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ABSTRACT

We propose a perceptual video coding framework based on an
SSIM-inspired divisive normalization scheme as an attempt
to transform the DCT domain frame prediction residuals to
a perceptually uniform space before coding. Based on the
residual divisive normalization process, we define a distor-
tion model for mode selection and show that such a divisive
normalization strategy largely simplifies the subsequent per-
ceptual rate-distortion optimization procedure. Experiments
demonstrate that the proposed scheme can achieve significant
gain in terms of rate-SSIM performance in comparison with
H.264/AVC.

Index Terms— SSIM index, rate distortion optimization,
residual divisive normalization, H.264/AVC coding

1. INTRODUCTION

The main objective of video coding is to optimize the per-
ceptual quality of the reconstructed video within available bit
rate. Ideally, the distortion model used in the video coding
framework should correlate perfectly with perceived distor-
tion of the Human Visual System (HVS), which is the ul-
timate consumer of the video content. However, almost all
existing video coding techniques use the Sum of Absolute
Difference (SAD) or Sum of Square Difference (SSD) as the
distortion model. It has been widely criticized in the litera-
ture that SAD and SSD measures correlate poorly with the
HVS [1]. Fortunately, a lot of research has been done re-
cently towards perceptual image quality assessment (IQA)
models that perform significantly better than SSD or SAD in
predicting perceptual image quality. Among them, the struc-
tural similarity (SSIM) index [1] is widely used in quantify-
ing compression artifacts because of its accuracy, simplicity
and efficiency. Recently, there have been a number of efforts
to design video coding techniques based on the SSIM index,
e.g., mode selection [2] and rate control [3].

Since the HVS has varying sensitivity to different fre-
quencies, frequency weighting [4] has been incorporated in
the quantization process in many picture coding standards,
from JPEG to H.264/AVC high profile [5], [6]. However,
in these standards, the quantization matrix is usually prede-
termined and is fixed once the coding process starts. More

advanced perceptual models that take into account supra-
threshold distortion criteria and masking effect are not con-
sidered.

In this paper, inspired by the SSIM index [1] and its
derivation in DCT domain [7], we propose a joint residual di-
visive normalization and rate distortion optimization (RDO)
scheme for video coding. The normalization factor is ob-
tained from the prediction MB. As a result, the quantization
matrix is determined adaptively and no side information is
required to be transmitted from the encoder to the decoder.
Furthermore, motivated by the SSIM index, we define a new
distortion model and propose a perceptual RDO scheme for
mode selection.

2. SSIM INSPIRED RESIDUAL DIVISIVE
NORMALIZATION

Our work follows the predictive video coding framework,
where previously coded frames are used to predict the current
frame, and only the residuals after prediction is coded. Let
C(k) be the kth DCT transform coefficient for residuals, then
the normalized coefficient is computed as C ′(k) = C(k)/f
where f is a positive normalization factor. The quantization
of the normalized coefficients, for a given predefined Qs, is
performed as follows

Y (k) = sign{C ′(k)}round{ |C
′(k)|
Qs

+ p}

= sign{C(k)}round{ |C(k)|
Qs · f

+ p}
(1)

where p is the rounding offset in the quantization.
This divisive normalization scheme can be interpreted in

two ways. One can apply an adaptive normalization factor,
followed by quantization with a predefined fixed step Qs. Al-
ternatively, one can define an adaptive quantization matrix for
each MB and thus each coefficient is quantized with a differ-
ent quantization step Qs · f . By (1), we see that these two
interpretations are equivalent.

In the context of still image processing and coding, several
approaches have been used to derive the normalization factor,
which can be defined as the sum of the squared neighboring
coefficients plus a constant [8], or derived from a local statis-
tical image model [9]. Since our objective here is to optimize
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Fig. 1. Energy compensation factor s vs quantization step Qs

for different video sequences.

the SSIM index, we employ a convenient approach based on
the DCT domain SSIM index.

The DCT domain SSIM index was first presented by
Channappayya et al. [7].

SSIM(x, y) ={1− (X(0)− Y (0))2

X(0)2 + Y (0)2 +N · C1
}×

{1−

∑N−1
k=1 (X(k)−Y (k))2

N−1∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2

}
(2)

where X(k) and Y (k) represent the DCT coefficients for the
input signals x and y, respectively. C1 and C2 are constants
used to avoid instability when the means and variances are
close to zero and N denotes the block size. This equation
shows that the SSIM index is composed of the product of two
terms, which are the normalized squared errors of DC and
AC coefficients, respectively. Moreover, the normalization is
conceptually consistent with the light adaptation (luminance
masking) and contrast masking effects of the HVS [10].

We divide each MB into l sub-MBs for DCT transform.
Normalization factors for DC and AC coefficients in each MB
are desired to be

fdc =
1
l

∑l
i=1

√
Xi(0)2 + Yi(0)2 +N · C1

E(
√
X(0)2 + Y (0)2 +N · C1)

(3)

fac =
1
l

∑l
i=1

√∑N−1
k=1 (Xi(k)

2+Yi(k)
2)

N−1 + C2

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2)

(4)

where Xi(k) denotes the kth DCT coefficient in the ith sub-
MB and E represents the mathematical expectation operator.

These normalization factors would need to be computed at
both the encoder and the decoder. The difficulties are that the
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Fig. 2. Diagram of the proposed scheme.

distorted MB is not available at the encoder before it is coded,
and the original MB is completely inaccessible at the decoder.
Fortunately, for each mode, the prediction MB is available at
both encoder and decoder sides. Assuming that the properties
of the prediction MB are similar to those of the original and
distorted MBs, we can approximate the normalization factor
as

f ′dc =
1
l

∑l
i=1

√
2Zi(0)2 +N · C1

E(
√

2Z(0)2 +N · C1)
(5)

f ′ac =
1
l

∑l
i=1

√∑N−1
k=1 (Zi(k)

2+s·Zi(k)
2)

N−1 + C2

E(

√∑N−1
k=1 (Z(k)2+s·Z(k)2)

N−1 + C2)

(6)

where Zi(k) is the kth DCT coefficient of the ith prediction
sub-MB for each mode. For intra mode, we use the MB at the
same position in the previous coded frame.

Since the energy of AC coefficients may be lost due to
quantization, we use a compensation factor s to bridge the
difference between the energy of AC coefficients in the pre-
diction MB and the original MB,

s =
E(

∑N−1
k=1 X(k)2)

E(
∑N−1

k=1 Z(k)2)
(7)

As depicted in Fig. 1, s exhibits an approximately linear rela-
tionship with Qs, which can be modeled empirically as

s = 1 + 0.005 ·Qs (8)

Finally, analogous to [11], we define the quantization ma-
trix for 4x4 DCT transform coefficients as

WSij = 16 ·


f ′dc f ′ac f ′ac f ′ac
f ′ac f ′ac f ′ac f ′ac
f ′ac f ′ac f ′ac f ′ac
f ′ac f ′ac f ′ac f ′ac

 (9)

3. PERCEPTUAL RATE DISTORTION
OPTIMIZATION

The RDO process in video coding can be expressed by min-
imizing the perceived distortion D with the number of used
bits R subjected to a constraint Rc. This can be converted to
an unconstrained optimization problem as

min{J} where J = D + λ ·R (10)
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where J is called the Rate Distortion (RD) cost and λ is
known as the Lagrange multiplier which controls the trade-
off between R and D.

In conventional RDO schemes, distortion models such as
SAD and SSD are used in actual implementations. Here we
replace them with a new distortion model that is consistent
with the residual normalization process. As illustrated in
Fig. 2, the distortion model is defined as the SSD between the
normalized coefficients, which is expressed by

D =
(X(0)− Y (0))2

f ′2dc
+

∑N−1
N=1(X(k)− Y (k))2

f ′2ac
(11)

Based on (10), the RDO problem can be approximated as

min{J} where J =
(X(0)− Y (0))2

f ′2dc
+ λdc ·Rdc

+

∑N−1
N=1(X(k)− Y (k))2

f ′2ac
+ λac ·Rac

(12)

The Lagrange parameter λdc for DC coefficient is ob-
tained by calculating the derivative of J with respect to Rdc,
then setting it to zero. Solving λdc for

dJ

dRdc
=
d (X(0)−Y (0))2

f ′2dc

dRdc
+ λdc = 0, (13)

yields

λdc = −
d (X(0)−Y (0))2

f ′2dc

dRdc
= −d(X(0)− Y (0))2

dRdc · f ′2dc
(14)

In H.264, the Lagrange multiplier derived for optimizing
MSE is given by

λH.264 = −dDMSE

dR
= c ·Q2

s (15)

and the quantization step after applying the quantization ma-
trix can be expressed as

Qd = Qs · f ′dc (16)

Combining (14) to (16), the Lagrange parameter for DC co-
efficient is computed as

λdc =
c ·Q2

d

f ′2dc
= c ·Q2

s = λH.264 (17)

This suggests that we can use the Lagrange multiplier derived
with the predefined quantization step in our perceptual RDO
scheme. The Lagrange multiplier for AC coefficients, λac,
can be derived in a similar fashion.

From the residual normalization point of view, the distor-
tion model calculates the SSD between the normalized orig-
inal and quantized coefficients, as shown in Fig. 2. In this
way, the normalized residuals are quantized with the prede-
fined constant quantization step, which also explains why we
can use λH.264 in our perceptual RDO scheme.

4. IMPLEMENTATION AND EXPERIMENTS

Since DCT is an orthogonal transform that obeys Parseval’s
theorem, we have

µx =

∑N−1
i=0 x(i)

N
=
X(0)√
N

(18)

σ2
x =

∑N−1
i=1 X(i)2

N − 1
σxy =

∑N−1
i=1 X(i)Y (i)

N − 1
(19)

Therefore, although our algorithms are derived in DCT do-
main, in actual implementations, it is not necessary to per-
form actual DCT transform for each block in order to perform
normalization.

The proposed scheme has been implemented on the
H.264/AVC reference software JM15.1. The common coding
configurations are set as follows: only 4x4 DCT transform
is enabled; all available inter and intra modes are enabled;
five reference frames; one I frames followed by 99 P frames;
high complexity RDO and the fixed quantization parameters
(QP). We employ the method proposed in [12] to calculate
the differences between two R-D curves. Furthermore, we
use two different sets of QP values in the experiments: QP1=
{18, 22, 26, 30} and QP2={26, 30, 34, 38}, where QP1 repre-
sents a high bit-rate coding configuration.

From Table 1, it can be observed that over a wide range
of test sequences, our proposed scheme achieves average rate
reduction of 15.11% for QP1 and 17.23% for QP2 for fixed
SSIM values, and the maximum coding gain is 37%. It is ob-
served that our scheme performs better when there exist sig-
nificant statistical differences in the same frame, for example,
in sequencesBridge and Flower. The rate-distortion perfor-
mance of Flower is shown in Fig. 3. It is also observed that
the gains become more significant at middle bit-rates. This
may be explained as follows. At high bit rate, the quantiza-
tion step is relatively smaller and thus the differences of quan-
tization steps among the MBs are not significant. At low bit
rate, since the AC coefficients are severely distorted, the nor-
malization factors derived from the prediction frame do not
precisely represent the properties of original frame.

5. CONCLUSION

We propose an SSIM-inspired novel joint residual divisive
normalization and rate distortion optimization scheme. The
novelty of the scheme lies in normalizing the transform coef-
ficients based on the DCT domain SSIM index and defining a
new distortion model based on the divisive normalization ap-
proach. The proposed scheme demonstrates superior perfor-
mance as compared to the state-of-the-art H.264 video codec
by offering significant rate reduction, while keeping the same
level of SSIM values.
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Table 1. Performance of the proposed scheme (anchor: H.264/AVC video coding).

Sequence QPs=(18,22,26,30) QPs=(26,30,34,38)
∆SSIM ∆R ∆PSNR (dB) ∆SSIM ∆R ∆PSNR(dB)

Akiyo(QCIF) 0.0033 -18.50% -0.02 0.0085 -14.13% 0.29
Bridge close(QCIF) 0.0063 -30.03% -0.58 0.0242 -37.47% 0.50
News(QCIF) 0.0025 -11.62% -0.69 0.0054 -9.58% -0.27
Suzie(QCIF) 0.0024 -8.82% -0.58 0.0040 -6.27% -0.32
Flower(CIF) 0.0035 -23.61% -1.98 0.0101 -20.16% -1.29
Bus(CIF) 0.0041 -13.19% -1.98 0.0183 -21.33% -1.28
Waterfall(CIF) 0.0036 -12.90% -0.32 0.0111 -8.20% -0.11
Mobile(CIF) 0.0014 -8.04% -1.21 0.0045 -12.20% -0.74
Parkrun(720p) 0.0075 -12.70% -2.29 0.0287 -31.80% -1.86
Night(720p) 0.0028 -11.73% -1.65 0.0058 -11.21% -0.91
Average 0.0037 -15.11% -1.13 0.0121 -17.23% -0.60
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Fig. 3. Rate-SSIM performance comparison of the proposed
and H.264/AVC coding schemes.
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