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ABSTRACT

The structural similarity (SSIM) index has been found to be
a good indicator of perceived image quality. In this paper,
we propose a rate-SSIM optimization scheme for mode se-
lection in H.264/AVC video coding. To derive the Lagrange
multiplier based on the properties of input sequences, a novel
reduced-reference statistical SSIM model and a source-side
information combined rate model are established. The pro-
posed method is fully standard-compatible. Experimental re-
sults demonstrate that, compared with conventional rate dis-
tortion optimization coding schemes, the proposed scheme
can achieve better rate-SSIM performance and provide better
visual quality.

Index Terms— SSIM index, rate distortion optimization,
reduced-reference image quality assessment, Lagrange multi-
plier, rate-SSIM optimization

1. INTRODUCTION

Video codecs are primarily characterized in terms of the
throughput of the channel and the perceived distortion of the
reconstructed video. The fundamental issue in video coding
is to obtain the best trade-off between the rate and perceived
distortion. The process used to achieve this objective is
commonly known as Rate Distortion Optimization (RDO).
Mathematically, the RDO problem can be written as follows

min{D} subject to R ≤ Rc (1)

whereD is the perceived distortion for a given rate budgetRc.
This is a typical constrained optimization problem which can
be converted to an unconstrained optimization problem by

min{J} where J = D + λ ·R (2)

where J is called the Rate Distortion (RD) cost and the rate
R is measured in number of bits per pixel. λ is known as the
Lagrange multiplier which controls the trade-off between R
and the perceived distortion D.

In practice, imperfect distortion models such as Sum of
Absolute Difference (SAD) and mean squared error (MSE)
are used in most actual implementations. Recently, a lot of
work has been done to develop objective quality assessment

measures which more accurately reflect perceived image
distortion. Among these measures, the structural similar-
ity (SSIM) index [1], which is proved to more effectively
quantify the suprathreshold compression artifacts, has been
preferred due to its simplicity and efficiency. It was incorpo-
rated into motion estimation [2], mode selection [3] and rate
control [4] in hybrid video coding. However, the Lagrange
multiplier was derived experimentally in [2] and [3] so that
the properties of input sequences were ignored in the RDO
scheme. In [4], an SSIM motivated rate control scheme was
proposed based on an approximation R-D curve, while the
properties of the SSIM index were not fully exploited.

In this paper, we use SSIM to define distortion model and
propose a perceptual RDO scheme for mode selection. In par-
ticular, we incorporate a novel statistical reduced-reference
SSIM model and a source-side information combined rate
model in the RDO process to derive the Lagrange multiplier
adaptively. Consequently, the mode for H.264 coding is se-
lected by the SSIM index and the Lagrange multiplier.

2. SSIM BASED RATE DISTORTION
OPTIMIZATION

To incorporate the SSIM index into the RDO process, the RD
cost in (2) is redefined as

J = (1− SSIM) + λ ·R (3)

The spatial domain SSIM index [1] is based on similari-
ties of local luminance, contrast and structure between a ref-
erence image and a distorted image. Given two local image
patches x and y, the local SSIM index is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where µx, σx and σxy are the mean, standard deviation and
cross correlation between the two patches, respectively. C1

and C2 are used to avoid instability when the means and vari-
ances are close to zero. The SSIM index of the whole image
is obtained by averaging the local SSIM indices calculated
using a sliding window.

It is important to note that in the conventional RDO
scheme, the final coding mode is determined based on the
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Fig. 1. Illustration of using surrounding pixels to calculate
the SSIM index. Solid pixels: to be encoded; Hollow pixels:
surrounding pixels from the input frame. (a) Y component;
(b) Cb, Cr components.

residual information only, while the properties of the refer-
ence image are ignored. Unlike MSE, the SSIM index is
totally adaptive according to the reference signal [1].

The SSIM index is evaluated from overlapping blocks
obtained using a sliding window, while in the video cod-
ing framework we encode individual non-overlapped blocks
separately. To bridge this gap, we calculate the SSIM index
between the reconstructed macroblock (MB) and the original
MB with a larger window, as illustrated in Fig. 1. In case of
Y component, the SSIM index of the current 16×16 MB to
be encoded is calculated within a 22×22 block by a sliding
window. For 8×8 Cb and Cr components, 14×14 blocks are
used. In this way, the problem of discontinuities at the MB
boundaries can also be alleviated.

Finally, the SSIM indices of Y, Cb and Cr components
are weighted averaged to obtain a single measure of struc-
tural similarity. The weights of Y, Cb and Cr components are
defined as WY = 0.8 and WCb =WCr = 0.1 [5].

3. STATISTICAL SSIM AND RATE MODELS

From (3), the Lagrange parameter is obtained by calculating
the derivative of J with regarding to R, then setting it to zero
and finally solving for λ,

λ =
dSSIM

dR
=

dSSIM
dQ

dR
dQ

(5)

where Q is the quantization step. The equation above implies
that in order to calculate λ for the current frame, without ac-
tually encoding it first, we need to establish both SSIM and
the rate models.

SSIM is a full-reference (FR) measure that requires both
the reference and distorted images to compute, and thus can
not be directly used in this framework. Therefore, the SSIM
model is deduced by a reduced-reference (RR) quality assess-
ment algorithm which requires a set of RR features extracted
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Fig. 2. Relationship between SSIM and MRR for different
sequences.

from the reference frame and quantization process for quality
evaluation.

Motivated by the DCT domain SSIM index [6], to calcu-
late an RR-SSIM measure, we first divide the frame into 4x4
non-overlapping blocks and calculate the DCT transform of
each block. Furthermore, we divide the coefficients into sub-
bands. This is achieved by grouping the coefficients having
the same frequency from each 4x4 DCT window, which re-
sults in 16 subbands in the 4x4 DCT transform. Let σi be the
standard deviation of the DCT coefficients from the ith sub-
band of the original frames. The new RR distortion measure
is defined as

MRR = (1− D0

2σ2
0 + C1

)(1− 1

N − 1

N−1∑
i=1

Di

2σ2
i + C2

) (6)

whereN is the block size. Di is the MSE between the original
and distorted frames in the ith subband and can be modeled
by Laplace distribution of the residuals [7].

Because the design principles between MRR and SSIM
index are similar, MRR exhibits a nearly perfect linear rela-
tionship with SSIM, as shown in Fig. 2. More specifically, the
RR-SSIM estimator can be written as

Ŝ = α+ β ·MRR (7)

Before coding the current frame, the parameters α and β can
be estimated by two points on the line, which are (1,1) and the
estimated values of Ŝ and MRR from the previous frames.

The rate model is derived based on three observations.
First, the blocks for which skip mode is selected should not
be included in the rate model because the skipped blocks will
not be entropy coded [7]. Second, in H.264 the side informa-
tion (or header bits) may take a large portion of the total bits,
especially in low bit rate video coding scenario [8]. Third, the
dependent entropy coding would make the estimated entropy
value larger than the true source rate [7]. In this work, all
above mentioned observations are taken into consideration in
the development of the rate model.
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Fig. 3. The relationship between ln(R/H) and Λ · Q for
different sequences. (a) P frame, GOP structure: IPP; (b) B
frame, GOP structure: IBP.

We adopt an entropy model that excludes the bit rate of
the skipped blocks [7]:

H =(1− Ps) · [−
P0 − Ps
1− Ps

· log2
P0 − Ps
1− Ps

− 2
∞∑
n=1

Pn
1− Ps

· log2
Pn

1− Ps
]

(8)

where Ps is the probability of the skipped blocks, P0 and Pn
are the probabilities of transformed residuals quantized to the
zero-th and n-th quantization levels, respectively.

Supposing Λ to be the Laplace parameter of the trans-
formed residuals, a linear relationship between ln(R∗/H)
and Λ · Q is observed in [7], where R∗ represents the source
rate. Notice that for the same quantization step, a larger Λ in-
dicates smaller residuals, which corresponds to a larger pro-
portion of the side information. Interestingly, for total rate
R, there is also an approximately linear relationship between
ln(R/H) and Λ · Q, as can be seen in Fig. 3. Also, the re-
lationship is totally consistent with the effect of dependent
entropy coding and side information. Considering the depen-
dent entropy coding, the estimated entropy value should be
larger than the source rate and thus in high bit rate video cod-
ing ln(R/H) approaches zero. However, in the low bit rate
coding scenario, the side information plays a greater role and
the entropy should be smaller than the total rate, which leads
to a larger ln(R/H) because of the dominating effect of side
information, as illustrated in Fig. 3. Consequently, the final
rate model R can be approximated by

R = H · eξΛQ+ψ (9)

where the parameters ξ and ψ are not very sensitive to the
video content. For CAVLC and CABAC entropy coding
methods, ξ and ψ are set to be

ξ =

{
0.03 B frame

0.07 Otherwise
ψ =

{
−0.07 B frame

−0.1 Otherwise
(10)

4. EXPERIMENTAL RESULTS

To validate the accuracy and efficiency of the proposed
perceptual RDO scheme, we integrate our mode selection
scheme into the H.264/AVC reference software JM15.1. All
test video sequences are in YCbCr 4:2:0 format.

Table 1. MAE and PLCC between FR-SSIM and RR-SSIM
for different sequences.

Sequences GOP Structure PLCC MAE
Foreman(CIF) IPP 0.999 0.002
News(CIF) IPP 0.999 0.002
Mobile(CIF) IBP 0.999 0.004
Paris(CIF) IBP 0.999 0.003
Highway(QCIF) IPP 0.998 0.003
Suize(QCIF) IPP 0.998 0.004
Carphone(QCIF) IBP 0.997 0.006
Akiyo(QCIF) IBP 0.998 0.005

All 0.998 0.004

To verify the validity of our proposed SSIM model, we
compare the estimated (RR) and actual (FR) values of the
SSIM index for eight sequences with a set of various QP
values. The Pearson Linear Correlation Coefficient (PLCC)
and Mean Absolute Error (MAE) between FR-SSIM and RR-
SSIM are given in Table 1. The values suggest that the pro-
posed RR-SSIM model achieves high accuracy for different
sequences.

We compare the R-D performance of our proposed per-
ceptual RDO algorithm and the conventional RDO with dis-
tortion measured in terms of SSIM and PSNR. The common
coding configurations are set as follows: all available inter
and intra modes are enabled; five reference frames; one I
frames followed by 99 inter frames; high complexity RDO
and the fixed quantization parameters are set from 28 to 40.
The results of the experiments are shown in Table 2.

For IPP GOP structure, 14% rate reduction on average is
achieved in terms of SSIM index. When the GOP structure is
IBP, the rate reduction is about 8% on average. For the peak
gain, 17.23% rate reduction is achieved for Container. The
lower gain of IBP coding scheme could be explained by two
reasons. First, with the conventional RDO, a large percentage
of MBs in B frames have already been coded with the best
mode. Second, the parameter estimation scheme as proposed
in [7] is not very accurate for this GOP structure because the
frames of the same coding types are not adjacent to each other.
We have also compared the performance in terms of PSNR,
which is also obtained by weighted averaging the respective
values of Y, Cb and Cr components [7]. Because of the adap-
tivity of our proposed scheme, for some sequences such as
Salesman and Container, PSNR increases. However, on
average PSNR decreases because our optimization objective
is SSIM rather than PSNR.



Table 2. Performance of the proposed scheme (compared
with the original RDO technique).

Sequence ∆SSIM ∆R* ∆PSNR
Silent
(CIF)

IPP.. 0.0115 -14.62% -0.14dB
IBP.. 0.0064 -8.07% -0.25dB

Flower
(CIF)

IPP.. 0.0076 -14.34% -0.66dB
IBP.. 0.0034 -6.73% -0.55dB

Bus
(CIF)

IPP.. 0.0136 -14.71% -0.51dB
IBP.. 0.0081 -8.95% -0.62dB

Salesman
(QCIF)

IPP.. 0.0185 -17.09% 0.08dB
IBP.. 0.0096 -8.45% -0.15dB

Carphone
(QCIF)

IPP.. 0.0038 -6.89% -0.47dB
IBP.. 0.0008 -2.11% -0.67dB

Container
(QCIF)

IPP.. 0.0087 -17.23% 0.06dB
IBP.. 0.0049 -12.41% -0.26dB

Average
IPP.. 0.0106 -14.15% -0.27dB
IBP.. 0.0055 -7.79% -0.42dB

* ∆R in terms of SSIM.

Fig. 4 shows the original frame, H.264 coded frame with
the conventional RDO and H.264 coded frame with the pro-
posed RDO method. Since our proposed RDO scheme is
based on the optimization of SSIM, PSNR of our scheme is
lower while higher SSIM value is achieved. As can be seen
from Fig. 4, the quality of the reconstructed frame has been
obviously improved and more details have been preserved by
the proposed scheme.

5. CONCLUSION

We propose an RDO scheme for H.264/AVC video coding,
aiming for achieving the best rate-SSIM performance. The
novelty of our approaches lies in the adaptive Lagrange multi-
plier selection methods at the frame level, where we incorpo-
rated a new RR-SSIM estimation algorithm and a source-side
information combined rate model. Our experiments show that
the proposed scheme offers significant rate reduction while
keeping the same level of SSIM quality value. Visual quality
improvement is also observed when compared with conven-
tional RDO scheme.
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Fig. 4. Visual quality comparison between conventional and
proposed RDO schemes (the crop region is from the forti-
eth frame of Flower). (a) Original; (b) H.264 coded with
conventional RDO; Bit rate: 203.5 kbit/s, SSIM: 0.8710,
PSNR: 27.70dB; (c) H.264 coded with proposed RDO; Bit
rate: 194.25 kbit/s, SSIM: 0.8777, PSNR: 27.08dB.
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