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Abstract—Frame rate up-conversion (FRUC) improves the
viewing experience of a video because the motion in a FRUC-
constructed high frame-rate video looks more smooth and contin-
uous. This paper proposes a multiple hypotheses Bayesian FRUC
scheme for estimating the intermediate frame with maximum
a posteriori probability, in which both temporal motion model
and spatial image model are incorporated into the optimization
criterion. The image model describes the spatial structure of
neighboring pixels while the motion model describes the temporal
correlation of pixels along motion trajectories. Instead of employ-
ing a single uniquely optimal motion, multiple “optimal” motion
trajectories are utilized to form a group of motion hypotheses. To
obtain accurate estimation for the pixels in missing intermediate
frames, the motion-compensated interpolations generated by all
these motion hypotheses are adaptively fused according to the
reliability of each hypothesis. We revealed by numerical analysis
that this reliability (i.e., the variance of interpolation errors along
the hypothesized motion trajectory) can be measured by the vari-
ation of reference pixels along the motion trajectory. To obtain
the multiple motion fields, a set of block-matching sizes is used
and the motion fields are estimated by progressively reducing
the size of matching block. Experimental results show that the
proposed method can significantly improve both the objective and
the subjective quality of the constructed high frame rate video.

Index Terms—Bayesian estimation, frame rate up-conversion,
Huber–Markov random field, motion estimation, motion-
compensated interpolation.
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I. Introduction

W ITH THE RAPID development of computing and com-
munication technologies in the past decades, digital

videos are becoming pervasive in our daily lives. People watch
broadcast video programs on television and browse internet
videos using desktop computers, laptops, and even mobile de-
vices. At the same time, the display technology also advances
rapidly. One important feature is that the screen refresh rate of
displays is becoming higher (up to 120 Hz or even higher) so
that a dynamic scene can be reproduced on screens with vivid
viewing experience. However, this benefit may not be fully re-
alized when the video available for viewing has a much lower
frame rate than the display devices can support. In some cases,
the video has a high original frame rate but is transmitted at
a reduced frame rate, by periodically skipping some frames,
in order to meet the transmission rate constraint of a network
connection. In some other cases, the frame rate of a captured
video is restricted by the processing capability of recording
devices. In these scenarios, the user’s viewing experience may
be severely limited by the video data so that the potential of
high refresh rate display cannot be fully exploited.

Frame rate up-conversion (FRUC) [1]–[10] refers to the pro-
cess to construct a high frame rate (HFR) video by periodically
inserting new frames into an input lower frame rate (LFR)
video. This improves the viewing experience because the mo-
tion in the constructed HFR video usually looks more smooth
and continuous. Simple approaches to FRUC include frame
repetition and frame averaging. Although the former method
cannot improve the viewing experience at all, the latter one
is likely to produce ghosting artifacts, because the collocated
pixels in adjacent frames do not correspond to the same part
of an object if it is moving. Taken this into consideration, a
more appropriate approach is to perform frame interpolation
along the motion trajectories. This is commonly referred to as
motion-compensated frame rate up-conversion (MC-FRUC).

For the success of the MC-FRUC schemes, two issues need
to be addressed. The first one is how to figure out the motion
trajectories between missing HFR frames and their adjacent
frames available in the LFR video, given the fact that the
HFR frames are unknown at the time of motion trajectory
estimation. The second one is how to estimate the pixels of
missing HFR frames from the pixels of LFR frames. These two
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issues are handled by motion estimation (ME) and motion-
compensated interpolation (MCI), respectively. Many works
have been done in these two aspects, which are summarized
as follows.

For motion trajectory estimation, Hann et al. [2] proposed
a 3-D recursive search (3DRS) algorithm, which recursively
optimizes the motion vector (MV) obtained from spatially
or temporally neighboring blocks. Tai et al. [11] proposed
a multipass ME scheme to employ variable block sizes to
represent the motion field at regions with different char-
acteristics, i.e., using larger block for smooth motion and
smaller block for complex motion. This is similar with the
idea of variable block-size ME in H.264/AVC [12]. Huang
et al. [13], [14] proposed to first perform ME for each block
using a small block size, and then merge the neighboring
blocks with similar MVs into larger block and reestimate the
motion for the merged block. Kang et al. [15] proposed to
use both the bidirectional and unidirectional matching ratios
of blocks in the previous and the following references frames
to enhance the ME accuracy. The above algorithms use sum
absolute difference (SAD) or sum squared difference (SSD)
as the criterion to choose MV in block-matching process.
Different from the above algorithms, Wang et al. [16], [17]
explicitly incorporated the temporal and spatial smoothness of
the motion field into the ME criterion. In [16], motion fields
of adjacent frames are assumed to follow the Markov and
Gibbs random field distribution jointly, and the inconsistency
of motion in neighboring block is penalized. Besides the
algorithms that try to obtain smooth motion field in the ME
stage, postprocessing techniques are also proposed to correct
inconsistent MVs after the ME stage is completed [18], [19].

MCI derives the intermediate frame according to the esti-
mated motion trajectories. This is usually done in two steps.
First, each block in the intermediate frame is assigned a
pair of MVs, which point to the previous reference frame
and the following reference frame, respectively. Second, the
intermediate blocks are interpolated by averaging the reference
blocks pointed by the two MVs. However, this usually leads to
blocking artifacts at block boundaries. To reduce such artifacts,
overlapped block motion compensation (OBMC) is introduced
in [20]–[22], in which the application region of each MV
is a window larger than the block and can overlap with
each other. This makes the transition across block boundaries
smooth in the interpolated frame. Recently, a motion-aligned
autoregressive model (MAAR) is proposed [23], in which each
pixel in the intermediate frame is approximated by a linear
combination of the pixels in a square neighborhood in the
reference frames. By adaptively estimating the MAAR model
parameters, the approach [23] achieves the current state-of-
the-art FRUC performance.

The limitations of the above MC-FRUC schemes are as
follows. First, most of them do not consider the spatial
consistency of neighboring pixels. Second, to the best of our
knowledge, none of them consider and analyze the reliabil-
ity of estimated motion trajectories. Furthermore, none of
them consider the possibility of employing multiple motion
trajectory hypotheses to obtain a better estimation for the
intermediate frame.

In this paper, we propose a multiple hypothesis Bayesian
FRUC scheme, in which both temporal motion model and
spatial image model are incorporated into the optimization
criterion for estimating an intermediate frame with maximum a
posteriori probability. The image model describes the spatial
structure of neighboring pixels while the motion model de-
scribes the temporal correlation of pixels along motion trajec-
tories. Instead of employing a single uniquely optimal motion,
multiple “optimal” motion fields are utilized to form a group
of motion trajectory hypotheses. To obtain accurate estimation
for the pixels in missing intermediate frames, the interpolated
frames generated with these motion trajectory hypotheses are
fused together according to the reliability of each hypothesis.
By numerical analysis from some experiments, we revealed
that the variance of MCI errors can be accurately modeled by
the variation of reference pixels along the motion trajectory.

To obtain the multiple motion fields, we propose a new ME
scheme, in which a set of block sizes is used and the motion
fields are estimated in several ME steps, by progressively
reducing the block size in block matching. To reduce the
motion ambiguity in the motion search process, the motion
estimated with large matching block in an earlier step is used
to constrain the motion search in the next step. The proposed
method is different with the variable block-size ME in [12].
The latter one generates only a single motion field, allowing
different block sizes for block matching at different regions.
On the other hand, the proposed method generates multiple
estimations of the motion field via multiple ME stages. Each
estimation stage is performed using a fixed block size, but the
block size is progressively reduced as the ME stages go on.

The remainder of this paper is organized as follows. Sec-
tion II reviews the basic FRUC model. Section III pro-
poses the multiple hypotheses Bayesian FRUC model. In its
sections, the concept of multiple hypotheses Bayesian estima-
tion is introduced and the numerical solution for the proposed
optimization problem is discussed. The reliability of MCI is
also analyzed. Section IV proposes the progressively reduced
block-size ME scheme. Experimental results are reported in
Section V to evaluate the proposed FRUC scheme. Finally,
Section VI concludes this paper.

II. Basic FRUC Model

A. Problem Statement

In this paper, we focus on the problem of how to double
the frame rate of an input video. The more general FRUC
problem of increasing the frame rate by other factors can be
similarly solved. Suppose ft is the intermediate frame to be
estimated, and ft−1 and ft+1 are the previous and the following
neighboring frames of ft , respectively. The goal of FRUC
problem is to find a pixel value with the maximum probability
for each pixel of ft , based on ft−1 and ft+1. The mathematical
formulation of this problem is

f̂t = arg max
ft

Pr (ft|ft−1, ft+1) . (1)

Here, Pr (·) is the probability density function.
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The intuition behind the formulation (1) is that the three
consecutive frames ft−1, ft , and ft+1 should be consistent and
form a continuous scene. In other words, stationary object in
the three frames should be highly similar to each other, while
moving object may move from one place to another in the
three frames. Therefore, the motion that links the intermediate
frame ft with the pair of reference frames ft−1 and ft+1 is
the key factor to consider in the FRUC problem. Explicitly
incorporating the impact of motion, (1) can be reformulated as

f̂t = arg max
ft

∫
Pr (ft, mt|ft−1, ft+1) dmt

= arg max
ft

∫
Pr (ft|ft−1, ft+1, mt) Pr (mt|ft−1, ft+1) dmt.

(2)
Here, mt is the motion field that links ft with ft−1 and

ft+1. The formulation (2) indicates that the FRUC problem
can be solved by dividing it into estimation problems of two
probabilities, i.e., the probability of motion field and the con-
ditional probability of intermediate frame given motion. The
conditional probability Pr (ft|ft−1, ft+1, mt) is usually well
defined when mt is accurate or very close to the true motion
that links the frames ft−1, ft , and ft+1. However, for motion
mt that is far from the true motion, this conditional probability
is difficult to model. As a result, (2) cannot be solved directly.
In practice, the FRUC problem (2) is commonly simplified to
a two-step problem, as formulated by

m̂t = arg max
m

Pr (m|ft−1, ft+1) (3)

f̂t = arg max
ft

Pr (ft|ft−1, ft+1, m̂t) . (4)

In this framework, a MV field m̂t that is most compatible
with the reference frames ft−1 and ft+1 is chosen as the
optimal motion in the first step, and then the intermediate
frame is estimated in the second step, based on the conditional
probability Pr (ft|ft−1, ft+1, m̂t) and the estimated motion m̂t .

B. Basic Solution

Generally speaking, for a complex dynamic scene, one
cannot accurately figure out the motion at an arbitrary moment
with a long time interval, only by the images recorded at the
beginning and the end of this interval. To make the things easy,
certain assumptions were made by most of the existing FRUC
schemes. The first assumption is that the speed and direction of
object movements do not change too much during this period,
e.g., from the time t − 1 to the time t + 1, so that the motion
looks smooth and continuous. This assumption is reasonable
when the time interval between ft−1 and ft+1 is very short.
Under such assumption, the motion that links ft to ft−1 and
the motion that links ft to ft+1 are antisymmetric, as shown
in Fig. 1. In this case, the motion linking ft to ft+1 (or ft

to ft−1) is usually estimated by first determining the motion
linking ft−1 to ft+1 via block-matching algorithms and then
scaling the obtained MVs by 1/2 (or −1/2).

Once an accurate estimation of motion field is obtained,
we can interpolate the intermediate frame. For this purpose,
another assumption is usually made that the intensity of image
pixels remains approximately stable along motion trajectories,

Fig. 1. Motion that links the intermediate frame with the reference frames.

except for a random disturbance, e.g., white Gaussian noise
[24]. According to the above assumptions, ft can be estimated
from ft−1 and ft+1 by

ft (x) = ft−1 (x + m̂t (x)) + n1 (x) (5)

ft (x) = ft+1 (x − m̂t (x)) + n2 (x) . (6)

Here, m̂t denotes the backward motion field of ft , as shown
in Fig. 1. x is the coordinate vector, and n1 and n2 are the
random disturbance noises that are assumed to be independent
of each other and with equal variance. Combining (5) and (6),
we get

ft (x) =
ft−1 (x + m̂t (x)) + ft+1 (x − m̂t (x))

2

+
n1 (x) + n2 (x)

2
. (7)

Obviously, the estimation of ft at position x is mainly deter-
mined by the mean pixel value along the motion trajectory that
passes through the pixel x of ft . We introduce a MCI operator
M (·, ·, ·) that takes two frames and one motion field as input
so that fc = M (fa, fb, m) is defined by

fc (x) =
fa (x + m (x)) + fb (x − m (x))

2
. (8)

Then the optimal estimation of ft in the basic FRUC model is

f̂t = M (ft−1, ft+1, m̂t) . (9)

III. Multihypothesis Bayesian FRUC Model

A. Multihypothesis FRUC

Since motion is the key factor in FRUC problems, it is
critical to obtain accurate estimation of the motion within the
time interval between reference frames. Most existing FRUC
schemes follow the idea described in the above section. One
common feature of them is that only one motion field that is
believed to be uniquely optimal is used to derive the intermedi-
ate frame. This motion field is usually obtained by performing
block matching between ft−1 and ft+1, using distance metrics
such as SAD or SSD as the block-matching criteria.

However, since the data of intermediate frame ft is missing,
it is impossible to evaluate the true accuracy of a motion candi-
date with respect to the true motion of ft . Indeed, the distance
metric used by block matching only serves as an approxima-
tion of the appropriateness of each motion candidate. In this
sense, the optimality of searched motion is not completely reli-
able. On the other hand, the motion field can be estimated with
many different strategies, e.g., using different ME algorithms
or parameters. The motion fields generated by these strategies
are not necessarily the same, although they are all believed to
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be “optimal” under their own individual optimization criterion.
Since the optimality of these motion fields are obscure and it is
difficult to pick out the real optimal one, we need a mechanism
to make use of all these motion fields simultaneously.

For this purpose, we propose an extended FRUC framework.
In this framework, instead of seeking for a single uniquely
“optimal” motion field m̂t in the ME procedure, a group of
“optimal” motion fields, say m̂t,1, m̂t,2, · · · , m̂t,K, are searched
using a group of ME strategies S1, S2, · · · , SK. In this way,
the conventional FRUC model formulated by (3) and (4) is
extended as follows:

m̂t,i = ME (ft−1, ft+1, Si)
= arg max

m

Pr (m|ft−1, ft+1, Si) , i = 1, 2, . . ., K (10)

f̂t = arg max
ft

Pr
(
ft|ft−1, ft+1,

{
m̂t,i

}
i=1,...,K

)
. (11)

Of course, the conditional probability
Pr

(
ft|ft−1, ft+1,

{
m̂t,i

}
i=1,...,K

)
is complicated. To keep

the complexity under control, in practical implementation of
the above model, (11) may be approximated by

f̂t ≈ arg max
ft

K∏
i=1

Pr
(
ft|ft−1, ft+1, m̂t,i

)
. (12)

In this model, each estimated motion field m̂t,i provides a
hypothesis for estimating the intermediate frame ft . We call
this model multihypotheses FRUC.

B. Multihypothesis Bayesian FRUC

In the FRUC models we discussed so far, the pixels in
an intermediate frame ft are estimated separately, assuming
that these pixels are independent of each other. However, it
is well known that spatially adjacent pixels of natural images
are highly correlated. It means that when estimating a pixel
in ft , the optimal value should not only be close to the
temporally neighboring pixels along motion trajectories but
also be consistent with the spatial structure exhibited by the
neighboring pixels. Taking this aspect into consideration, the
FRUC problem (11) is reformulated by

f̂t = arg max
ft

Pr
(
ft−1, ft+1,

{
m̂t,i

}
i=1,...,K

|ft

)
· Pr (ft) . (13)

The first term Pr
(
ft−1, ft+1,

{
m̂t,i

}
i=1,...,K

|ft

)
is the likeli-

hood function that links ft with the data in reference frames
according to the temporal model and estimated motion in the
video sequence. The second term in Pr (ft) is the image prior
model describing the spatial structure of neighboring image
pixels. This is usually modeled by Markov random field. We
will discuss the likelihood function and the image prior model
in detail in the subsequent section. Similar to the previous
discussion, to control the complexity of implementation, this
problem can be approximated by

f̂t ≈ arg max
ft

K∏
i=1

Pr
(
ft−1, ft+1, m̂t,i|ft

) · Pr (ft)

= arg max
ft

K∑
i=1

Log Pr
(
ft−1, ft+1, m̂t,i|ft

)
+ Log Pr (ft).

(14)

C. Temporal Motion Model and Spatial Image Prior Model

Before we can numerically solve the FRUC problem (14),
we need to adopt an appropriate motion model to describe the
relationship of temporally adjacent frames and an appropriate
image prior model to formulate the correlation of spatially
neighboring pixels inside a frame. According to the discussion
in Section II-B, the temporal relationship of adjacent frames
can be formulated by

Pr
(
ft−1, ft+1, m̂t,i|ft

) ∝∏
x∈�

1√
2πσt,i (x)

exp{
−

(
ft (x) − M

(
ft−1, ft+1, m̂t,i

)
(x)

)2

2σt,i (x)2

}
.

(15)

Here, σt,i (x)2 is the variance of the random disturbance
noise on the motion trajectory that passes through the pixel
x of ft and is determined by m̂t,i (x); � is the set of all pixel
positions in a frame.

On the other hand, the spatial correlation within a video
frame can be modeled by Huber–Markov random field
(HMRF) [25]. We rewrite the video frame ft(x) in its vector
form as f t , lexicographical ordered by x. Then the HMRF
image prior model can be formulated as

Pr (ft) =
1

Z
exp

(
−1

λ

∑
c∈C

ρT

(
dT

c ft
))

. (16)

Here, Z is normalization constant, λ is “temperature” pa-
rameter, c is a clique (i.e., a group of connected pixels), and
C is the set of all cliques in a frame. dc is a column vector
defined to extract the variation of pixel values in the clique c

and dT
c is its transpose. ρT (·) is the Huber function given by

ρT (z) =

{
z2 |z| ≤ T

T 2 + 2T (|z| − T ) |z| > T .
(17)

Here, T is a threshold to preserve significant edges. In this
paper, each clique c is defined to be a pixel and one of its
four nearest neighboring pixels.

Integrating the motion model (15) and prior image model
(16) into (14), the core of our proposed FRUC model is to
minimize the following cost function:

J(ft) =
K∑
i=1

∑
x∈�

(
ft (x) − M

(
ft−1, ft+1, m̂t,i

)
(x)

)2

2σt,i (x)2

+
1

λ

∑
c∈C

ρT

(
dT

c ft
)

=
K∑
i=1

{
(ft − pt,i)

T �t,i(ft − pt,i)
}

+
1

λ

∑
c∈C

ρT

(
dT

c ft
)
.

(18)

Here, we rewrite pt,i(x) = M
(
ft−1, ft+1, m̂t,i

)
(x) in its

vector form as pt,i (i.e., prediction for ft) for the convenience
of later discussions. �t,i is a diagonal matrix whose diagonal
elements are 1

/
2σt,i (x)2, lexicographically ordered by x. The

first term in (18) confines the solution to the ones close to
the weighted mean pixel values along motion trajectories.
The second term of (18) confines the solution to be spatially
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smooth. We note that the parameter σt,i (x) , i = 1, 2, . . . , K

indicates the reliability of pt,i(x) as an approximation of
ft (x). When σt,i (x) is smaller, pt,i(x) is more reliable and
the deviation of ft (x) from pt,i(x) is penalized with higher
weight in (18), and vice versa. The estimation of σt,i (x) will
be discussed in the subsequent section.

D. Numerical Solution

The FRUC problem in (18) is a convex optimization prob-
lem. We use the steepest descent method [26] to find its
solution. The optimization procedure consists of a number of
iterations, and in each iteration, the estimation of ft is adjusted
toward the direction that minimizes the cost function most
rapidly. Let f (p)

t denote the estimate of ft in the pth iteration,
then (19) is used to generate the next estimation as follows:

f (p+1)
t = f (p)

t + α(p)r(p). (19)

Here, r(p) and α(p) are the steepest direction and the step
size in the pth iteration, which are defined as follows:

r(p) = −
(∑

c∈C

ρ′
T

(
dT

c f (p)
t

)
dc + 2λ

K∑
i=1

�t,i(f
(p)
t − pt,i)

)
(20)

α(p) =
r(p)T r(p)

r(p)T
(∑

c∈C ρ′′
T

(
dT

c f (p)
t

)
dcdT

c + 2λ
∑k

i=1 �t,i

)
r(p)

.

(21)
Here, ρ′

T (·) and ρ′′
T (·) are the first and the second order

derivative of ρT (·). To guarantee that the cost function does
decrease in each iteration, we check the step size α(p) and
repeatedly halve the step size when necessary.

From (20) and (21), we can see that to solve the FRUC
problem in (18), we need to estimate pt,i and �t,i given that
λ and dc are constants. The following section discusses how
to estimate �t,i, and Section IV will describe how to estimate
pt,i, i.e., prediction frame of the intermediate frame.

E. Reliability Estimation of Prediction Pixels

In this section, we discuss how to estimate the matrix �i or
the variance σt,i (x)2 of random disturbance along the estimated
motion trajectories at ft (x), for all x. We already mentioned
that the variance σt,i (x)2 of random disturbance indicates the
reliability of pt,i(x) (the mean pixel value along the motion
trajectory) as a prediction of the intermediate frame pixel
ft (x). Intuitively, the value of σt,i (x)2 depends on how reliable
it is that the estimated MV form a true motion trajectory. Since
the data of intermediate frame is missing and only reference
frames are available, we measure the reliability of an estimated
MV only based on variation of reference frame pixels along
the motion trajectory. In the following, we only discuss how
to measure the reliability of a MV, but leave the problem of
how to generate MV fields in Section IV.

We denote that dt,i (x) = ft (x) − pt,i (x) and
st,i (x) =

∣∣ft−1
(
x + m̂t,i (x)

) − ft+1
(
x − m̂t,i (x)

)∣∣ (m̂t,i is
the ith estimated MV field of ft) for a numerical analysis.
The expectation of dt,i (x)2, i.e., E[dt,i (x)2], is supposed to
be a good approximation of σt,i (x)2. Furthermore, this value

Fig. 2. Relationship between
√

E[d2] and s.

is expected to be highly dependent on the value of st,i (x).
To establish the relationship between σt,i (x)2 and st,i (x), we
collect the (d, s) pairs from a number of real videos, by first
estimating the MVs m̂t,1, m̂t,2, · · · , m̂t,K using a group of ME
strategies and then varying the parameters x, t, and i to get
all the pairs (d = dt,i (x), s = st,i (x)). We divide the range of
s into many small bins and evaluate the expectation E[d2]
for each bin. According to the numerical analysis results
based on real video data, it turns out that the relationship
between

√
E[d2] and s can be model by a simple linear

model
√

E[d2] = as + b, as shown in Fig. 2. That means we
have the approximation σt,i (x) ≈ ast,i (x) + b.

IV. Progressively Reduced Block-Size ME

Now, we turn to the problem of generating multiple motion
fields to form the multiple hypotheses (i.e., multiple prediction
frames) for the intermediate frame. Since the intermediate
frame is missing and its motion field is derived from that of its
reference frames, this problem becomes generating multiple
motion fields for the reference frames. A simple way is to
perform conventional ME, i.e., through block matching with a
fixed block size, and select the first K MVs that have the low-
est block-matching cost (e.g., SAD) for each block in the refer-
ence frame. However, this method obviously introduces subop-
timal MVs. It is most likely that these K−1 extra MVs will de-
grade the quality of the ultimate estimated intermediate frame.

Instead of using the above simple but naive approach, this
paper proposes to generate multiple MVs by using a set of
block sizes for block matching. The reason for employing
multiple block sizes in the block-matching process is that each
block size may be suitable for certain cases of video content
based on the following discussions.

It is well known that a very small block size (e.g., only one
pixel in the most extreme case or a 2-by-2 block in a less
extreme case) is not suitable for block matching because there
may exist many image patches in the reference frame that are
similar to the current image block. Therefore, a very small
block size for block matching is likely to introduce motion
ambiguity. In this sense, a large block size helps to reduce the
ambiguity in the motion optimization process and is therefore
preferred. On the other hand, it is widely recognized that a
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typical video may contain complex motion that cannot be
described by global translation. In other words, the motion
in different regions may vary and the boundary of each global
motion region can be complex. When a very large block size
is used for block matching, it is likely that only part of the
content in the current image block can be exactly matched
with the reference frame, no matter which translation vector
is tested. In this case, the selected motion is the compromised
result of different parts in the block. Therefore, a very large
block size for block matching is likely to introduce motion
inaccuracy. In this sense, a small block size helps to improve
the accuracy of motion in the motion optimization process and
is therefore preferred. To summarize the above discussions, it
is not easy to determine the optimal block size that can produce
the most accurate motion field via block matching.

Therefore, we propose a progressively reduced block-size
motion estimation (PRBME) scheme to generate multiple
motion fields. The whole process is completed in several
ME passes, and later ME pass uses smaller block size than
earlier ME pass. In the following, we take the ft+1, for
instance, to describe how to generate multiple motion fields
for the reference frames. Let ft−1 and ft+1 be the forward
and backward reference frame, and let ft be the intermediate
frame. Let

{
M × M, . . . , M/2N−1 × M/2N−1

}
be the used

block-size set, where N is the number of the ME passes. Let
x be the coordinate vector of a block. Let m̂t+1,i and m̂t,i be
the motion field of ft+1 and ft generated in the ith ME pass,
respectively. The PRBME procedure is performed as follows.

1) Initialization: Set i = 0 for the first ME pass.
2) ME for ft+1: Split ft+1 into nonoverlapping blocks of the

same size M/2i ×M/2i. For each block x ∈ ft+1 (blocks
are processed in raster-scan order), do the following
substeps.

a) Generate the MV predictor

PMVi (x) = median
{

m̂t+1,i

(
x

bi

+
( −1

−1

))
, m̂t+1,i

(
x

bi

+
(

0
−1

))
m̂t+1,i

(
x

bi

+
(

1
−1

))
, m̂t+1,i

(
x

bi

+
( −1

0

))
, m̂t+1,i−1

(
x

bi−1

)}
for i = 1, 2, . . . , K.

(22)

Here, bi = M/2i is the block size for block
matching in the ith ME pass. The first four MVs
in (22) are the MVs of the upper left, upper, upper
right, and left blocks of block x, respectively (note
that since the blocks are processed in raster-scan
order, these four MVs are already available). The
last MV in (22) is the MV estimated from an
earlier ME pass, i.e., the (i − 1)th ME pass. The
idea in (22) is that the motion field estimated in a
previous ME pass is used to constrain the motion
in a later ME pass. This helps to reduce the motion
ambiguity in later ME passes.

b) Block matching: Search for the best MV by mini-
mizing

JME (x,mv, i) =
∑

y∈	i(x) |ft+1 (y) −ft−1 (y+mv)| +
λ1 · |mv − PMVi (x)|2.

(23)

TABLE I

Trained Parameter Pairs (a, b) for the Linear Variance Model√
E[d2] = as + b in Different ME Steps

(i, l) (1, Fwd) (2, Fwd) (3, Fwd) (4, Fwd)
a 0.71003 0.78738 0.62221 0.71361
b 3.32907 3.57604 3.69838 3.78688

(i, l) (1, Bwd) (2, Bwd) (3, Bwd) (4, Bwd)
a 0.74137 0.87074 0.67078 0.77185
b 3.33214 3.97756 3.60738 4.17610

Here, 	i (x) is the set of pixel coordinate in block x in the ith
ME pass, and mv is the candidate MV. The first term in (23) is
the block-matching distance. The second term in (23) controls
the spatial consistency of motion field by the parameter λ1.
The optimal MV selected by (23) is stored in m̂t+1,i

(
x
bi

)
.

3) MV postprocessing for ft+1: For each block x ∈ ft+1,
nine MVs including MVs of the block x and x’s eight
neighboring blocks are checked, and the MV minimizing
the block-matching difference (i.e., SAD) is selected as
the final MV for x.

4) MV derivation for ft: For each block x ∈ ft , its MV is
derived as half the MV of its collocated block in ft+1,
i.e., m̂t,i (x) = m̂t+1,i (x) /2.

5) Predicting the intermediate frame: For each block x ∈
ft , its predicted block is generated as

pt,i (y) =
ft−1

(
y + m̂t,i (x)

)
+ ft+1

(
y − m̂t,i (x)

)
2

for all y ∈ 	i (x) .
(24)

Here, pt,i is the prediction frame of ft generated in the ith ME
pass. Note that there is also another way to derive prediction
for pixels in ft: place the estimated MV to the pixels of
ft where this MV crosses. However, it usually introduces
overlapped areas and holes that degrade the image quality,
and is therefore not used in this paper.

6) Check stop: Set i = i + 1. If i < N, go to step 2 for the
next ME pass. Otherwise, the whole PRBME procedure
is finished.

When generating motion fields for ft−1, similar procedure
is performed. We only need to switch the role of ft+1 and ft−1

in the above process. After PRBME is performed on both ft+1

and ft−1, there are K = 2N predictions produced for ft .
With the estimated motion fields of ft (x), we can estimate

the reliability of each motion trajectory, as discussed in Sec-
tion III-E. Knowing σt,i (x) and pt,i (x), as stated in (20) and
(21) in Section III-D, we can run the Bayesian FRUC and
generate the final estimation of ft (x).

V. Experimental Results

In this section, various experiments are conducted to eval-
uate the performance of our proposed FRUC scheme.

A. Experiment Settings

In the experiment, two resolutions CIF (352×288) and 720P
(1280 × 720) are tested, including CIF 30 Hz sequences Bus,
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TABLE II

PSNR (dB) Comparison of Different FRUC Methods for CIF and 720P Video Sequences

CIF
Football Bus Mobile Stefan Flower Highway Foreman News Average

3DRS 22.28 25.99 27.03 27.75 31.18 32.82 33.51 36.38 29.62
OBMC 22.80 27.29 28.14 28.89 31.74 33.09 35.08 37.19 30.53
MAAR 22.81 27.00 28.18 28.93 32.02 33.25 35.28 37.40 30.61
DualME 20.90 22.96 22.45 24.01 26.50 32.27 31.65 34.79 26.94
Proposed 23.23 29.32 31.75 29.52 33.09 33.70 35.59 37.85 31.76

720P
Spin Calendar City Harbor Night Sailormen Optis Shuttle Start Big Ships Average

3DRS 27.58 29.39 31.84 32.09 34.52 39.69 41.54 40.50 34.64
OBMC 28.26 30.60 32.38 31.52 35.58 40.23 43.19 40.76 35.32
MAAR 31.04 30.53 32.35 31.52 35.98 40.40 43.51 41.05 35.80
DualME 23.30 27.66 28.98 27.15 30.85 36.24 40.50 36.66 31.42
Proposed 35.39 33.19 32.72 32.85 36.34 40.51 43.42 41.08 36.94

Fig. 3. FRUC results for Mobile (12th frame). (a) Original. (b) 3DRS. (c) OBMC. (d) MAAR. (e) DualME. (f) Proposed.

Mobile, Flower, Football, Foreman, News, Stefan, and High-
way, and 720P 60 Hz sequences Night, Spin Calendar, City,
Harbor, Sailormen, Optis, Shuttle Start, and Big Ships. To
quantitatively measure the quality of the interpolated frames,
we remove the first 50 even frames and reconstruct them
from the first 51 odd frames for each sequence using FRUC
techniques, and then compare the reconstructed frames to the
original frames.

In our experiments, four FRUC algorithms are selected as
benchmarks, including the well-known 3DRS [2], OBMC [21],
MAAR (one of the state-of-the-art FRUC schemes) [23], and
DualME [15]. In the experiments, the motion search range for
MCI, OBMC, MAAR, and DualME is set to 17 × 17. The
ME block size used in these four benchmarks is 8 × 8. In the
proposed PRBME scheme, the block size varies from 32 × 32
to 4 × 4; therefore, size of the block size set is 4. λ1 in the

proposed ME criterion in (23) is set to 1. The parameter λ in
(20) and (21) is set to 2000 and T in (17) is set to 5 empirically.

In the following, we show the offline trained parameters
a and b for estimating σt,i (x), as discussed in Section III-E.
The trained parameters are listed in Table I, where i means
block size

(
32/2i

) × (
32/2i

)
is used, l = Fwd means ME for

ft+1, and l = Bwd means ME for ft−1. In the offline training,
CIF sequences Foreman, Tempete, Flower, and News are used.
We note that the parameters are quite stable, i.e., a varies
slight around 0.7 and b varies in the range 3.3–4.1. It turns
out that these coefficients can work well on other CIF and
720P sequences.

B. Performance Comparison

In this section, the proposed algorithm is compared with
four benchmarks both objectively and subjectively.
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Fig. 4. FRUC results for Bus (18th frame). (a) Original. (b) 3DRS. (c) OBMC. (d) MAAR. (e) DualME. (f) Proposed.

TABLE III

Comparison of Average Processing Time (s/Frame)

CIF
Football Bus Mobile Stefan Flower Highway Foreman News Average

3DRS 0.055 0.059 0.062 0.062 0.060 0.061 0.063 0.055 0.060
OBMC 0.262 0.252 0.268 0.241 0.227 0.211 0.222 0.196 0.235
MAAR 1.153 12.65 12.949 1.146 4.075 1.084 1.139 1.139 4.417
DualME 0.667 0.666 0.653 0.646 0.627 0.617 0.648 0.644 0.646
Proposed 1.263 1.141 1.089 1.109 1.097 1.122 1.103 0.981 1.113

720P
Spin Calendar City Harbor Night Sailormen Optis Shuttle Start Big Ships Average

3DRS 0.659 0.549 0.548 0.542 0.552 0.547 0.546 0.554 0.562
OBMC 2.182 2.175 2.263 2.080 2.185 2.044 1.914 2.038 2.110
MAAR 41.133 40.982 38.718 38.59 38.90 37.991 38.222 40.753 39.411
DualME 5.987 6.245 6.076 5.878 6.208 6.237 6.023 6.323 6.122
Proposed 10.521 10.362 10.478 10.567 10.053 10.418 10.441 10.367 10.401

The average peak signal-to-noise ratios (PSNRs) of the
50 interpolated frames are shown for each test sequence in
Table II. It can be observed that when compared with the best
one of 3DRS, OBMC, MAAR, and DualME, our proposed
FRUC scheme improves the results by at most 3.57 dB and
4.35 dB for the CIF and 720P sequences, respectively. The
proposed scheme shows its superiority on sequences contain-
ing different scales of motion where the prediction frames of
different MV fields can complement each other. For instance,
it improves the results on the Bus, Mobile, Flower, Night,
Spin Calendar, and City sequences substantially. However,
when certain scale of motion dominates the sequence, the
MVs in certain motion field are always more accurate than
those in other motion fields. In that case, the proposed scheme
achieves little improvement, e.g., on the News, Optis, Shuttle
Start, and Big Ships sequences. The average PSNR of different

algorithms on CIF and 720P sequences are also presented in
Table II. It can be seen that the proposed algorithm gains up
to 1.15 dB on CIF sequences and 1.14 dB on 720P sequences
over the MAAR scheme (which performs the best of the four
benchmarks).

The subjective quality comparison is shown in Figs. 3–6
for the CIF sequence Mobile and Bus and the 720P sequence
Spin Calendar and City. It can be observed from Fig. 3
that the numbers on calendar recovered by 3DRS, MCI and
OBMC, and MAAR contain many annoying artifacts. On
the other hand, the proposed scheme recovers these numbers
visually pleasantly. In Fig. 4, the “barrier” and the “statuary”
around the left boundary (both highlighted in red circle) are
interpolated with apparent errors by the four benchmarks,
while the proposed scheme recovers them gracefully. Likewise,
in Figs. 5 and 6, the textures are recovered with annoying
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TABLE IV

Effect of Using Multihypotheses for FRUC (dB)

CIF
Case Football Bus Mobile Stefan Flower Highway Foreman News Average

a) 23.23 29.32 31.75 29.52 33.09 33.70 35.59 37.85 31.76
b) 22.44 26.61 30.59 27.85 30.86 33.46 33.92 37.09 30.35
c) 22.72 27.11 31.00 28.64 31.65 33.79 34.86 37.33 30.89
d) 22.46 27.02 30.33 28.25 31.89 33.64 35.25 37.54 30.79
e) 21.82 24.14 30.14 27.24 32.63 33.28 35.22 37.66 30.27

720P
Case Spin Calendar City Harbor Night Sailormen Optis Shuttle Start Big Ships Average

a) 35.42 33.21 32.73 32.86 36.37 40.55 43.60 41.11 36.98
b) 35.29 33.40 32.15 31.53 35.86 40.28 43.59 40.86 36.62
c) 34.09 33.10 32.42 31.24 36.14 40.35 43.60 40.83 36.47
d) 33.74 32.64 32.49 30.39 36.24 40.43 43.61 40.94 36.31
e) 33.22 32.54 32.56 29.52 35.85 40.02 43.59 40.88 36.02

Fig. 5. FRUC results for Spin Calendar (second frame). (a) Original. (b) 3DRS. (c) OBMC. (d) MAAR. (e) DualME. (f) Proposed.

artifacts by the benchmarks schemes but are recovered very
well by our scheme.

Performance improvement of the proposed scheme mainly
attributes to the following factors. First, the multihypothesis
Bayesian FRUC framework can discriminate reliable predic-
tion pixels from unreliable prediction pixels, and use reliable
prediction pixels but suppress unreliable pixels. Second, the
proposed PRBME scheme can handle motion of variable sizes
of objects.

Table III presents the average processing time (s/frame)
of different FRUC methods on a typical personal computer
(3.00 GHz Intel Core Duo CPU, 4 GB memory). It can be
observed that the processing time of the proposed algorithm
is much longer than that of 3DRS, OBMC, and DualME, on
the other hand, the processing time of the proposed algorithm
is 74.8% and 73.6% shorter than that of MAAR. Although
the computational complexity of the proposed algorithm is

higher than several existing MC-FRUC algorithms, it achieves
much better quality than all four benchmark algorithms, thus
it can be a good choice when computing capacity is powerful.
On the other hand, the proposed algorithm can be speeded
up by making tradeoff between the performance and the
computational complexity. For instance, fast ME algorithm
can be adopted, the number of ME steps in PRBME can be
reduced, the forward and backward ME can be simplified to
single directional ME, and so on.

We also study influence of multihypotheses on PSNR to
understand its contribution more clearly. We present results
of the following five cases in Table IV: a) block-size set
{32 × 32, 16 × 16, 8 × 8, 4 × 4} is used; b) only block size
32 × 32 is used; c) only block size 16 × 16 is used; d) only
block size 8 × 8 is used; and e) only block size 4 × 4 is
used. It can be observed from Table IV that the scheme with
multiple hypotheses achieves the best results on both CIF
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Fig. 6. FRUC results for City (tenth frame). (a) Original. (b) 3DRS. (c) OBMC. (d) MAAR. (e) DualME. (f) Proposed.

sequences and 720P sequences. For the scheme using single
hypothesis, block sizes 16 × 16 and 8 × 8 work well for the
CIF sequences while block sizes 32 × 32 and 16 × 16 work
well for the 720P sequences. We can see that fixed matching
block size cannot adapt to sequences of different resolutions.
However, by fusing the estimations from multiple hypotheses
properly, the proposed method works effectively on sequences
with various resolutions and achieves the best results.

VI. Conclusion

In this paper, we proposed a multiple hypotheses Bayesian
FRUC scheme. In this scheme, to estimate the intermedi-
ate frame with maximum a posteriori probability, both the
temporal motion model and the spatial image prior model
were incorporated into the optimization criterion. Instead of
employing a single uniquely “optimal” motion field, multiple
“optimal” motion fields were utilized. To obtain the multiple
motion fields, a set of block-matching sizes was used and
the motion fields were estimated by progressively reducing
the size of matching block. The prediction frames gener-
ated by these multiple motion hypotheses were adaptively
fused by modeling the relationship between the disturbance
variance and the difference of reference pixels along the
motion trajectories. Experimental results showed that although
computational time of the proposed scheme is higher than
several existing FRUC algorithms, the proposed method can
significantly improve both the objective and the subjective
quality of the constructed HFR video.
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