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Abstract— In this paper, a new compressive sampling-based
image coding scheme is developed to achieve competitive coding
efficiency at lower encoder computational complexity, while
supporting error resilience. This technique is particularly suitable
for visual communication with resource-deficient devices. At the
encoder, compact image representation is produced, which is a
polyphase down-sampled version of the input image; but the
conventional low-pass filter prior to down-sampling is replaced
by a local random binary convolution kernel. The pixels of
the resulting down-sampled pre-filtered image are local random
measurements and placed in the original spatial configuration.
The advantages of the local random measurements are two folds:
1) preserve high-frequency image features that are otherwise dis-
carded by low-pass filtering and 2) remain a conventional image
and can therefore be coded by any standardized codec to remove
the statistical redundancy of larger scales. Moreover, measure-
ments generated by different kernels can be considered as the
multiple descriptions of the original image and therefore the pro-
posed scheme has the advantage of multiple description coding.
At the decoder, a unified sparsity-based soft-decoding technique
is developed to recover the original image from received mea-
surements in a framework of compressive sensing. Experimental
results demonstrate that the proposed scheme is competitive
compared with existing methods, with a unique strength of
recovering fine details and sharp edges at low bit-rates.

Index Terms— Low bit-rates image coding, multiple descrip-
tion coding, local random sampling, compressive sensing.

Manuscript received August 5, 2015; revised December 8, 2015,
February 3, 2016, and April 1, 2016; accepted April 9, 2016. Date of
publication April 14, 2016; date of current version April 29, 2016. This
work was supported in part by the Major State Basic Research Development
Program of China (973 Program) under Grant 2015CB351804, in part by
the National Science Foundation of China under Grant 61300110, Grant
61502122, and Grant 61402547, in part by the Fundamental Research Funds
for the Central Universities under Grant HIT. NSRIF. 2015067 and Grant HIT.
NSRIF. 201653, in part by the Macau Science and Technology Development
Fund under Grant FDCT/009/ 2013/A1 and Grant FDCT/046/2014/A1, and
in part by the Research Committee at the University of Macau under Grant
MRG007/ZJT/ 2015/FST and Grant MYRG2015-00056-FST. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Aljosa Smolic. (Corresponding author: Deming Zhai.)

X. Liu, D. Zhai, and D. Zhao are with the School of Computer Science and
Technology, Harbin Institute of Technology, Harbin 150001, China (e-mail:
xmliu.hit@gmail.com; zhaideming@gmail.com; dbzhaog@hit.edu.cn).

J. Zhou is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Macau 999078,
China (e-mail: jtzhou@umac.mo).

X. Zhang is with the Rapid-Rich Object Search Laboratory, Nanyang
Technological University, Singapore 639798 (e-mail: xfzhang@ntu.edu.sg).

W. Gao is with the National Engineering Laboratory for Video Technology
and the Key Laboratory of Machine Perception, Ministry of Education,
School of Electrical Engineering and Computer Science, Peking University,
Beijing 100871, China (e-mail: wgao@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2554320

I. INTRODUCTION

W ITH the recent advances in imaging sensor technology,
digital cameras have been constantly improved in terms

of image quality, spatial resolution and cost. As a result,
it becomes popular to integrate imaging ability into wireless
sensor networks. Such visual sensors collect and transmit crit-
ical visual information that characterizes physical phenomena
around them, leading to many emerging applications such as
visual surveillance of wild animals, vehicle traffic monitoring,
and mobile multimedia.

Although cameras integrated in wireless sensors are becom-
ing increasingly powerful, there still exist many obstacles.
Inexpensive wireless visual sensors are usually equipped with
batteries of limited capacity, and hence, cannot sustain heavy
computations involved in visual data compression and com-
munication. In addition, the energy provisioned for visual
sensors is not expected to be renewed throughout their mission,
because sensor nodes may be deployed in a hostile or unpracti-
cal environment. Storing raw visual data without compression
is clearly not an option, due to the limitation of storage
capacity. The only feasible solution is an asymmetric visual
codec design, in which the encoder is made computationally
simple and hence energy efficient, while shifting the heavy
computation burdens of retaining high-quality images to the
decoder side [1]. The heavy-duty decoding process can be
performed by powerful computers or perceivably in the near
future by cloud computing, upon receiving the compressed
visual data. Meanwhile, it is necessary to provide some error
resilience mechanism against instability of wireless channels.
In a nutshell, low encoder complexity, satisfactory compres-
sion performance in low bit-rates, and error resilience for
robust image transmission are the main design goals for
wireless visual communications.

In this work, we focus on still image compression for
resource-deficient wireless visual sensors. To meet the design
goal of light-duty encoder, theoretically, the approach could be
distributed source coding (DSC) [2], [3] or compressive sens-
ing (CS) [4], [5], as many researchers recently advocated. DSC
allows simple encoding and shifts the heavy complexity to the
decoder side through the mechanism of separately encoding
but jointly decoding. DSC has an inbuilt robustness against
channel losses, thanks to the duality between DSC and channel
coding. Song et al. [6] proposed a cloud-based distributed
image coding scheme. In their method, an input image is
reconstructed in the cloud using retrieved correlated images,
which serve as the side information (SI). The image is then
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compressed through a transform-domain syndrome coding to
correct the disparity between the original image and the SI by
an iterative refinement process. While this scheme performs
comparably with HEVC-intra coding at low bit-rates, it highly
relies on whether there are correlated images in the cloud.

The CS theory implies that it is possible to acquire relatively
few measurements of the signal in a linear fashion while
still permitting exact reconstruction via a complex recovery
process at the decoder. By unifying sampling and compression,
CS-based image coding techniques have received significant
interests recently [11]–[13]. However, up to now, the rate-
distortion (RD) performance of CS-based image coding
methods is quite disappointing compared with conventional
image coding standards. The main cause is the wide use
of a uniform scalar quantizer (SQ), which overlooks hidden
correlations between different subsets of CS measurements.
To alleviate this problem, Mun and Fowler [11] proposed to
conjunct SQ with differential pulse code modulation of the
block-based CS measurements, in which only the resulting
prediction residual is scalar quantized. Wang et al. [12]
presented a progressive fixed-rate SQ (PSQ) with binning that
enables the CS decoder to exploit hidden correlations among
measurements. However, even though the performance of
these methods improves significantly over the pure SQ-based
schemes, they can only match or slightly outperform JPEG
in some cases. Furthermore, all these CS-based image coding
schemes do not consider the error resilience ability to combat
packet loss in wireless transmission. Recently, Deng et al. [13]
suggested to combine the CS principle with multiple descrip-
tion coding (MDC), which permits a light-duty encoder as well
as a robust transmitter. However, this CS-based MDC scheme
dramatically changes the standardized code stream syntax.

In this paper, we develop a novel CS-based image coding
scheme via local random sampling (LRS), which achieves
state-of-the-art coding efficiency with lower encoder computa-
tional complexity, while still supporting error resilience. The
short version of this work was presented in [10]. The main
contributions of this paper are highlighted as follows:

1) Firstly, to obtain a light-duty encoder, we investi-
gate the problem of compact image representation in an
approach of compressive sampling in the spatial domain.
Different from previous down-sampling based image coding
schemes [14], [15], we replace the low-pass down-sampling
filter, such as Gaussian and box filters, by a w×w binary con-
volution kernel of random coefficients. As the latter is a broad-
band filter (see Fig. 1 to compare the spectrum responses of
random convolution and Gaussian kernels), it retains high-
frequency information in the down-sampled image and hence
leaves the decoder the possibility of reconstructing sharper and
clearer images than the low-pass pre-filters do.

Sparse sampling greatly reduces the encoder complexity,
since the down-sampled image is only a small fraction of the
original size. This property allows the system to shift the com-
putation burden from encoder to decoder, making our scheme
a viable asymmetric compression solution when the encoder
is severely resource-deficient. It is worth noting that the low
encoder complexity here refers to computational complexity,
rather than that involved for hardware implementation.

Fig. 1. Fourier spectrums of Gaussian kernel (left) and local random
convolution kernel (right).

2) Secondly, the proposed scheme naturally possesses the
advantages of MDC, and therefore, it permits robust transmis-
sion of image data. The down-sampled image generated by
LRS can be inherently considered as one description of the
original image. We can obtain a number of descriptions (≥ 2)
by using different local random sampling matrices. Moreover,
the corresponding multiple description (MD) decoding is car-
ried out in the well-known framework of compressive image
recovery, which is performed in the same way independently
with the number of available descriptions. At this point, when
used as a MDC scheme, a unique advantage of our method is
noteworthy: the unification of the central decoder and all side
decoders.

3) Thirdly, the proposed LRS strategy is flexible to be
incorporated with existing image coding standards. Since
natural images comprise large smooth regions, there still exist
statistical redundancies among locally sampled measurements.
Moreover, the sampled measurements remain the conventional
form of pixel grid, making the down-sampled image readily
compressible by any existing standard image codec.

4) Fourthly, we propose an effective sparsity-based soft-
decoding technique for CS image recovery at the decoder side.
Specifically, to alleviate the negative influence of compressed
and incomplete measurements, we propose the collaborative
sparse representation (CSR) method to explore the high-order
correlation among local patches in the process of dictionary
learning and sparse decomposition simultaneously. This novel
image restoration strategy gives the proposed soft decoder
its superior RD performance to other low bit-rates and
MD image coding methods.

The rest of the paper is organized as follows. Section II
provides an overview our compressive sampling based image
coding scheme. In Section III, we first briefly introduce
the CS theory, then detail the proposed LRS strategy. In
Section IV, the proposed sparsity-based soft decoding tech-
nique is described. Section V shows experimental results and
discussions about the behavior and properties of the new
image coding technique in comparison with others. Section VI
concludes the paper.

II. SYSTEM OVERVIEW

We depict the architecture of the proposed compressive
sampling based image coding system in Fig. 2. As stated
previously, our scheme is not only an asymmetric image codec,
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Fig. 2. Block diagram of the proposed LRS-based image coding system. The third party codec can be any image coding standards. In this work, we test
JPEG2000 and HEVC-Intra.

but also able to serve as a MDC codec. To avoid unnecessary
clutters, the system is illustrated for two descriptions. If both
descriptions are received, a high-quality reconstruction can be
obtained. While if one of them is lost, a lower-quality, but
acceptable, reconstruction can be decoded.

At the encoder side, the input image is pre-filtered by a
local binary convolution kernel of random coefficients, and is
then uniformly down-sampled to get a more compact repre-
sentation. Since the down-sampled image has the conventional
form of rectangular pixel grid, it can be fed directly to a third
party or standard image codec to further remove redundancy.
The proposed image compression system has an encoder with
lower computational complexity, since only a small fraction
of the original image is compressed, while shifting the
burden of achieving high coding performance to the decoder
side. Such a coding structure is somewhat similar to that
of DSC.

The decoder is a cascade of the straightforward hard
decoding (which is conventional standard image decoder) of
k ≥ 1 received descriptions and a sparsity-based reconstruc-
tion of the transmitted image using all the kW H local random
measurements of the image X, where W × H is the resolution
of the down-sampled images. This hard decoding process
prepares a set of kW H local random measurements of X,
and interfaces with a heavy-duty soft decoder that restores X
from these local random measurements. The soft decoding
is carried out in the well-known framework of compressive
image recovery, which is carried out independently with the
number of available descriptions. Therefore, when used as a
MDC codec, the proposed system unifies the central decoder
and all side decoders. It uses only one MD decoder that suits
all possible channel deliveries of the k descriptions.

In the following two sections, we will elaborate the pro-
posed LRS and sparsity-based soft decoding.

III. LOCAL RANDOM COMPRESSIVE SAMPLING

In this section, we first briefly review the CS theory,
and then introduce the proposed local random compressive
sampling strategy.

A. Compressive Sensing

The emerging CS theory [16], [17] challenges the
conventional practice of “oversampling followed by massive
dumping”. It has been enthusiastically promoted as a joint
sampling and compression approach. The advantages of
CS over conventional signal compression techniques are
architectural: the CS encoder is made signal independent and
computationally inexpensive by shifting the bulk of system
complexity to the decoder.

The CS theory reveals the possibility of reconstructing a
signal from a small number of random measurements, as long
as the signal is sparse in some domain. Denote X as the
image captured by a visual sensor, which can be stacked into
a vector x ∈ �N according to the lexicographical order. x is
said to be sparse in space �, if the transformation coefficients
α = �T x are mostly zero or close to zero. The sparsity
of x in � is quantified by the number of significant (nonzero)
coefficients K . The CS theory states that x can be perfectly
recovered from M = O(K log(N/K )) random measurements
y = �x, where � is a M × N measurement matrix [17].

The CS recovery of x from y can be formulated as the
following constrained optimization problem:

min
α

‖x‖1, s.t. y =�x, (1)

which can be further written as:

min
α

‖α‖1, s.t. y =��α. (2)
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After obtaining α by solving (2), the final reconstruction of x
is x̂ = �α. Since the matrix �� is rank deficient, the recovery
of x from y is an ill-posed problem.

In the current task of image coding, the process of quantiza-
tion will introduce compression noise into CS measurements,
that is:

ŷ = �x + n, (3)

where n is the vector of compression noise. One can relax the
equality constraint of (2) to the following formulation:

min
α

‖α‖1, s.t. ‖̂y−��α‖2
2 ≤ μ, (4)

where μ > 0 is a tolerance parameter.
One fundamental consideration in employing the above

model is the choice of the measurement matrix �. The most
commonly used family of measurement matrices consists of
fully dense random Gaussian/Bernoulli matrices. Their main
advantage is that they are universally incoherent with any
sparsity bases. What is more remarkable is that they satisfy the
Restricted Isometry Property (RIP) with high probability [17].
However, they inherently have one major drawback in practical
image compression applications: since the sampled measure-
ments are globally linear combination of the original signal,
they are completely unstructured. Therefore, it is hard to real-
ize and exploit the statistical redundancy in CS measurements,
making it difficult to further compress them.

B. Local Random Filtering

In conventional down-sampling based image coding meth-
ods [14], [15], the 2D low-pass Gaussian filtering is exploited
to avoid aliasing effect. However, the low-pass filtering dis-
cards all high-frequency information beyond the cut-off fre-
quency, leading to limited reconstruction quality (especially
the subjective quality) at the decoder side. From the CS theory,
we know that perfect reconstruction can still be achieved even
though aliasing occurs, provided that the signal is sparse.
A natural question arising is: why do we need to throw away
the high-frequency information at the pre-filtering stage?

In our method, we pursue more intelligent sparse sam-
pling; a local random filter is employed, keeping not only
low-frequency information, but also certain amount of high-
frequency information. Certainly, the aliasing problem will
occur, as the local random filter is not low-pass, as shown
in Fig. 1. Similar to the idea of CS, the aliasing problem
can be solved via the proposed collaborative sparsity-based
soft-decoding algorithm, which will be elaborated in the next
section.

Specifically, LRS is performed with a local binary convolu-
tion kernel of size w × w, which generates random measure-
ments Y of the input image X. We model the sampling process
as a series of inner products against different waveforms {φu,v}

Yu,v = 〈

φu,v , Xu,v

〉

, (5)

where φu,v of length w2 is a random sequence with each
element being an i.i.d random variable chosen from {0, 1}.
Xu,v of length w2 is the vector representation of the w × w
window of the original image centered at (2u, 2v). Yu,v is
further normalized to the pixel value interval [0, 255].

C. Uniform Downsampling

The local sampling window goes around the whole image
with a preset step, which determines the ratio of down-
sampling. Larger sampling step results in a lower-resolution
description, which costs lower bit-rate for compression; but
at the expense of worse reconstruction quality at the decoder.
In this work, in order to achieve good tradeoff between bit-
rate and reconstruction quality, the step is set as two pixels
so that every other row and every other column of pixels are
sampled. By stacking all random measurements in vector y
we can write the above equation in matrix form as:

y = �x, (6)

where � is the LRS matrix generated from {φu,v}.
Different from the global random sampling in conven-

tional CS, measurements generated by LRS still preserve
local structures of the 2D image signal. Therefore, the mea-
surements constitute a low-resolution image, which can be
compressed by any existing standard image codec.

D. Discussion

In this work, we only claim that the proposed LRS matrix
is helpful for CS-based image coding applications, in which
the compression of measurements is a critical factor affecting
the overall RD performance. Measurements generated by LRS
matrix preserve local image structures, and thus, can be
effectively compressed by a subsequent standard image codec.
In contrast, there is little correlation among measurements
generated by global dense random matrix, making it difficult to
further compress them. However, in general sense, we do not
claim that the LRS matrix is better than global ones. In fact,
for pure CS sampling and recovery problems, which do not
consider measurements compression, local random matrix is
suboptimal. This is because LRS requires more measurements
to satisfy RIP and lacks the universality compared with global
dense random matrices [18].

IV. SPARSITY-BASED SOFT DECODING FOR

COMPRESSIVE SENSING RECOVERY

The performance of the proposed LRS-based image coding
system is heavily dependent on the capability of designing
an effective decoding scheme, which attempts to maximize
the quality of the signal decoded. The reconstruction of x
from the set of received hard-decoded image(s) ŷ is an ill-
posed inverse problem, which is more difficult than general
CS recovery since the measurements are both noisy (due to
quantization) and incomplete (due to down-sampling). How
to generate robust image representations which can effectively
exploit priors in regulating solutions of the inverse problem,
is critical for boosting the performance of the proposed soft
decoding algorithm.

A. Adaptive Dictionary Learning

One popular technique to incorporate the prior knowledge
about images is via a so-called sparsity model, in which an
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image is approximated by a sparse linear combination of
elements in an appropriately chosen dictionary �:

x = �α + ε, (7)

where ε is the approximation error. In order to jointly exploit
the priors of the random convolution kernels � that produces y
and the dictionary � that sparsely represents the input image x,
the soft decoding problem is formulated as

arg min
{α,�}

‖̂y − ��α‖2
2 + λ ‖α‖1, (8)

where λ is a Lagrangian multiplier. The above formulation
leads to a nonlinear optimization problem. It can be made
linear and solved by alternatingly fixing one of α and � and
optimizing over the other.

From Fig. 2, it is easy to see that the derived measurements
from LRS still keep compact image structure. Therefore,
we can learn adaptive patch-based dictionaries from the
decoded image(s) directly. Specifically, using ŷ, we build a set
of M dictionaries {�m}1≤m≤M in a learning process, in which
each �m is associated with a pattern class of

√
d × √

d pixel
patches. Locally adaptive dictionaries are needed because
natural images typically exhibit non-stationary statistics,
consisting of many heterogeneous regions of significantly
different geometric structures or statistical characteristics.
To learn dictionaries {�m}, we classify extracted overlapping√

d ×√
d pixel patches of ŷ (or multi-scaled version of ŷ) into

M groups Sm , 1 ≤ m ≤ M , by k-means clustering [24]–[26].
Considering each group Sm as a set of samples generated
by �m , we perform the principle component analysis (PCA)
on Sm and let the resulting PCA bases be the words of
dictionary �m .

Within each subset, the informative structures dominate the
rare noisy structures introduced by quantization. Thus, by
learning the primary atoms of dictionary from the mass of local
features within the same subset, we can effectively alleviate
the negative influence of noisy features in sparse coding.

B. Collaborative Sparse Representation

After getting the dictionary, the following step is how to
derive optimal sparse codes of (8). In conventional standard
sparse representation, local patches are considered indepen-
dently. In our problem, however, this approach is not robust
since it neglects the influence of compression noises in sparse
decomposition, which are ubiquitous in hard-decoded image(s)
due to quantization. Such noises will contaminate the sparse
representation and consequently degrade the quality of soft-
decoded image. To alleviate the negative influence of com-
pression noises, we propose to exploit the correlation among
patches in order to suppress the interference of noises via
weakening their response on dictionary atoms.

As stated previously, in the process of dictionary
learning, we explicitly divide the extracted patches into dif-
ferent subsets. In each subset, the patches are ensured to be
highly correlated, and thus, the produced sparse codes of them
should be encouraged to activate on identical dictionary atoms.
In this work, we propose a collaborative sparse representation
strategy, which explicitly introduces a regularization term to

preserve the consistency of sparse codes for similar local
patches:

min{α} ‖̂y − ��α‖2
2 + λ

∑

i

‖αi‖1

+ γ

M
∑

m=1

∑

i, j∈Cm

∥

∥αi − α j
∥

∥

1Wi j , (9)

where λ and γ are regularization parameters; Cm is the
coordinates set of patches in the cluster Sm ;Wi j measures
the similarity between a pair of patches (̂yi , ŷ j ), which is
defined as:

Wi j =
⎧

⎨

⎩

exp

{

−‖̂yi−ŷ j‖2

σ 2

}

, σ > 0 if ŷi and ŷ j ∈ Sm

0, otherwise
(10)

where ŷi is a pixel patch in ŷ centered at pixel location i .
In the new regularization term of (9), �1-norm is used to

characterize the consistency of sparse codes. Through incor-
porating the consistency preservation term into the objective
function, the sparse codes of similar patches are derived col-
laboratively. Consequently, the response of noises is dominated
by true image features due to their rarity in compressed
images.

C. Optimization

Since Wi j becomes zeros for patches not belonging to the
same subset, the above optimization process can be performed
subset by subset. We use the subset Sm as an example to show
how to get optimal sparse codes. For Sm , the above objective
function can be rewritten as:

arg min
{αi }

⎧

⎪

⎨

⎪

⎩

∑

i∈Cm

‖̂yi − �m�mαi‖2
2 + λ

∑

i∈Cm

‖αi‖1

+ γ
∑

i∈Cm

∑

j∈Cm

∥

∥αi − α j
∥

∥

1 Wi j

⎫

⎪

⎬

⎪

⎭

(11)

where �m is the reorganized measurement matrix from �,
which contains the local random convolution kernels of pixels
in ŷi ∈ Sm .

The above objective function involves two �1 norms, making
it difficult to perform optimization. In practical implementa-
tion, we relax the objective function into the following form:

arg min
{αi }

⎧

⎪

⎨

⎪

⎩

∑

i∈Cm

‖̂yi − �m�mαi‖2
2 + λ

∑

i∈Cm

‖αi‖1

+ γ
∑

i

∑

j

∥

∥αi − α j
∥

∥

2
2 Ri j Wi j

⎫

⎪

⎬

⎪

⎭

. (12)

where we replace ‖αi − α j ‖1 with ‖αi − α j ‖2
2Ri j and Ri j

measures activated atoms response intersection of αi and α j ,
which is defined as:

Ri j = sum
(

s(αi ) ⊕ s(α j )
)

�
, (13)

Here, � denotes the cardinality of αi , and s(αi ) is a 0-1 vector,
whose element sk(αi ) = 1 if the k-th atom is activated. Also,
⊕ represents the operator of exclusive or (XOR).

We further define ̂Wi j = Ri j Wi j . Then, the addi-
tional regularization term in (12) becomes the well-known
graph-Laplacian form [31], [32]. We define the degree



LIU et al.: COMPRESSIVE SAMPLING-BASED IMAGE CODING FOR RESOURCE-DEFICIENT VISUAL COMMUNICATION 2849

matrix V = diag(v1, · · · , vl ), where vi = ∑

j
̂Wi j , and

L = V − ̂W as the Laplacian matrix. The regularization term
can then be written as:

∑

i

∑

j

∥

∥αi − α j
∥

∥

2
2

̂Wi j = Tr(ALAT ), (14)

which can be further expressed as:

T r(ALAT ) = T r

⎛

⎝

∑

i

∑

j

Li j αiα
T
j

⎞

⎠ =
∑

i

∑

j

Li j α
T
i α j ,

(15)

where A is the sparse codes matrix. With all the above
definitions, the optimization problem can be reformulated as:

arg min
{αi }

∑

i
‖̂yi − ��αi‖2

2 + λ
∑

i
‖αi‖1 + γ

∑

i

∑

j
Li j α

T
i α j .

(16)

where we drop the subscript of �m and �m for ease of
presentation.

Since computing Ri j involves operations of αi and α j ,
in this work, we adopt an iterative optimization strategy to
solve the above objective function. That is, the derived αi

and α j in the last iteration are used to compute Ri j in the
current iteration. Furthermore, in each iteration, instead of
directly optimizing all the sparse codes, we optimize each
code αi individually while keeping all the remaining sparse
codes α j ( j 	= i) fixed. When optimizing αi , we can get the
following optimization problem:

arg min
αi

f (αi )

= arg min
αi

⎧

⎨

⎩

‖̂yi − ��αi‖2
2 + γ Lii α

T
i αi + αT

i hi

+ λ
q
∑

j=1

∣

∣

∣α
( j )
i

∣

∣

∣

⎫

⎬

⎭

, (17)

where hi = 2γ (
∑

j 	=i Li j α j ), and α
( j )
i is the j -th coefficients

of αi .
The well-known feature-sign search algorithm [29] is

employed to solve αi . Firstly, we define

J (αi ) = ‖̂yi − ��αi‖2
2 + γ Liiα

T
i αi + αT

i hi , (18)

which implies

f (αi ) = J (αi ) + λ

q
∑

j=1

∣

∣

∣α
( j )
i

∣

∣

∣. (19)

In non-smooth optimizations, a necessary condition for
a parameter vector αi to be a local minima is that the
zero-vector 0 is an element of the subdifferential ∂ J (αi ), the

set containing all subgradients αi [30]. We define ∇( j )
i |αi |

as the subdifferentiable value of the j -th coefficient of
αi . If |α( j )

i | > 0, the absolute value function |α( j )
i | is

differentiable, therefore, ∇( j )
i |αi | is given by the sign(α

( j )
i ).

If α
( j )
i = 0, the subdifferentiable value ∇( j )

i |αi | is within the

set {−1, 1}. Therefore, the optimality conditions for achieving
the optimal solution of f (αi ) becomes

{

∇( j )
i J (αi ) + λsign(α

( j )
i ) = 0, if

∣

∣

∣α
( j )
i

∣

∣

∣ > 0

|∇( j )
i J (αi )| ≤ λ, if α

( j )
i = 0

(20)

Then, we consider how to select the optimal subgradi-
ent ∇( j )

i f (αi ) when the optimality conditions are violated,
i.e., when |∇( j )

i J (αi )| > λ if α
( j )
i = 0. Suppose that

∇( j )
i J (αi ) > λ. This means that ∇( j )

i f (αi ) > 0 regardless
of the sign of α

( j )
i . In this case, in order to decrease f (αi ),

it is desirable to decrease α
( j )
i . Since α

( j )
i starts at zero,

the very first infinitesimal adjustment to α
( j )
i will make it

negative. Accordingly, we let sign(α
( j )
i ) = −1. Similarly,

if ∇( j )
i J (αi ) < −λ, we let sign(α

( j )
i ) = 1.

To update sparse codes αi , supposing we know the signs

of {α( j )
i } at the optimal values, we can remove the �1-norm

on α
( j )
i by replacing each term |α( j )

i | with either α
( j )
i if

α
( j )
i > 0; or −α

( j )
i if α

( j )
i < 0; or 0 if α

( j )
i = 0. Therefore,

(17) can be reduced to a standard, unconstrained quadratic
programming (QP) optimization problem, which can be solved
by the linear system.

In the optimization, we maintain an active set

A 	= { j ||α( j )
i = 0, |∇( j )

i J (αi )| > λ} for potentially
nonzero coefficients and their corresponding signs θ while
updating each αi . Then, it searches for the optimal active
set and coefficient signs which minimize the objective
function (17). In each activate step, the algorithm uses
the zero-value whose violation of the optimality condition
|∇( j )

i J (αi )| > λ is largest. The algorithm proceeds in a series
of feature-sign steps: given a current value for the active set
and signs, it computes the analytical solution α̂new

i of the
resulting unconstrained QP optimization; then it updates the
solution, the active set and the signs using a discrete line
search between the current solution and α̂new

i .

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experimental results are presented
to demonstrate the superior performance of the proposed
LRS-based image coding technique. As stated previously, the
proposed method reduces the data volume by LRS, and hence,
permits an encoder with lower computational complexity.
Moreover, our method could be used as an effective low bit-
rates image coding scheme when the bandwidth of wireless
transmission channel is limited. In the case when there is a
requirement for robust transmission, our scheme can also serve
as a MDC scheme. Therefore, the following comparative study
includes three parts: RD performance comparison for low bit-
rates, MD image coding, and encoder complexity comparison.

For generality of our comparative study, we select five
images of size 256×256 widely used in the literature and one
additional image extracted from the first frame of Foreman CIF
sequence as the test set. These images are shown in Fig. 3.
In the paper, we restrict our attention to graylevel images. The
proposed scheme can be easily extended to compress color
images by independently processing luminance channel Y, and
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Fig. 3. Six test images.

chrominance channels U and V. In the following experiments,
the CDF 9/7 wavelet transform is used in JPEG2000. There
are some parameters that need to be clarified. The size of
local random kernel is set to w = 3. Note that it is difficult to
optimally determine two regularization parameters λ, γ , and
the parameter σ 2 in (10). In our work, we empirically set their
values. λ is set to 0.01 for all cases. γ is empirically selected
from {0.001, 0.01, 0.05} for different bit-rates. In addition,
σ 2 is fixed to 80. When performing the k-means classification,
the cluster number is initialized to 70 for each bit-rate.

A. Performance Comparison of Low Bit-Rates Image Coding

The RD performance of low bit-rates image coding is
examined first. In our comparative study, we test eight image
compression schemes:

1) The JPEG codec.
2) The Progressive Scalar Quantization (PSQ) based

codec [12], which is a state-of-the-art CS-based image
coding scheme.

3) The JPEG2000 codec.
4) The CADU algorithm coupled with JPEG2000

(CADU-J2K). The CADU algorithm is a state-of-the-art
down-sampling-interpolation based image compression
technique [15]. JPEG2000 is used to compress the
down-sampled images.

5) The proposed LRS coupled with JPEG2000 (LRS-J2K).
6) The HEVC-Intra codec.
7) The CADU algorithm coupled with HEVC-Intra

(CADU-HEVC). It is the counterpart of CADU-J2K
in which HEVC-Intra is alternatively used to compress
down-sampled images.

8) The proposed LRS coupled with HEVC-Intra
(LRS-HEVC).

The schemes 3), 4) and 5) constitute the JPEG2000-based
group, and the last three schemes form the HEVC-based group.

Table I tabulates the PSNR and SSIM results of the com-
pared codecs on six test images, against various bit-rates from
0.1bpp to 0.4bpp. Some table entries for JPEG at very low bit-
rates are marked with “-”, since the DCT-based JPEG cannot
operate at such low bit-rates. From Table I, we can see that
the PSQ algorithm works poorly. Its performance is worse than
JPEG2000 and HEVC-Intra by large margin. This observation
is consistent with the results in [12]: the PSQ algorithm just
matches or slightly outperforms JPEG for some test images.

In the JPEG2000-based compression group, the proposed
LRS-J2K method works better than the state-of-the-art

CADU-J2K on all bit-rates of all test images with respect to
both PSNR and SSIM criteria. For Butterfly, the PSNR gain
of LRS-J2K against CADU-J2K is up to 1.02dB (27.38dB
vs. 26.36dB), which is achieved when the bit-rate is 0.4bpp.
LRS-J2K also outperforms JPEG2000, when the bit-rate is up
to 0.4bpp, for test images Butterfly, Leaves, Bike, Foreman,
and Monarch. For Lena, while LRS-J2K produces lower PSNR
than JPEG2000 when the bit-rate is greater than 0.25bpp,
its SSIM performance is better than JPEG2000, implying
higher subjective quality. These results are encouraging since
JPEG2000 fed with images of the original resolution is
widely regarded as an excellent low bit-rates image codec.

In the HEVC-based compression group, the proposed
LRS-HEVC also outperforms CADU-HEVC for all cases. For
the test images Butterfly and Leaves, LRS-HEVC achieves
better performance than HEVC-Intra when the bit-rate is equal
to or greater than 0.25bpp. The LRS-HEVC method achieves
up to 0.49dB higher PSNR than HEVC-Intra (22.07dB vs.
21.58dB) when the test image is Butterfly and the rate
is 0.1bpp. The SSIM performance of LRS-HEVC is more
encouraging. For Leaves, the SSIM value of LRS-HEVC is
higher than that of HEVC-Intra even when the bit-rate is up to
0.4bpp. Note that, HEVC-Intra achieves higher compression
efficiency than JPEG2000 at the expense of higher encoder
computational complexity, as will be shown in Section V-C.
In this paper, we consider resource-deficient wireless visual
communications. We recommend to use JPEG2000 as the
third-party image codec when the wireless device has limited
power, since it achieves good tradeoff between computational
complexity and coding efficiency.

Besides the PSNR and SSIM performance, we also report
the perceptual quality comparison results. Fig. 4 illustrates the
the reconstructed images of compared methods. We omit the
results of JPEG and PSQ here, since their perceptual qualities
are poor, which can be reflected by their very low SSIM
values. In the JPEG2000-based and HEVC-based compression
groups, our method achieves the best subjective reconstruction
results among all compared methods. The proposed method
relies on LRS to preserve parts of high-frequency information,
and uses the powerful collaborative sparse representation to
obtain high-quality CS image recovery. In each group, the
advantage of the proposed method over the other two methods
in recovering sharp edges and fine details is significant. Our
method preserves edges well and reconstructs the original
image with better visual quality, whereas JPEG2000 and
HEVC-Intra produce noticeable visual artifacts (e.g., jaggies,
ringings and aliasing) in areas of edges and textures.
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TABLE I

PSNR (dB) AND SSIM RESULTS FOR DIFFERENT COMPRESSION METHODS

The CADU method ranks in the middle in visual quality, and
it also produces some ghosting and aliasing artifacts along
edges. It is worth noting that, in medium bit-rates, even though
the PSNR values are lower than HEVC-Intra, our method
produces much better subjective results.

B. Performance Comparison of MDC

In this subsection, we evaluate the performance
of our method as a MDC scheme. We choose the
following two image MDC techniques as the benchmarks:
spatial multiplexing MD (SMMD) using low-pass

prefiltering [19], and polyphase down-sampling transform
multiplexing (PDTM) [20]. All methods are tested for two
balanced descriptions, each of which is coded by JPEG2000
and transmitted over a lossy network independently of the
other. The description erasure probability p is the same for
the two descriptions.

In the proposed MDC scheme, when considering one
description, the RD performance of side decoder is exactly
the same as the one reported in the last subsection. Here, the
central RD performance (when both descriptions are received)
is further provided to demonstrate the superior performance
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Fig. 4. Subjective performance comparison of JPEG2000-based and HEVC-based groups when the bit rate is 0.3bpp for Butterfly. The corresponding
PSNR (in dB) and SSIM values are also given. Even though the PSNR is lower than that of HEVC-Intra, the proposed LRF-HEVC achieves better subjective
quality than HEVC-Intra.

Fig. 5. Comparison of three image MDC methods in PSNR values of central decoders versus the central rate. The central rate is two times of the side rate.
The JPEG2000 results are shown as the upper bounds.

of our method. Fig. 5 presents the fidelity-rate (PSNR vs.
central rate) curves of three compared methods and JPEG2000.
Since two balanced descriptions are considered, the central
rate is two times of the side rate. The results on six test
images: Butterfly, Leaves, Bike, Foreman, Lena and Monarch
are reported. In all test cases, the central decoder of our method
outperforms those of SMMD and PDTM. The improvements
over SMMD and PDTM are up to 1.2dB and 2dB, respectively.

The MDC algorithms achieve error resilience by introducing
redundancy, which is at the price of degraded RD performance.
In Fig. 5, the JPEG2000 results are shown as the upper bounds.
It should be noted that JPEG2000 does not own the advantages

of MDC in error-robust image transmission. In JPEG2000, the
whole image is coded into a single stream, without offering
MDC protection against packet losses.

It is also necessary to measure perceptual image quality of
MDC. As illustrated in Fig. 6, the proposed method appears
to have superior visual quality to its competitors. The image
produced by the proposed method is with better preserved
image structures and textures. Common compression artifacts
observed in SMMD and PDTM, such as jaggies along edges,
are substantially suppressed.

Furthermore, we compare the above three MDC methods
in term of average distortion versus the description erasure
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Fig. 6. Comparison of decoded Leaves images when both descriptions are received at total rate 0.6bpp. Left: PDTM; Middle: SMMD; Right: the proposed
method.

Fig. 7. Comparison of three tested methods in average PSNR (dB) versus the central rate (bpp), when p = 0.05.

probability p:

D̄(p) = (1 − p)2 Dc + 2 p(1 − p)Ds . (21)

Here p denotes the probability of description loss, which is
assumed to be equal for all descriptions. Dc and Ds are the
central and side distortions, respectively. Two cases p = 0.05
and p = 0.15 are examined, where we exploit PSNR metric to
measure Dc and Ds , and then the average distortion D̄(p) is
converted to average PSNR. As shown in Fig. 7 and Fig. 8, the
proposed method enjoys fairly large gains in average PSNR
against SMMD and PDTM.

As stated previously, at the decoder side, the recovery
algorithm is performed in the same way for any number of
available descriptions. It would then be interesting to show
how the reconstruction performance varies with the number
of descriptions. To this end, in Fig. 10, we demonstrate such
relationship for the number of descriptions ranging from 1 to 4.
As can be seen, the reconstruction performance tends to be
linearly improved with respect to the increasing number of
descriptions. This is consistent with the expectation of MDC:
the more descriptions received, the higher the reconstruction
fidelity.

C. Encoder Complexity Comparison

We now show the encoder running time comparison results
of our method with JPEG2000 and HEVC-Intra on six test
images. In this test, the proposed LRS-based image coding
algorithm employs JPEG2000 and HEVC-Intra as the third-
party image codec for measurements compression. The results
are average running times over seven rate conditions, which
are consistent with the test rates shown in Table I. For
evaluating the corresponding quality comparisons of compared
methods, please refer to Table I.

The compared methods are tested on a typical laptop
computer (Intel Core i7 CPU 2.6GHz, 16G Memory, Win10,
Matlab R2014a). For each image, we keep the bit-rates of com-
pared methods almost the same. As demonstrated in Fig. 9,
when JPEG2000 is used as the third-party image codec, the
computational complexity of our LRS-J2K scheme is much
lower than that of state-of-the-art image coding standards
JPEG2000 and HEVC-Intra. When HEVC-Intra is used as
the third-party image codec, the computational complexity of
our LRS-HEVC-Intra scheme is also much lower than that
of HEVC-Intra, and even lower than that of JPEG2000 on
some test images. It should also be noted that the decoder
complexity may not be a critical issue in our scheme. This is
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Fig. 8. Comparison of three tested methods in average PSNR (dB) versus the central rate (bpp), when p = 0.15.

Fig. 9. Encoder complexity comparison.

Fig. 10. The relationship between the reconstruction performance and the
number of descriptions.

because the heavy duty decoding process could be performed
by powerful computers or perceivably in the near future by
cloud computing platform.

VI. CONCLUSIONS

We developed an effective CS-based image coding tech-
nique of low encoder computational complexity, and a unified
decoder when applied as a multiple description coding scheme.
In order to recover high-frequency image structures even at
low bit-rates, the encoder generates compact image repre-
sentation(s) by polyphase down-sampling after broad-band

prefiltering of random convolution kernel. The decoder is an
image restoration process in a framework of CS recovery,
in which the collaborative sparse representation scheme is
developed to thoroughly explore high-order correlation among
local patches. Experimental results demonstrate that the new
image coding method has lower encoder complexity, at the
same time, outperforms existing image coding standards at
low bit-rates in RD performance, and has unique advantages in
perceptual image quality. When applied as a MDC scheme, our
method achieves better objective and subjective performance
than state-of-the-art MDC algorithms.
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