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a b s t r a c t 

One of the major challenges in person Re-Identification (ReID) is the inconsistent visual appearance of a 

person. Current works on visual feature and distance metric learning have achieved significant achieve- 

ments, but still suffer from the limited robustness to pose variations, viewpoint changes, etc ., and the 

high computational complexity. This makes person ReID among multiple cameras still challenging. This 

work is motivated to learn mid-level human attributes which are robust to visual appearance variations 

and could be used as efficient features for person matching. We propose a weakly supervised multi-type 

attribute learning framework which considers the contextual cues among attributes and progressively 

boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this frame- 

work involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an 

independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with 

person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target 

dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted 

attributes, namely deep attributes exhibit promising generalization ability across different datasets. By di- 

rectly using the deep attributes with simple Cosine distance, we have obtained competitive accuracy on 

four person ReID datasets. Experiments also show that a simple distance metric learning modular further 

boosts our method, making it outperform many recent works. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person Re-Identification (ReID) is a technology to identify the

ame person across images captured by different cameras. As is

hown in Fig. 1 , person ReID is challenging because the visual ap-

earance of a person is easily affected by many factors, including

llumination conditions, viewpoint variations, camera parameters,

ody poses, etc . Due to its important applications in public secu-

ity, e.g. , cross camera pedestrian searching, tracking, and event

etection, person ReID has attracted lots of attention from both

he academic and industrial communities. Currently, most research

fforts can be summarized into two categories: a) extracting and

ncoding robust local features representing the visual appearance

f a person [1–7] and b) reducing the distance between features

f the same person by learning a discriminative distance metric

8–25] . 

Despite the significant achievements made by existing works,

here is still much room for improvement before person ReID can

e used in real applications. Because local features mainly de-
∗ Corresponding author. 
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cribe low-level visual appearance, they are not robust to variances

f viewpoints, body poses, etc . On the other hand, distance met-

ic learning suffers from the poor generalization ability and the

uadratic computational complexity, e.g. , different datasets present

ifferent visual characteristics corresponding to different metrics.

ompared with low-level visual feature, human attributes like long

air, blue shirt, etc ., represent mid-level semantics of a person. As

llustrated in Fig. 1 , attributes are more consistent for the same

erson and are more robust to the above mentioned variances.

ome recent works hence have started to use attributes for person

eID [26–31] . Because human attributes are expensive for manual

nnotation, it is difficult to acquire enough training data for a large

et of attributes. This limits the performance of current attribute

eatures. Consequently, low-level visual features still play a key role

nd attributes are mostly used as auxiliary features [28–31] . 

Recently, deep learning has exhibited promising performance

nd generalization ability in various vision tasks. For example in

35] , an eight-layer deep Convolutional Neural Network (dCNN) is

rained with large-scale images for visual classification. The mod-

fied versions of this network also perform impressively in ob-

ect detection [36] and segmentation [37] . Many researchers have

tarted to use deep learning and triplet loss for person ReID
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personalFemale

upperBodyLongSleeve

upperBodyRed 

lowerBodyJeans

hairBlack

personalFemale

upperBodyWhite 

footwearBlack

lowerBodyWhite 

upperBodyOther

personalMale

hairShort

upperBodyWhite

lowerBodyBlue  

lowerBodyJeans
(a) (b) (c)

Fig. 1. Example images of the same person taken by two cameras from three 

datasets: (a) VIPeR [32] , (b) PRID [33] , and (c) GRID [34] . This figure also shows five 

of our predicted attributes shared by these two images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

f  

t

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

i  

m  

R  

i

 

s  

[  

(  

e  

d  

t  

m  

[  

l  

i  

m  

a  

a  

t  

i  

[  

R

 

h  
[38–40] . Specifically, they use two images of the same person and

one image of another person to construct a triplet. Then, triplet

loss backpropagated to update the dCNN to learn a discriminative

distance metric, i.e., the distance between two images of the same

person should be smaller. 

Inspired by the promising performance of attributes and the

strong generalization ability of dCNN, we target to learn a dCNN

to detect a large set of human attributes for person ReID. Due to

the diversity and complexity of human attributes, it is a labori-

ous task to manually label enough of attributes for dCNN training.

The key issue is hence how to train this dCNN from a partially-

labeled dataset and ensure its discriminative power and gener-

alization ability in the person ReID tasks. Meanwhile, some at-

tributes are not compatible with each other. For example, gender-

related attributes such “female” and male can not coexist for the

same person. It is also not reasonable to predict multiple positive

hair-related attributes like “hairLong”, “hairBald”, “hairShort”, etc.

for the same person. Therefore, instead of using the flat multi-label

prediction structure, we should design a proper dCNN structure to

take such contextual cues into consideration. 

To address these issues, we propose a Weakly Supervised Multi-

ype Attribute Learning (WSMTAL) algorithm. As shown in Fig. 2 ,

we divide human attributes into multiple types, where each con-

tains several incompatible attributes and only one of them can

be positive. For example, the gender-related attributes and hair-

related attributes would belong to two different types of attributes.

In our dCNN, different types of attributes share the same convolu-

tional layers, but each has its own fully connected layers and Soft-

max out layer to ensure the label incompatibility. Our WSMTAL is

proposed to train this network with three stages. 

In WSMTAL, the dCNN is firstly trained with the independent

dataset, then is refined to acquire more discriminative power for

person ReID task. Because this procedure involves one dataset with

attribute labels and another without attribute labels, we call it

a weakly supervised learning. Moreover, we divide the attributes

into different types to ensure the incompatibility among attributes

within each type. The attributes predicted by the final dCNN model

are named as deep attributes . This structure is more reasonable

than our previous work [41] , which detects multiple attributes

with a flat cross-entropy output layer. 

To validate the performance of deep attributes, we test them

on four popular person ReID datasets without combining with the

local visual features. The experimental results show that deep at-

tributes perform well, e.g. , they outperform many recent works

combining both attributes and local features [28–31] . Note that,
redicting and matching deep attributes make person ReID system

aster, because it no longer needs to extract and code local fea-

ures, compute distance metric, and fuse with other features. 

Our contributions can be summarized as follows: 

• We propose a three-stage weakly-supervised deep attribute

learning algorithm, which makes learning a large set of human

attributes from a limited number of labeled attribute data pos-

sible. 
• An attribute triplet loss is proposed to predict attributes into

multiple types and consider contextual cues among attributes. 
• Deep attributes achieve promising performance and generaliza-

tion ability on four person ReID datasets. Moreover, deep at-

tributes release the previous dependencies on local features,

thus have the potential to make the person ReID systems more

robust and efficient. 

This work extends our conference version [41] in the following

spects: 

• Our original SSDAL directly learns attributes using plain sig-

moid cross-entropy loss. The proposed WSMTAL model splits

attributes into many types, where each includes several incom-

patible attributes and only one of them can be positive. This

structure considers extra contextual cues among attributes and

results in better performance. 
• Our original SSDAL selects positive attributes by referring to

thresholds, which vary on different datasets and are hard to de-

cide. This shortcoming has been effectively addressed by WSM-

TAL. WSMTAL splits attributes into C types, where each includes

several incompatible attributes and only one of them can be

positive. In this way, C positive attributes can be identified in C

classification tasks. 
• More extensive experiments are conducted to test the validity

of our approach. More comparisons to recent works, as well as

the prediction accuracy of each type of attributes have been

added. Deeper network, i.e., the VGG network is tested in our

framework. This shows that our model is compatible with dif-

ferent deep networks, thus could leverage latest deep models

to further improve the person Re-ID performance. 

. Related work 

In this section, we briefly summarize and discuss related works

n four aspects, i.e., 1) traditional low-level feature and distance

etric learning based person ReID, 2) attributes based person

eID, 3) deep learning for attributes prediction, and 4) deep learn-

ng for person ReID, respectively. 

Many researchers extract and encode low-level features for per-

on ReID [1–7] . To handle viewpoint changes, Farenzena et al.

1] devise the Symmetry-Driven Accumulation of Local Features

SDALF) by the symmetric nature of pedestrians appearance. Cheng

t al. [2] use pictorial structures and compute visual features in

ifferent parts of the body to estimate human body configuration

o tackle the pose variations issue. There are also may methods

easure the similarity between images of two different cameras

8–23,25] by learning a more reasonable distance metric. The Re-

axed Pairwise Metric Learning (RPML) [10] is a method of relax-

ng the original hard constraints so as to make the computation

ore efficient. Zheng et al. [17] also introduce a Probabilistic Rel-

tive Distance Comparison (PRDC) model. Shen et al. [22] learn

 correspondence structure using boosting which represents the

wo images features from a target camera pair matching probabil-

ties. Considering the positive semi-definite constraint, Liao et al.

23] use a logistic metric learning approach to perform person

eID. 

Attributes are efficient and discriminative for person ReID and

ave been used as features in may works [26–31] . Layne et al.
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Fig. 2. Illustration of our dCNN structure and the Weakly Supervised Multi-Type Attribute Learning (WSMTAL) algorithm. 
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28] show attributes improve ReID accuracy when combined with

ow-level features. Su et al. [31] present a low rank attribute em-

edding framework for person ReID using a novel multi-task learn-

ng framework. However, most of these methods use attributes as

uxiliary information to aid the low level features. 

Currently, many studies have applied deep learning to attributes

earning [42–48] . Shankar et al. [42] propose a deep-carving neural

et to learn attributes for natural scene images. Chen et al. [43] use

 double-path deep domain adaptation network to get the fine-

rained clothing attributes. Li et al. [44] propose two deep learn-

ng models to learn the pedestrian attributes, one is called as deep

earning based single attribute recognition model (DeepSAR) and

he other is a deep learning framework which recognizes multi-

le attributes jointly (DeepMAR). Huang et al. [45] propose a Dual

ttribute-aware Ranking Network (DARN) to represent deep fea-

ures using attribute-guided learning for cross-domain image re-

rieval. Yu et al. [46] use their weakly supervised deep learning

odel not only to recognize attribute but also to exploit the lo-

ations and rough shapes of pedestrian attributes. Our work dif-

ers from them in the aspects of both motivation and methodol-

gy. We are motivated by how to learn attributes of the human

ropped from surveillance videos from a small set of data labeled

ith attributes. Our weakly supervised learning framework consis-

ently boosts the discriminative power of dCNN and attributes for

erson ReID. 

The works by Zhu et al. [47,48] are earlier works using deep

earning for attribute based person ReID. They use a multi-label

onvolutional neural network (MLCNN) to predict multiple at-
ributes with body part division. Zhu et al. finally combine deep

ttributes and low-level features and get promising person re-

dentification performance. Different from their work, our algo-

ithm is more concise and efficient, i.e., does not use body part

ivision to learn attributes and directly uses deep attributes to per-

orm person ReID. 

Inspired by the promising performance of deep learning, some

esearchers begin to use deep learning to learn visual features and

istance metrics for person ReID [24,38,39,49–51] . In [49] , Li et al.

se a deep filter pairing neural network for person ReID, where

wo paired filters of two cameras are used to automatically learn

ptimal features. In [50] , Yi et al. present a “siamese” convolutional

etwork for deep distance metric learning. In [51] , Ahmed et al.

evise a deep neural network structure to transform person re-

dentification into a problem of binary classification, which judges

hether a pair of images from two cameras contain the same per-

on. In [24] , Ding et al. present a scalable distance learning frame-

ork based on the deep neural network with the triplet loss. Chen

t al. [38] propose a novel multi-channel parts-based convolutional

eural network model with the triplet loss for person ReID. They

lso use a new threshold to improve the triplet loss. Wang et al.

39] present a joint learning framework to unify single-image rep-

esentation and classification of cross-image representation using

CNN. 

Despite of their effort s to find better visual features and dis-

ance metrics, the above mentioned works are designed specifi-

ally for certain datasets and are dependent on their camera set-

ings. Differently, we use deep learning to acquire general camera-
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independent mid-level representations. As a result, our algorithm

shows better flexibility, e.g. , it could handle person ReID tasks on

datasets containing different number of cameras. 

3. Proposed approach 

3.1. Framework 

Our goal is to learn a large set of human attributes for per-

son ReID through dCNN training. We define A = { A 

1 , A 

2 , . . . , A 

C }
as the collection of K attributes belonging to C types, and A 

c =
{ a c 

1 
, a c 

2 
, . . . , a c 

K c 
} denotes the label of the c th type attribute contain-

ing K 

c attributes, where a ∈ {0, 1} is the binary label. We divide

attributes in to C types, and ensure ∀ i � = j, A 

i ∩ A 

j = ∅ . Therefore,

A 

c ⊂ A , 
∑ C 

c=1 K 

c = K. Our goal is thus learning an attribute detector

O, which predicts the attribute labels A for any input image I , i.e.,

A I = O(I) . (1)

Because of the promising discriminative power and generaliza-

tion ability, we use dCNN model as the detector O(·) . However,

dCNN training requires large-scale training data labeled with hu-

man attributes. Manually collecting such data is also too expen-

sive to conduct. To ensure effective learning of a dCNN model for

person ReID from only a small amount of labeled training data,

we propose the Weakly supervised Multi-Type Attribute Learning

(WSMTAL) algorithm. 

As shown in Fig. 2 , in the first training stage, an independent

dataset with attribute labels is used to perform fully-supervised

dCNN training. The resulting dCNN produces initial attribute la-

bels for the target dataset. To improve the discriminative power of

these attributes for ReID task, we start the second stage of train-

ing, i.e., fine-tuning the network using the person ID labels and

our defined attributes triplet loss . The attributes triplet loss updates

the network to enforce that the same person has more similar at-

tributes and vice versa. The training data for fine-tuning can be

easily collected because the person ID labels are readily accessi-

ble in many person tracking datasets. This fine-tuned dCNN hence

predicts updated attribute labels for target datasets. Finally in the

third stage, the labeled target dataset plus the original indepen-

dent dataset are combined for the final stage of fine-tuning. The

attributes predicted by the final dCNN model are named as deep

attributes . 

3.2. Fully-supervised dCNN training 

We define the independent training set T with their attribute

labels as A T = { A 

1 
T , A 

2 
T , . . . , A 

C 
T 
} . In T , each sample is annotated with

a binary attribute label, e.g. , the label of the n th instance T n is

A T n = { A 

1 
T n 

, A 

2 
T n 

, . . . , A 

C 
T n 

} . 
In the first stage of training, we use T as the training set for

fully-supervised learning. We refer to the 16-layer VGG network

[52] to build our dCNN model for its promising performance in

various vision tasks. Specifically, our dCNN is also a 16-layer net-

work, including 13 convolutional layers and 3 fully connected lay-

ers, where the 3rd fully connected layer predicts the attribute la-

bels. The kernel and filter sizes of each layer in our architecture

are the same with the ones in [52] . 

Our dCNN is shown in Fig. 3 . We suppose that each type of

attributes can only has one positive prediction to ensure its label

incompatibility. Therefore, it is natural to use Softmax layer, which

outputs only one positive prediction, for each type of attributes.

In this way, C types of attributes can be predicted for each image.

We denote the dCNN model learned in this stage as O 

S1 . O 

S1 could

predict attribute labels for any test sample. 
However, as illustrated in our experiments, the discriminative

ower of O 

S1 is weak because of the limited scale and label ac-

uracy of the independent training set. Therefore, We proceed to

ntroduce our second stage of training. 

.3. dCNN fine-tuning with attributes triplet loss 

In the second stage, a larger dataset is used to fine tune the

revious dCNN model O 

S1 . The goal of our dCNN model is predict-

ng attribute labels for person ReID tasks. The predicted attribute

abels thus should be similar for the same person. Motivated by

his, we use person ID labels to fine-tune O 

S1 and produce similar

ttribute labels for the same person and vice versa. We denote the

ataset with person ID labels as U = { u 1 , u 2 , . . . , u M 

} , where M is

he number of samples and each sample has a person ID label l,

.g. , the m th instance u m 

has person ID l m 

. 

In the second stage of training, we first use O 

S1 to predict the

ttribute label ˜ A of each sample in U . For each sample, we con-

atenate the outputs of C Softmax classifiers as the attribute label.

hus, for the attribute label ˜ A m 

of the m th sample, we get C pos-

tive attributes. Then, we use the person ID labels to measure the

nnotation errors of O 

S1 . 

The annotation error of the O 

S1 is computed among three sam-

les. The three samples are randomly selected from the U through

he following steps: 1) select an anchor sample u ( a ) , 2) select an-

ther positive sample u ( p ) with the same person ID with u ( a ) , and 3)

elect a negative sample u n with different person ID. Thus, a triplet

 u ( a ) , u ( p ) , u ( n ) ] is constructed, where the subscripts ( a ), ( p ), and ( n )

enote anchor, positive , and negative samples, respectively. The at-

ributes of the e th triplet predicted by O 

S1 are ˜ A 

(e ) 
(a ) 

, ˜ A 

(e ) 
(p) 

, and 

˜ A 

(e ) 
(n ) 

t the beginning of the fine-tuning, respectively. 

The objectives of the fine-tuning is minimizing the triplet loss

hrough updating the O 

S1 , i.e., minimize the distance between the

ttributes of u ( a ) and u ( p ) , meanwhile maximize the distance be-

ween u ( a ) and u ( n ) . We call this triplet loss as attributes triplet

oss. We hence could formulate our objective function for fine-

uning as: 

 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

)
+ θ < D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(n ) 

)
, ∀ 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

, A 

(e ) 
(n ) 

)
∈ T , (2)

here D (.) represents the distance function of the two binary at-

ribute vectors, A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

and A 

(e ) 
(n ) 

are predicted attributes of the

 th triplet during the fine-tuning. Then, the corresponding loss

unction can be formulated as: 

L = 

E ∑ 

e 

max 

(
0 , D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

)
+ θ − D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(n ) 

))
, (3)

here E represents the number of triplets. In Eq. (3) , if the

 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(n ) 

)
− D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

)
is larger than θ , the loss would be

ero. Therefore, parameter θ largely controls the strictness of the

oss. 

The above loss function essentially enforces the dCNN to pro-

uce similar attributes for the same person. However, the person

D label is not strong enough to train the dCNN with accurate at-

ributes. Without proper constraints, the above loss function may

enerate meaningless attribute labels and easily over-fit the train-

ng dataset U . For example, imposing a large number meaningless

ttributes to two samples of a person may decrease the distance

etween their attribute labels, but does not help to improve the

iscriminative power of the dCNN. Therefore, we add several regu-

arization terms and modify the original loss function as: 

L = 

E ∑ 

e 

{
max 

(
0 , D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(p) 

)
+ θ− D 

(
A 

(e ) 
(a ) 

, A 

(e ) 
(n ) 

))
+ γ × E 

}

(4)
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Fig. 3. The architecture of our dCNN. The network takes a RGB image as input. All types of attributes share Conv1-1 to Conv3-3 parameters and have their own independent 

parameters from Conv4-1 to FC8. Within each type of attributes, we use Softmax layer to ensure the label incompatibility. 
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here E denotes the amount of change in attributes caused by

he fine-tuning. The loss in Eq. (4) not only ensures that the same

erson has similar attributes, but also avoids the meaningless at-

ributes. We hence use the above loss to update the O 

S1 with back

ropagation. We denote the resulting update dCNN as O 

S2 . 

In Fig. 4 , we show examples of predicted attributes on MOT

ataset before and after Stage2. It can be observed that Stage2 sub-

tantially improves the accuracy of predicted attributes. Therefore,

ne-tuning with person ID labels refines the attributes on U . In the

tage3, the labeled U plus the original independent dataset will be

ombined for the final stage of fine-tuning. It thus can be inferred

hat, Stage2 helps the final stage of training by providing more ac-

urate training data. 

.4. Fine-tuning on the combined dataset 

The fine-tuning in previous stage produces more accurate at-

ribute labels. We thus consider to combine the T and U for the

nal round of fine-tuning. As shown in Fig. 2 , in the third stage,

e first predict the attribute labels for dataset U with O 

S2 . A new

ataset labeled with attribute labels can hence be generated by
erging T and U . Then, we fine-tune O 

S2 using the dataset T & U

ith a similar procedure in Stage 1. The fine-tuning outputs the

nal attribute detector O. 

For any test image, we can predict its K -dimensional attribute

abel with Eq. (1) . In our implementation, we only select one at-

ributes set as 1 in each type of attributes, and other attributes in

his type set as 0. This essentially selects more accurate attributes

nd ensure the label incompatibility among attributes. Finally, O
roduces a sparse binary K -dimensional attribute vector. Our per-

on ReID system uses this binary vector as feature and measures

heir distance with Cosine distance to identify the same person.

he validity of this three-stage training procedure and the perfor-

ance of selected attributes will be tested in Section 4 . 

. Experiments 

.1. Datasets for training and testing 

To conduct the first stage training, we choose the PETA

54] dataset as the training set. Each image in PETA is labeled

ith 61 binary attributes and 4 multi-class attributes. The 4 multi-

lass attributes are footwear, hair, lowerbody and upperbody , each of

hich has 11 color labels including Black, Blue, Brown, Green, Grey,

range, Pink, Purple, Red, White , and Yellow , respectively. We hence

xpand 4 multi-class attributes into 44 binary attributes, resulting

n a 105-dimensional binary attribute label. 

To consider the incompatibility among attributes, we divide

hese 105 attributes into 15 types, including Age, Gender, Carry-

bject, AccessoryObject, SleeveStyle, UpperStyle, UpperType, Lower- 

tyle, LowerType, HairStyle, FootStyle, UpperColor, LowerColor, Hair-

olor and FootColor , respectively. More details can be found in

ig. 5 . It should be noted that, we require each person to have at

ost one positive attribute within each type. 

For the second stage training, we choose the MOT challenge

53] dataset to fine-tune dCNN O 

S1 with attributes triplet loss. MOT

hallenge is a dataset designed for multi-target tracking and pro-

ides the trajectories of each person. We thus could get the bound-

ng box and ID label of each person. And we use more than 20,0 0 0

mages on MOT challenge . Consequently, we will obtain more than

0 0,0 0 0 triplets. 

To evaluate our model, we choose VIPeR [32] , PRID [33] , GRID

34] , and Market [55] as test sets. Note that, VIPeR, GRID and PRID

re included in the PETA dataset. When we test our algorithm on

hem, they will be excluded from the training set. For example,

hen we use the VIPeR for person ReID test, none of its images

ill be used for dCNN training. 

CUHK03 is another popular dataset for Person ReID. However,

ETA does not specify how many images in it are from CUHK03 .

ur statistical analysis shows that each testing group defined by

UHK03 has about 20 IDs appear in PETA . Without the precise in-
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Type Attribute Label
Age personalLess15, personalLess30, personalLess45, personalLess60, personalLarger60

Gender personalFemale, personalMale

CarryObject

carryingBabyBuggy, carryingBackpack,  carryingOther, carryingShoppingTro,

carryingUmbrella, carryingFolder, carryingLuggageCase, carryingMessengerBag,

carryingNothing, carryingPlasticBags, carryingSuitcase

AccessoryObject accessoryHeadphone, accessoryHairBand,  accessoryHat, accessoryKerchief, accessoryMuffler, accessoryNothing,
accessorySunglasses

SleeveStyle upperBodyNoSleeve,  upperBodyShortSleeve, upperBodyLongSleeve
UpperStyle upperBodyCasual, upperBodyFormal

UpperType upperBodyJacket, upperBodyLogo, upperBodyPlaid, upperBodyThinStripes, upperBodySuit, upperBodySweater,
upperBodyThickStripes, upperBodyTshirt, upperBodyOther, upperBodyVNeck

LowerStyle lowerBodyCasual, lowerBodyFormal

LowerType lowerBodyCapri, lowerBodyHotPants, lowerBodyJeans,  lowerBodyLongSkirt, lowerBodyPlaid,
lowerBodyThinStripes,  lowerBodyShorts, lowerBodyShortSkirt,  lowerBodySuits, lowerBodyTrousers

HairStyle hairBald, hairShort, hairLong
FootStyle footwearBoots, footwearLeatherShoes, footwearSandals, footwearShoes, footwearSneakers, footwearStocking

UpperColor upperBodyBlack, upperBodyBlue, upperBodyBrown, upperBodyGreen, upperBodyGrey, upperBodyOrange,
upperBodyPink, upperBodyPurple, upperBodyRed, upperBodyWhite, upperBodyYellow

LowerColor lowerBodyBlack, lowerBodyBlue, lowerBodyBrown, lowerBodyGreen, lowerBodyGrey, lowerBodyOrange,
lowerBodyPink, lowerBodyPurple, lowerBodyRed, lowerBodyWhite, lowerBodyYellow

HairColor hairBlack, hairBlue, hairBrown, hairGreen, hairGrey, hairOrange, hairPink, hairPurple, hairRed, hairWhite,
hairYellow

FootColor footwearBlack, footwearBlue, footwearBrown, footwearGreen, footwearGrey, footwearOrange, footwearPink,
footwearPurple, footwearRed, footwearWhite, footwearYellow

Fig. 5. Illustration of the 15 types of attributes. 
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formation provided by PETA , it is hard for us to manually remove

all of the CUHK03 images from PETA . Therefore, we test our meth-

ods on the above four test sets and do not use the CUHK03 for

testing. 

4.2. Implementation details 

We select the 16-layer VGG network [52] as our base dCNN ar-

chitecture. We use the same kernel and filter sizes for all the hid-

den layers. We learn 105 binary attributes from PETA . When we

fine-tune dCNN with attributes triplet loss, we follow the stan-

dard triplet loss algorithm [56] to select samples. Specifically, for

each type, we first extract FC7 layer features for each image in U

dataset. Then, we randomly select an image of a person as the an-

chor sample u ( a ) . Another image of the same person with a large

distance with u ( a ) is selected as positive sample u ( p ) . An image of

other persons with a smaller distance with u ( a ) is selected as neg-

ative sample u ( n ) . 

Parameters for learning are empirically set via cross-validation.

The θ and γ in Eq. (4) are set as 1 and 0.01, respectively. We im-

plement our approach with GTX TITAN X GPU, Intel i7 CPU, and

32GB memory. The first stage of training takes about one week,

the second stage of fine-tuning takes about five days, and the third

stage takes about three days. 

4.3. Accuracy of predicted attributes and zero-shot learning 

In the first experiment, we test the accuracy of predicted at-

tributes on three datasets, VIPeR, PRID and GRID , as well as show

the effects of combining different training stages. We select 1/10 of

the whole training dataset for validation. For each attribute type,

we show the top-1 and top-2 classification accuracies. Note that,

when we test a certain dataset, images from this dataset wont ap-

pear in the training set. To test the convergence of our algorithm

during the training stage, we also show the accuracies on the vali-

dation set. We summarize the results in Tables 1–3 . 

Stage 1 denotes the baseline dCNN O 

S1 . Stage 1&2 and Stage ∗
1&2 

denote the updated dCNN O 

S2 after the second stage training us-

ing U and T . Stage first labels U with O 

S1 , then combines U and
1&3 
 to fine-tune the O 

S1 . WSMTAL denotes our final dCNN after the

hird stage training. From the experimental results, we can draw

he following conclusions: 

From Tables 1–3 , we can draw the following conclusions: 

1) Although Stage 1&3 uses larger training set, it does not con-

stantly outperform the baseline. This is because the expanded

training data is labeled by O 

S1 , and it does not provide new

cues for fine-tuning O 

S1 in Stage 3. 

2) O 

S2 produced by Stage 1&2 does not constantly outperform base-

line. This is reasonable because the goal of Stage 2 is to update

the attribute labels of MOT dataset with the help of person ID

labels, rather than updating the entire network and improving

its discriminative power on unseen data, e.g. , testing data. This

is why we only update the fully-connected layers in Stage 2

and keep the convolutional layers fixed. In another word, Stage

2 is important because it refines the attribute labels of MOT

dataset U , thus the combined U + T can be a better training set

for Stage 3. Fig. 4 clearly shows that Stage 2 produces more ac-

curate attribute labels. 

3) WSMTAL is able to improve the accuracy of baseline by 3.0%

in average on three datasets. This demonstrates our three-stage

training framework can learn more robust semantic attributes.

To intuitively show the accuracy of predicted attributes, we use

the dCNN trained by WSMTAL to predict attributes on MOT

challenge dataset. Some examples are illustrated in Fig. 6 . 

4) From the results on the validation set, it is obvious that Stage 1 ,

Stage 1&2 , Stage 1&3 and WSMTAL get comparable performance.

This means that these algorithms converge well on the train-

ing set. It is also interesting to observe that WSMTAL performs

not as good as Stage 1 and Stage 1&3 on the validation set. This

means further updating the deep model trained on T , i.e., O 

S1 ,

with another dataset U drops the performance on validation set

selected from T . However, with the help of additional person

ID labels of U , WSMTAL is more suitable for Zero-shot learn-

ing and gets better generalization ability. WSMTAL also achieves

the best performance on VIPeR, PRID , and GRID . 

5) To show that extra person ID labels, i.e., the MOT challenge

dataset, help our model training, we compare the performance
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Table 1 

The classification accuracies of attributes of the first 5 types on the VIPeR, GRID and PRID datasets. 

Types Number Validation(%) VIPeR(%) PRID(%) GRID(%) 

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 

Age 5 Stage 1 86.41 97.03 44.34 80.42 48.13 77.35 42.56 78.35 

Stage 1&2 84.56 95.18 41.09 77.85 46.03 75.45 39.87 76.42 

Stage ∗1&2 87.16 96.18 44.09 81.85 48.15 77.61 43.22 78.42 

Stage 1&3 86.47 97.51 45.02 80.33 48.23 78.24 42.45 77.99 

WSMTAL 86.02 96.87 46.99 81.84 50.43 79.13 45.13 81.84 

Sex 2 Stage 1 96.53 10 0.0 0 70.05 10 0.0 0 67.50 10 0.0 0 67.82 10 0.0 0 

Stage 1&2 95.47 10 0.0 0 69.12 10 0.0 0 66.43 10 0.0 0 66.34 10 0.0 0 

Stage ∗1&2 97.01 10 0.0 0 70.03 10 0.0 0 66.32 10 0.0 0 68.43 10 0.0 0 

Stage 1&3 96.49 10 0.0 0 70.13 10 0.0 0 67.66 10 0.0 0 68.03 10 0.0 0 

WSMTAL 95.83 10 0.0 0 71.20 10 0.0 0 69.64 10 0.0 0 69.73 10 0.0 0 

CarryObject 11 Stage 1 86.35 96.31 26.46 46.82 29.46 52.83 26.96 41.28 

Stage 1&2 84.75 95.92 25.12 47.03 28.22 50.37 25.47 41.96 

Stage ∗1&2 86.27 96.55 25.88 45.96 28.39 51.72 26.05 40.78 

Stage 1&3 86.32 95.69 27.19 46.71 30.11 53.07 26.88 41.63 

WSMTAL 85.08 94.24 29.27 49.01 31.71 54.82 28.74 44.53 

AccessoryObject 7 Stage 1 91.86 97.54 44.32 66.33 57.66 75.58 52.45 83.77 

Stage 1&2 90.25 96.44 43.21 65.74 56.41 74.93 51.68 83.40 

Stage ∗1&2 92.18 98.54 43.52 66.08 55.57 75.33 52.63 84.29 

Stage 1&3 91.55 97.19 44.83 66.85 57.38 75.69 51.85 83.79 

WSMTAL 90.62 97.40 46.17 69.10 60.14 78.85 54.19 86.06 

SleeveStyle 3 Stage 1 99.14 10 0.0 0 80.17 93.73 85.37 95.62 42.71 77.96 

Stage 1&2 98.75 10 0.0 0 79.64 93.46 84.33 94.23 42.22 77.68 

Stage ∗1&2 99.42 10 0.0 0 79.98 92.96 85.67 95.39 43.01 78.25 

Stage 1&3 99.93 10 0.0 0 79.38 93.63 84.96 95.73 43.09 76.93 

WSMTAL 98.96 10 0.0 0 85.76 98.73 87.09 97.88 45.13 81.84 

Table 2 

The classification accuracies of attributes of the next 7 types on the VIPeR, GRID and PRID datasets. 

Types Number Validation(%) VIPeR(%) PRID(%) GRID(%) 

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 

UpperStyle 2 Stage 1 99.01 10 0.0 0 90.17 10 0.0 0 82.64 10 0.0 0 80.53 10 0.0 0 

Stage 1&2 97.85 10 0.0 0 89.25 10 0.0 0 82.01 10 0.0 0 80.11 10 0.0 0 

Stage ∗1&2 99.53 10 0.0 0 89.66 10 0.0 0 82.23 10 0.0 0 79.85 10 0.0 0 

Stage 1&3 98.69 10 0.0 0 90.33 10 0.0 0 82.49 10 0.0 0 81.36 10 0.0 0 

WSMTAL 98.96 10 0.0 0 92.96 10 0.0 0 84.10 10 0.0 0 83.63 10 0.0 0 

UpperType 10 Stage 1 85.31 99.36 62.57 83.71 57.48 79.13 55.97 76.53 

Stage 1&2 84.27 99.17 61.48 83.42 57.39 79.11 55.48 75.68 

Stage ∗1&2 86.51 99.97 62.37 83.59 58.95 81.24 53.82 73.35 

Stage 1&3 86.33 10 0.0 0 61.34 83.66 57.24 78.54 54.76 76.42 

WSMTAL 84.90 98.44 64.34 85.93 60.81 81.56 58.99 79.83 

LowerStyle 2 Stage 1 96.27 10 0.0 0 90.23 10 0.0 0 81.97 10 0.0 0 79.19 10 0.0 0 

Stage 1&2 95.69 10 0.0 0 89.96 10 0.0 0 81.05 10 0.0 0 78.56 10 0.0 0 

Stage ∗1&2 96.39 10 0.0 0 88.45 10 0.0 0 79.32 10 0.0 0 77.73 10 0.0 0 

Stage 1&3 96.42 10 0.0 0 90.15 10 0.0 0 82.01 10 0.0 0 79.08 10 0.0 0 

WSMTAL 96.33 10 0.0 0 93.24 10 0.0 0 84.44 10 0.0 0 81.70 10 0.0 0 

LowerType 10 Stage 1 93.55 10 0.0 0 70.39 90.14 64.32 89.44 41.75 64.35 

Stage 1&2 92.29 99.42 70.11 90.27 63.57 89.28 40.19 63.70 

Stage ∗1&2 95.94 10 0.0 0 68.32 87.16 62.70 86.48 40.95 61.43 

Stage 1&3 93.27 99.33 69.74 89.36 64.68 88.93 41.38 63.77 

WSMTAL 91.67 98.96 74.92 95.94 66.20 91.66 44.04 67.03 

HairStyle 3 Stage 1 96.79 10 0.0 0 68.59 94.19 70.13 94.53 66.23 95.43 

Stage 1&2 96.23 10 0.0 0 67.13 94.00 68.47 94.53 66.12 94.13 

Stage ∗1&2 96.88 10 0.0 0 67.36 93.15 69.57 93.84 64.33 93.07 

Stage 1&3 96.93 10 0.0 0 6 8.4 8 94.32 69.88 94.89 67.05 95.00 

WSMTAL 96.88 10 0.0 0 71.42 95.91 71.51 96.81 68.82 96.03 
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R  
between using and without using MOT challenge dataset, re-

spectively. In Tables 1–3 , Stage ∗
1&2 

denotes the performance

of dCNN trained without using MOT dataset. It can be seen

that, our WSMTAL outperforms Stage ∗1&2 in most cases. It is

also interesting to notice that, Stage ∗
1&2 

constantly outperforms

Stage 1&2 on the dataset T , where the validation is from. This is

reasonable because the model of Stage 1&2 is optimized on an-

other domain U , i.e., MOT dataset, and targets to refine the at-

tribute labels of MOT dataset, rather than to improve the dis-
 p  
criminative power on the dataset T . Differently, Stage ∗1&2 is di-

rectly optimized on the dataset T , thus shows better perfor-

mance than Stage 1&2 . 

.4. Performance on two-camera datasets 

This experiment tests deep attributes on two-camera person

eID tasks. Three datasets are employed. 10 random tests are first

erformed for each dataset. Then, the average Cumulative Match
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Table 3 

The classification accuracies of attributes of the last 5 types on VIPeR, GRID and PRID datasets. 

Types Number Validation(%) VIPeR(%) PRID(%) GRID(%) 

Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 

FootStyle 6 Stage 1 71.53 95.06 35.38 64.63 45.34 72.53 30.15 55.91 

Stage 1&2 71.59 94.69 33.62 63.92 44.43 72.04 29.96 56.82 

Stage ∗1&2 72.86 97.15 33.78 62.14 43.84 70.08 27.29 53.11 

Stage 1&3 71.66 95.88 34.96 64.55 46.02 73.10 30.05 56.39 

WSMTAL 70.83 94.79 38.36 66.25 47.75 74.14 33.80 60.13 

UpperColor 11 Stage 1 79.35 93.23 44.33 67.11 28.21 51.03 30.25 52.47 

Stage 1&2 78.02 91.68 42.96 66.49 27.63 50.41 30.23 51.39 

Stage ∗1&2 78.89 92.96 44.65 67.99 26.38 48.17 29.65 51.03 

Stage 1&3 79.44 91.99 45.36 66.52 28.04 50.88 31.18 53.00 

WSMTAL 78.12 91.15 47.92 69.13 28.97 52.31 32.90 55.04 

LowerColor 11 Stage 1 95.62 98.96 47.76 72.36 38.06 70.53 50.91 76.35 

Stage 1&2 94.18 98.78 46.33 71.45 37.82 69.65 50.13 76.42 

Stage ∗1&2 96.77 99.12 46.55 70.49 36.24 70.12 47.69 73.83 

Stage 1&3 94.37 10 0.0 0 48.25 71.88 38.27 70.48 49.97 75.99 

WSMTAL 94.23 98.44 51.75 75.69 40.99 72.82 52.18 77.89 

HairColor 11 Stage 1 96.39 99.13 55.37 76.14 48.11 80.37 44.35 64.50 

Stage 1&2 95.44 98.27 54.23 75.38 46.27 81.04 43.19 65.39 

Stage ∗1&2 96.11 99.73 52.06 71.89 47.56 79.63 41.83 63.20 

Stage 1&3 96.50 98.69 56.30 76.23 48.09 82.10 43.96 66.42 

WSMTAL 95.84 97.92 57.74 79.30 50.80 84.49 47.09 70.71 

FootColor 11 Stage 1 93.68 98.66 44.28 68.13 62.45 83.69 30.30 60.13 

Stage 1&2 92.71 96.75 43.19 67.48 60.97 82.47 28.56 59.48 

Stage ∗1&2 94.80 99.17 42.24 66.90 61.01 80.73 29.05 58.14 

Stage 1&3 93.07 97.58 45.07 68.25 62.37 83.02 30.66 59.88 

WSMTAL 92.19 96.88 46.03 70.84 67.14 84.81 34.48 63.80 
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Characteristic (CMC) curves of these tests are calculated and used

for performance evaluation. The experimental settings on three

datasets are introduced as follows: 

VIPeR : 632 persons are included in the VIPeR dataset. Two im-

ages with size 48 × 128 of each person are taken by camera A and

camera B, respectively in different scenarios of illumination, pos-

tures and viewpoints. Different from most of existing algorithms,

our WSMTAL does not need training on the target dataset. To make

fair comparison with other algorithms, we use similar settings for

performance evaluation, i.e., randomly selecting 10 test sets, and

each contains 316 persons. 

PRID : This dataset is specially designed for person ReID in sin-

gle shot. It contains two image sets containing 385 and 749 per-

sons captured by camera A and camera B, respectively. These two

datasets share 200 persons in common. For the purpose of fair

comparison with other algorithms, we follow the protocol in [33] ,

and create a probe set and a gallery set, where all training samples

are excluded. The probe set includes images of 100 persons from

camera A. The gallery set is made up of images from 649 persons

capture by camera B. 

GRID : This dataset includes images collected by 8 non-adjacent

cameras fixed at a subway station. The probe set contains images

of about 250 persons. The gallery set contains images of about

1025 persons, among which 775 persons do not match anyone in

the probe set. For the purpose of fair comparison, images of 125

persons shared by the two sets are employed for training. The re-

maining 125 persons and 775 distracters are used for the testing. 

Compared Algorithms : We compare our approach with many

recent works. Compared works that learn distance metrics for per-

son ReID include RPML [10] , PRDC [17] , RSVM [65] , Salmatch [57] ,

LMF [58] , PCCA [9] , KISSME [13] , kLFDA [14] , KCCA [59] , TSR [60] ,

EPKFM [19] ,LOMO + XQDA [20] ,MRank-PRDC [34] , MRank-RSVM

[34] , RQDA [66] , MLAPG [23] , CSL [22] and LDNS [61] . Compared

works based on traditional attribute learning are AIR [26] , OAR

[28] ,LOREA [31] and JLSAT [62] . Related works that leverage deep

learning include DML [50] , IDLA [51] , Deep-RDC [24] , DGDropout

[64] , Gate S-CNN [63] and Deep-TCP [38] . The compared CMC

l  
cores at different ranks on three datasets are shown in Tables 4 ,

 , and 6 , respectively. 

The three tables clearly show that, even it is not fine-tuned

ith extra data, the baseline dCNN O 

S1 achieves fairly good re-

ults on three datasets, especially on PRID and GRID . Additionally,

f we fine-tune the baseline dCNN using our attributes triplet loss,

e achieve an additional 3.5% improvement at rank 1 on VIPeR ,

.8% on PRID , and 1.7% on GRID , respectively. This indicates that

ur three-stage training framework improves the performance by

rogressively adding more information into the training procedure.

Our WSMTAL algorithm has surpassed many existing algorithms

n the VIPeR, PRID and GRID datasets. Some recent works like

IR [26] , OAR [28] , LOREA [31] , and JLSAT [62] also learn at-

ributes for person ReID. The comparison in Table 4 clearly shows

he advantages of our deep model in attribute prediction. Some

revious works like DML [50] , IDLA [51] , Deep-RDC [24] , DG-

ropout [64] , Gate S-CNN [63] and Deep-TCP [38] take advantages

f deep learning in person ReID. Different from them, our work

enerates camera-independent mid-level attributes, which can be

sed as discriminative features for identifying persons on differ-

nt datasets. The experiments results in Table 4 also show that our

ethod outperforms these works. 

Because we use the predicted binary attributes as features for

erson ReID, we can also learn a distance metric to further im-

rove the ReID accuracy. We select XQDA [20] for the distance

etric learning. As can be seen from three tables, our approach

ith XQDA [20] , i.e., WSMTAL + XQDA, achieves better perfor-

ance than WSMTAL. This clearly shows that our work can easily

ombine with existing distance metric learning works to further

oost the performance. 

.5. Performance on multi-camera dataset 

We further test our approach in a more challenging multi-

amera person ReID task. We employ the Market dataset [55] ,

here more than 25,0 0 0 images of 1501 labeled persons are col-

ected from 6 cameras. Each person has 17 images in average,
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personalLess45
personalMale

carryingMessengerBag
accessoryNothing

upperBodyLongSleeve
upperBodyCasual
upperBodyPlaid

lowerBodyCasual
lowerBodyTrousers

hairShort
footwearLeatherShoes

upperBodyGreen
lowerBodyBlack

hairYellow
footwearBrown

personalLess30
personalMale

carryingBackpack
accessoryNothing

upperBodyLongSleeve
upperBodyCasual

upperBodyThickStripes
lowerBodyCasual

lowerBodyTrousers
hairShort

footwearSneakers
upperBodyRed
lowerBodyGrey

hairGrey
footwearBrown

personalLess30
personalMale

carryingBackpack
accessoryNothing

upperBodyLongSleeve
upperBodyCasual
upperBodyPlaid

lowerBodyCasual
lowerBodyTrousers

hairShort
footwearSneakers
upperBodyBrown
lowerBodyGrey

hairGrey
footwearBrown

personalLess30
personalFemale
carryingNothing

accessoryNothing
upperBodyLongSleeve

upperBodyCasual
upperBodyOther
lowerBodyCasual
lowerBodyJeans

hairLong
footwearShoes
upperBodyRed
lowerBodyGrey

hairBlack
footwearBlack

personalLess30
personalMale

carryingNothing
accessoryHat

upperBodyNoSleeve
upperBodyCasual
upperBodySweater
lowerBodyCasual

lowerBodyTrousers
hairLong

footwearSneakers
upperBodyWhite
lowerBodyWhite

hairBlack
footwearWhite

personalLarger60
personalFemale

carryingPlasticBags
accessoryNothing

upperBodyLongSleeve
upperBodyCasual
upperBodyJacket
lowerBodyCasual
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hairShort

footwearLeatherShoes
upperBodyGrey

lowerBodyBrown
hairWhite

footwearBlack
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upperBodyGrey

lowerBodyBrown
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personalLess30
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upperBodyShortSleeve
upperBodyCasual
upperBodyTshirt
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lowerBodyShorts

hairShort
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Fig. 6. Examples of predicted attributes on MOT challenge by the learned dCNN after three stages of training. Texts with blue color are correct attributes, while those with 

red color are false attributes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank 5, rank 10, rank 20 on the VIPeR 

dataset. 

Methods Rank 1 Rank 5 Rank 10 Rank 20 

Metric Learning based ReID RPML [10] 27.0 57.0 69.0 83.0 

Salmatch [57] 30.2 52.4 65.5 79.1 

LMF [58] 29.1 52.3 65.9 80.0 

KISSME [13] 19.6 47.5 62.2 77.0 

KCCA [59] 37.3 71.4 84.6 92.3 

kLFDA [14] 32.2 65.8 79.7 90.9 

LOMO + XQDA [20] 40.0 68.9 81.5 91.1 

CSL [22] 34.8 68.7 82.3 91.8 

MLAPG [23] 40.7 69.9 82.3 92.4 

TSR [60] 31.6 68.6 82.8 94.6 

EPKFM [19] 36.8 70.4 83.7 91.7 

LDNS [61] 42.3 71.4 82.9 92.1 

Attributes Learning based ReID AIR [26] 18.0 38.8 51.1 71.2 

LLCNN-P [47,48] 13.89 34.02 47.41 - 

OAR [28] 21.4 41.5 55.2 71.5 

LORAE [31] 42.3 72.2 81.6 89.6 

JLSAT [62] 45.4 – – –

Deep Learning based ReID IDLA [51] 34.8 54.3 76.5 87.6 

DML [50] 28.2 59.3 73.5 86.4 

Deep-RDC [24] 40.5 60.8 70.4 84.4 

Gate S-CNN [63] 37.8 66.9 76.3 –

DGDropout [64] 38.6 – – –

Deep-TCP [38] 47.8 74.7 84.8 91.1 

Proposed SSDAL [41] 37.9 65.5 75.6 88.4 

Stage 1 36.2 63.9 73.5 84.7 

Stage 1&2 36.3 63.1 72.9 82.4 

Stage 1&3 37.3 61.5 72.7 81.5 

WSMTAL 39.7 66.9 76.5 86.6 

WSMTAL + XQDA 47.1 71.5 80.3 88.2 
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Table 5 

CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank5, 

rank 10, rank 20 on the PRID dataset. 

Methods Rank 1 Rank 5 Rank 10 Rank 20 

RPML [10] 4.8 14.3 21.6 30.2 

PRDC [17] 4.5 12.6 19.7 29.5 

RSVM [65] 6.8 16.5 22.7 31.5 

Salmatch [57] 4.9 17.5 26.1 33.9 

LMF [58] 12.5 23.9 30.7 36.5 

PCCA [9] 3.5 10.9 17.9 27.1 

KISSME [13] 4.1 12.8 21.1 31.8 

kLFDA [14] 7.6 18.9 25.6 37.4 

KCCA [59] 14.5 34.3 46.7 59.1 

LOREA [31] 18.0 37.4 50.1 66.6 

LOMO + XQDA [20] 15.3 35.7 41.2 53.8 

MLAPG [23] 16.6 33.1 41.4 52.5 

JLSAT [62] 26.8 – – –

Deep-TCP [38] 22.0 – 47.0 57.0 

LDNS [61] 29.80 52.9 66.0 76.5 

SSDAL [41] 20.1 47.4 55.7 68.6 

Stage 1 19.6 46.7 55.1 66.4 

Stage 1&2 19.4 46.4 53.5 66.2 

Stage 1&3 20.8 43.0 55.1 67.3 

WSMTAL 22.4 47.8 56.8 67.6 

WSMTAL + XQDA 24.4 52.3 62.5 74.2 

Table 6 

CMC scores, i.e., percentage (%) of correct matches, of ranks 1, rank5, 

rank 10, rank 20 on the GRID dataset. 

Methods Rank 1 Rank 5 Rank 10 Rank 20 

PRDC [17] 9.7 22.0 33.0 44.3 

RSVM [65] 10.2 24.6 33.3 43.7 

MRank-PRDC [34] 11.1 26.1 35.8 46.6 

MRank-RSVM [34] 12.2 27.8 36.3 49.3 

RQDA [66] 15.2 30.1 39.2 49.3 

EPKFM [19] 16.3 35.8 46.0 57.6 

LOMO + XQDA [20] 16.6 35.4 41.8 52.4 

LLCNN-P [47,48] 18.32 46.16 62.56 –

SSDAL [41] 19.1 35.6 48.0 58.4 

Stage 1 17.5 34.5 42.8 55.3 

Stage 1&2 16.8 32.0 43.3 57.5 

Stage 1&3 17.5 35.4 44.5 55.8 

WSMTAL 19.2 38.1 47.8 58.7 

WSMTAL + XQDA 23.4 39.6 49.8 60.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

CMC scores of ranks 1 and mean Average Pre- 

cision (mAP) on the Market dataset. Numbers 

indicate the percentage (%) of correct matches 

within a specific rank. 

Single Query Rank 1 mAP 

Salmatch [57] 20.5 8.2 

SDALF [1] 33.5 13.5 

BGG [55] 34.4 14.1 

KISSME [13] 40.5 19.0 

MFA [14] 45.7 18.2 

kLFDA [14] 51.3 24.4 

LOMO + XQDA [20] 43.8 22.2 

LDNS [61] 55.4 29.9 

Gate S-CNN [63] 65.9 39.6 

SSDAL [41] 39.4 19.6 

WSMTAL 49.5 29.2 

Multiple Query Rank 1 MAP 

BGG + MultiQ_max [55] 42.1 18.5 

kLFDA [14] 52.7 27.4 

LOMO + XQDA [20] 54.1 28.4 

LDNS [61] 68.0 41.9 

Gate S-CNN [63] 76.0 48.5 

SSDAL [41] 49.0 25.8 

WSMTAL 56.6 31.2 
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which show substantially different appearances due to variances

of viewpoints, illumination, backgrounds, etc . This dataset is also

larger than most of existing person ReID datasets. Because Market

has clearly provided the training set, we use images in the training

set and their person ID labels to fine-tune our dCNN O 

S2 . 

In contrast to the two-camera person ReID task, the multi-

camera person ReID targets to identify the query person across im-

age sets from multiple cameras. Therefore, our task is to query and

rank all images from these cameras, according to the given probe

image (i.e., Single Query) or tracklet (i.e., Multiple Query) of a per-

son. Because this process is similar to image retrieval, we evaluate

the performance by mean Average Precision (mAP) and accuracy

at Rank 1, following the protocol in [55] . The results are shown in

Table. 7 . More details about feature pooling can be found in [55] . 

From Table 7 , we can observe that our approach outperforms

most of the compared methods for both single query and multi-

query scenarios in mAP. Our method does not perform as good

as the latest LDNS [61] and Gate S-CNN [63] methods on Market

dataset. Note that, both of LDNS [61] and Gate S-CNN [63] train

their models directly on the training set of the Market dataset.

Therefore, the underlying reason maybe because our method sim-

ply transfers the learned low-dimensional attribute features from

an independent and relative small dataset PETA to the large Mar-

ket dataset. Moreover, the bounding box annotations in the Market
ataset are generated from the DPM [67] detection model, which

iffer from the manually annotated bounding boxes in PETA . On

atasets like VIPER , where the bounding boxes are also manually

nnotated, our method performs better than LDNS [61] and Gate

-CNN [63] in Table 4 . 

.6. Discussions 

In this part, we further discuss some interesting aspects of our

ethod that may have been missed in the above experimental

valuations. 

It should be noted that, our training and testing sets are from

ifferent domains. To be specific, the attribute prediction model

s trained on PETA and MOT Challenge, rather than the training

ets defined by VIPeR, PRID, and GRID. This setting is thus more

hallenging than the commonly used one in compared works, i.e.,

he training set and testing set are both from the same domain

r dataset. Under such setting, our method still shows competitive

erformance in Tables 4–7 . Our work also shows reasonable per-

ormance when is compared with recent works. After using XQDA,

ur rank-1 accuracy on GRID is only 0.8% lower than the accuracy

eported in [68] . Our algorithm also outperforms the method of

atsukawa et al. using pixel feature [69] on both VIPeR and GRID ,

.e., 22.8% [69] vs. our 23.4% on GRID, and 42.3 [69] % vs. our

7.1% on VIPeR. Those experimental results show our method has a

trong feature generalization ability, i.e., attribute feature is trained

n one set but gets reasonable performance on other independent

esting sets. This could be valuable for real applications, where the

ttribute training sets on target domain could be hard to collect. 

By using attributes features of only 105 dimensions, our method

chieves promising performance on four public datasets. It is in-

eresting to see the ReID performance after combining the com-

act attribute features and classic visual features. To verify this

oint, we integrate the appearance-based features with attributes

eatures for better discriminative power. Table 8 shows the per-

ormance of fusing deep attributes with appearance-based feature

OMO [20] , i.e., LOMO + XQDA + WSMTAL. It is obvious that fus-

ng appearance-based features further improves WSMTAL, e.g. , CMC

core achieves 45.3 at Rank-1. Therefore, combining with visual

eature would further ensure the performance of attributes fea-

ures in real applications. 
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Table 8 

Additional experimental results on VIPeR . 

Method Rank 1 Rank 5 Rank 10 Rank 20 

WSMTAL 39.7 66.9 76.5 86.6 

WSMTAL + XQDA 47.1 71.5 80.3 88.2 

LOMO + WSMTAL + XQDA 51.3 78.2 85.1 90.2 

FC7 fine-tuned on T 26.5 48.2 61.1 72.3 

FC7 fine-tuned on U 10.1 21.6 31.7 45.3 

FC7 fine-tuned on T + U 27.4 49.7 62.3 74.4 
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Many image retrieval works use the output of FC-7 layer in

GG-16 as image feature. Therefore, another way of learning mid-

evel feature for person ReID is fine-tunning the FC7 layer with

riplet loss similar to the one in WSMTAL, i.e., updating the dCNN

o make same person have similar FC-7 layer features and vice

ersa. The FC7 features learned in this way are also not limited

o the 105 dimensions, thus might be more discriminative than at-

ributes. To test the validity of this strategy, we fine-tune the FC7

ayer of VGG-Net using person ID labels on different datasets, i.e.,

, U , and T + U, respectively. Experimental results in Table 8 clearly

ndicates that that deep attributes outperforms such FC7 features.

his clearly validates the contribution and importance of attributes.

Compared with our conference paper, which uses AlexNet,

SMTAL uses deeper VGG-Net. The baseline performance of VGG-

et is about 2% higher than the one of AlexNet. Table 8 shows

hat our WSMTAL framework is about 12% better than those pro-

uced by directly using VGG-Net for feature learning in Rank 1

n VIPeR. This also shows that our proposed weakly supervised

ethod brings more significant performance gain than the use of

 deeper network. 

There are some works that use deep learning to recognize

edestrian attributes [44,46–48] . The DeepMAR [44] is a deep at-

ributes learning model which can learn the attributes correlations.

nd the work by Yu et al. [46] proposes a weakly supervised deep

earning model to recognize attributes and infer the locations of

ttributes. Meanwhile, a multi-label convolutional neural network

MLCNN) [47,48] is formulated to predict multiple attributes with

ody part division. Although most of those works are not working

n person ReID, they can be important references for our work. For

xample, those works show that considering body parts, locations,

orrelations of attributes may further improve the attribute pre-

iction accuracy. Referring to those works, we will add more help-

ul information to our weakly supervised attribute learning model.

his will be investigated in our future work. 

. Conclusions and future work 

This paper addresses the person ReID problem using deeply

earned human attribute features. We propose a novel Weakly

upervised Multi-Type Attribute Learning (WSMTAL) algorithm,

hich considers the contextual cues among attributes and progres-

ively boosts the accuracy of attributes only using a limited num-

er of labeled data. Our attributes triplet loss makes it possible to

se images only with person ID labels for training attribute detec-

ors in a dCNN framework. Extensive experiments on four bench-

ark datasets demonstrate that our method performs reasonably

ood in attribute detection and outperforms many recent person

eID methods. Moreover, our algorithm needs no further train-

ng on the target datasets. It means that once the attribute pre-

iction dCNN model is trained, it can be applied in person ReID

asks on different datasets. The dCNN model fine-tuning only re-

uires images with person ID labels, which can be easily obtained

y Multi-target Tracking algorithms. Further considering the spa-

ial locations of attributes might improve the accuracy of attribute

etection. These would be our future work. 
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