.8665|0.976 1 0.8676‘0.9776

Lena

0.9141(0.9875((0.9112/0.9862((0.9129]0.9871{{0.9175|0.9876{(0.9112/0.9868|0.8614(0.9586||0.9184/0.9884/|0.9180/0.9879 0.9209‘0.9889

Airplane[|0.9119]0.9798[]0.9117]0.9782{]0.9144]0.9804{|0.9166]0.9811]]0.9085(0.9781]|0.8749]0.9629]|0.9171]0.9817]|0.9188]0.9823]|0.9199]0.9825

Peppers

0.8684/0.9778[]0.87370.9777]|0.8732]0.9790][0.8822]0.9816][0.8638|0.9770][0.8234]0.9553]]0.8752(0.9796|[0.8804]0.9811]|0.8836/0.9818]

Splash

0.9293(0.9819(0.9290/0.9829|0.9296|0.9829|(0.9328]0.9852((0.9241|0.9826|0.8950|0.9631{|0.9298|0.9825||0.9332/0.9848 0‘9331‘0.9842

Tower

0.9882(0.9875(0.9904(0.99090.9892|0.9895|(0.9929]0.9923|(0.9842(0.9846/0.9467|0.9428|0.9919]0.9920| |0.9950/0.9927 0.9927‘0.9954

Fiber

0.7614/0.9626{|0.6491]0.9305[]0.7272/0.9559[|0.6948|0.9465]|0.7416]0.9545]|0.5653[0.8998]|0.7174]0.9486]|0.7191]0.9428]|0.7334/0.9501

[Average [[0.8518[0.9687][0.8325]0.9567]0.8412]0.9604][0.8410[0.9605[0.8348]0.9588][0.7759]0.9302[[0.8456]0.9564]0.8489]0.9617][0.8595]0.9710]|

highest average EPSNR value. It demonstrates the proposed
method can effectively preserve local edge structure in images.

Furthermore, in our study, we use SSIM [29] and FSIM [30]
as metrics to measure the performance of these interpolation
algorithms. From Table 1II, it can be observed that our method
achieves the highest average SSIM and FSIM scores among
all of the competing methods. Given the fact that human visual
system (HVS) is the ultimate receiver of the enlarged images,
we also show the subjective comparison results. The test image
Airplane exhibits strong and sharp edges in varying directions
and the test image Monarch exhibits edges with different
scales. Such characteristics make them as prime images to
test the fidelity of edge reconstruction. Figs. 3 and 5 illustrate
the subjective quality and reconstruction error comparison on
these two images. It can be clearly observed that the images

reconstructed by the Bicubic interpolator suffer from blurred
edges, jaggies, and annoying ringing artifacts. ScSR produces
artifacts along contours. The reconstruction quality can be
improved to some extent by NEDI, DFDF, INEDI and ICBI,
but the image quality is still lower than SAI, RLLR and the
proposed IGBLP. SAI and RLLR show improvements over
these methods in the regions of edges and textures, reducing
the visual defects of these methods. Thanks to the combina-
tion of local and global information, IGBLP achieves more
wonderful visual quality compared with all other methods.
The produced edges in our method are clean and sharp. The
outstanding performance of the proposed method is more
vivid by observing the error image of Airplane. Our algorithm
produces smaller interpolation error than other methods. Such
results clearly demonstrate the superiority of the proposed
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e |

Fig. 3. Reconstruction images and error comparison for Monarch. (A) Bicubic, (B) NEDI, (C) DFDF, (D) ICBI, (E) INEDI, (F) ScSR, (G) SAI, (H) RLLR,

(1) IGBLP.
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Fig. 4. The influence of the dimension of the input space N on performance
and complexity for Airplane and Monarch.

method in reconstructing the high frequency, such as edges
and textures.

Note that the proposed method can be easily generalized
to enlarge images with the scaling factor S greater than two.
If § = 2% with z being a positive integer, one can just apply
our method z times. If 2° < § < 2*!, one can first apply the

proposed method z times then apply Bicubic interpolation on
the enlarged image s times such that 2%s = S. In the Table IV,
we give the comparison results with respect to PSNR and
SSIM when the scaling factor is three. The downsampling
process is similar with that of scaling factor two. From the
results, we can find in most cases our method outperforms
other methods with respect to PSNR and SSIM, and achieves
the best average performance on the eight test images.

B. Parameters Setting

There are a few parameters involved in the proposed
algorithm. The input space A includes a set of local neighbor-
hoods N;. The size of AV is set to 17 x 17 and the size of local
neighborhood M is set to 7 x 7. The size of similarity window
is set to 5x5 in computing the edge weight W;; in Eq. (12) and
0(x;,x;) in Eq. (20), €2 is fixed to 0.5. Since any analytical
result is still elusive to obtain, the regularization parameters
A and y; are evaluated by cross validation [31] from an
offline training set including twenty images (not including the
eight test images). We divide the offline training set into an
estimation subset including ten images and a validation subset
including the other ten images. The former subset is used to
obtain a parameter estimate and the latter is used to validate
the performance under the estimate. According to the training
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Fig. 5. Reconstruction images and error comparison for Airplane. (A) Bicubic, (B) NEDI, (C) DFDF, (D) ICBI, (E) INEDI, (F) ScSR, (G) SAI (H) RLLR,

(1) IGBLP.

results, in practical implementation we set A and y; as 0.5 and
0.01 respectively.

As mentioned in Section III-B, to achieve a good tradeoff
between effectiveness and efficiency, we do not use the whole
image but a relative large neighborhood as the input space N.
Airplane and Monarch are used as examples to test how the
dimension of A influences the results in terms of performance
and computational complexity. As depicted in Fig. 4, we can
find both PSNR and running time increase progressively with
the dimension of the input space. The PSNR value improves
at a rate of gradually slow, while the complexity increases at

a rate of gradually fast. According to such a trend, in practical
implementation, we set the dimension of A as 17 x 17 to
achieve good tradeoff between effectiveness and efficiency.

C. Complexity Comparison

Finally, we show the results of complexity comparison. For
more clear comparison, Table III gives the PSNR versus aver-
age processing times results on a typical computer (Intel Xeon
CPU 2.83GHz, 3G Memory) of the nine algorithms. All meth-
ods are running on Matlab. The proposed method achieved
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TABLE III
OBJECTIVE QUALITY VERSUS AVERAGE PROCESSING TIMES (dB/SECONDS) RESULTS

Bicubic NEDI DFDF INEDI

Images(size)

ICBI ScSR SAI RLLR IGBLP

PSNR[TIME PSNR[TIME PSNR(TIME||PSNR| TIME

PSNR(TIME| PSNR[ TIME PSNR[ TIME |[PSNR| TIME | PSNR| TIME

Baboon(256x256) ||21.63| 0.40 |[19.91| 4.72 |{19.87| 5.08 ||19.55|131.95

19.06| 2.29 {|120.33|143.31 ||19.92| 51.86 ||20.67| 68.95 ||22.16| 95.08

Monarch(512x512)({29.34| 0.34 |{29.35|21.21]|29.89{19.45||29.91|354.16

29.82|5.06 ||26.14(1126.75||30.36143.06({30.53|169.71{|30.83|505.26|

Lena(512x512) {|33.98] 0.31 {{33.57|20.53(|33.9619.22{|34.11(337.27

34.05| 4.88 {|29.47(1507.11||34.72{140.19||34.41|147.11{|34.77|496.04

Airplane(512x768)({30.17| 1.31 ||28.74|29.52||30.53(29.73||30.66 [894.77

30.08| 7.95 |(27.13(1910.78(30.72(212.44/||30.97 (144.13||31.04 721.44

Peppers(512x512) |[31.59] 0.31 {{29.30|20.77||31.87|19.45||32.05(334.13

31.7 | 4.93 ||28.01{1166.95||31.84|213.56||32.15(154.71||32.28|501.76

Splash(512x512) ||33.65] 0.31 {|33.38|20.09||33.79{19.67||33.69(199.47

33.32| 3.51 {|30.38(1120.21||33.54|141.48({33.99|109.81||34.08 |482.22|

Tower(300x300) (|39.84| 0.11 ||39.85| 6.53 [|39.69| 6.52 ||40.74| 60.68

38.94| 1.01 ||31.68|347.09||41.49]47.32 ||41.97| 30.51 ||42.85|165.22|

Fiber(512x512) (|24.25] 0.32 ||21.76|22.25||23.83|19.39||22.71(723.23

23.41|5.07 ||20.74|1108.71||23.38193.83|(23.29|251.02||23.49|550.58

[ Average

[[30.56] 0.43 [[29.48]18.20][30.42[17.31][30.42[379.46[[30.04] 4.34 [[26.73]1053.86][30.74[142.97][30.99[134.49][31.44[439.70|

TABLE IV
QUALITY COMPARISON OF NINE INTERPOLATION ALGORITHMS (IN DB) WHEN THE SCALING FACTOR IS THREE

Bicubic NEDI DFDF INEDI

Images

ICBI

ScSR SAI RLLR IGBLP

PSNR[ SSIM |[PSNR| SSIM |[PSNR| SSIM | [PSNR| SSIM

PSNR[SSIM

PSNR[SSIM [[PSNR]SSIM [[PSNR] SSIM [[PSNR] SSIM

Baboon |17.91]0.2921{|18.66(0.3708||18.71|0.3704{| 18.39]0.3736

18.05

0.3545||17.75]0.2863(|18.71]0.3766|| 19.03 |0.3852||19.05 | 0.3859

Monarch||22.88(0.7309((25.68|0.7917||26.090.7971|| 26.14 [0.8004

25.83

0.7869||22.47|0.7283(|25.34|0.8008||25.48 |0.8079||25.65 | 0.8093

Lena 1]26.11]0.7796||29.89(0.8528(29.96|0.8534{|30.05]0.8559

29.72

0.8493((25.55]0.7649||30.46|0.8618||30.44 [0.8635||30.61 | 0.8641

Airplane||24.06(0.8026(25.41|0.8444(|26.640.8488||26.53 [0.8469

26.23

0.8391||23.81]0.7958({26.59|0.8497||26.82|0.8536||26.91 | 0.8546

Peppers ||24.74|0.7656||26.23|0.8218(|28.31|0.8267||28.17|0.8264|

28.03

0.8151||24.37|0.7564{|29.33|0.7672||29.66 (0.7765||29.67 | 0.7767

Splash ||26.9910.8421((28.11|0.8831{|30.530.8888||30.39(0.8861

30.31

0.8769||26.6210.8312((30.34|0.8878||30.360.8923|| 30.46 (0.8926

Tower |]28.62]0.8982||40.26(0.9468||32.76|0.9471{|33.84|0.9531

32.94

0.9474((28.15]0.8919||34.12{0.9564 | 33.33|0.9514{|33.83|0.9542

Fiber ||18.18]0.2397||119.46(0.3889|(18.99|0.3488||18.74]0.3535

18.64

0.3398||17.54|0.2307||18.66|0.3461|| 18.76|0.3578||19.01|0.3701

Average ||23.68]0.6688(|26.71(0.7375|{26.490.7351||26.53 0.7369

26.21

0.7261||23.28]0.6606|26.69|0.7308||26.73 |0.7360| | 26.89 | 0.7384

the best interpolation performance at expense of relative high
computational complexity. In the above test, we apply the
proposed method on all missing samples. We can manage the
computational complexity by reducing the number of samples
to estimate. One way is to apply the proposed method only for
edge and texture regions, and apply simple bilinear or bicubic
interpolation for smooth regions.

VI. CONCLUSION

In this paper, we presented an effective image interpolation
algorithm through graph-based label propagation to achieve
local and global consistency. Our method is novel in two
aspects: (1) both labeled and unlabeled data are explored in
the process of model learning. Such a transductive manner can
improve the accuracy of predictor for some bridge regions;
(2) local and global consistency is achieved during regression,
which can make the predictor more robust. These two aspects
can be cast into an unified optimization framework, which
can be efficiently solved with a closed-form solution. Exper-
imental results on benchmark test images demonstrate that
the proposed method achieves very competitive interpolation
performance with the state-of-the-art interpolation algorithms.
In future work, we will study how to find a good trade-off
between performance and computational complexity.

APPENDIX
First, we can derive G; = ViG; = [ I i|
d
of  1)_[ kKol K1
Jra-la 0 NiTRR Y 0 '
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According to the inverse computation principle of block
matrix, we can obtain
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We can further obtain
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Finally, we can derive that
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