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ABSTRACT

For wireless scenarios where the channel condition fluctuates

unpredictably, a novel image/video communication scheme,

named SoftCast, was recently proposed to provide graceful

quality degradation and competitive performance simultane-

ously. Unlike conventional approaches, SoftCast decorrelates

input images by a transform and modulates the coefficients

directly to a dense constellation for transmission, leaving out

the conventional quantization, entropy coding and channel

coding. The transmission is lossy in nature, with its noise

level commensurate with the channel condition. To recon-

struct images from the received noisy data, SoftCast employs

a linear least-square estimator (LLSE), but it tends to produce

annoying reconstruction artifacts. This paper proposes a high-

quality image reconstruction algorithm for SoftCast, employ-

ing a collaborative estimator to utilize both the local corre-

lation and non-local similarity within images. Experimental

results show that the proposed method outperforms the ex-

isting SoftCast scheme, achieving remarkable improvement

in the objective and subjective qualities of the reconstruction

images.

Index Terms— Wireless video, SoftCast, image recon-

struction, non-local estimation, image prior model

1. INTRODUCTION

Traditional communication systems generally require the

channel condition to be known at the time of encoding, in

order to choose an appropriate coding rate. Once a signal is

coded and sent out, the decoding process tends to break down

if the actual channel quality falls below a threshold; if the

channel quality increases beyond that threshold, on the other

hand, such system cannot provide any further improvement in

the quality of received signal. This “threshold effect” brings
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great challenges for the design of wireless and mobile visual

communication systems.

Recently, a scheme named SoftCast [1–3] was proposed

for wireless video. Unlike typical image and video coders that

compress input signal into a binary stream, SoftCast trans-

forms the image signal into a stream of coefficient numbers

from which exact reconstruction is possible, leaving out the

conventional quantization and entropy coding. SoftCast also

abandons the conventional channel coding. Instead, it modu-

lates the number stream directly to a dense constellation for

transmission. The most prominent advantage of SoftCast is

that it provides graceful quality transition in very wide chan-

nel SNR range. In wireless broadcast scenarios, SoftCast can

serve various clients of different channel conditions simulta-

neously, using the same transmitted signal in the air. For this

reason, SoftCast has attracted much research attention in re-

cent years [4–12].

The transmission in SoftCast is lossy in nature and the

noise level in received data is commensurate with the instan-

taneous channel signal-to-noise ratio (SNR). To recover im-

age from the noisy data received at decoder side, prior knowl-

edge of the image should be exploited to reduce the influence

of channel noises. Linear least-square estimator (LLSE) is

employed in [1–3], but most channel noises remain in the re-

sults. To make things worse, the power allocation strategy

in SoftCast strives to maximize the transmission performance

measured by overall distortion, with a side effect that the re-

construction distortion is higher in low-frequency bands and

lower in high-frequency bands. For this reason, the artifacts in

the ultimate reconstruction images are usually very annoying,

especially when the channel SNR is relatively low.

This paper addresses the image reconstruction problem

for SoftCast. An intuitive solution is to apply a general pur-

pose image denoising algorithm (e.g. [13–20]) to the output

of SoftCast decoder. However, such denoising algorithm typ-

ically works well for additive white Gaussian noise (AWGN)

but cannot efficiently handle the residual noise produced by

SoftCast LLSE decoder. This paper proposes a new recon-

struction algorithm for SoftCast, which solves the decoding

and denoising problem jointly, employing a collaborative
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estimator to utilize both the local correlation and non-local

similarity within images. Experimental results show that the

proposed method outperforms the existing SoftCast scheme,

achieving remarkable improvement in the objective and sub-

jective qualities of the reconstruction images.

The rest of the paper is organized as follows. Section 2

reviews the SoftCast scheme briefly. Section 3 describes the

proposed reconstruction algorithm. Experimental results are

reported in Section 4 and Section 5 concludes the paper.

2. REVIEW OF SOFTCAST

2.1. SoftCast Transmission

The framework of SoftCast is illustrated in Fig. 1. Input

image is first decorrelated by a 2-D transform (e.g. DCT),

producing a stream of transform coefficients. The SoftCast

sender scales each coefficient individually, applies a Walsh-

Hadamard transform (WHT) to whiten the stream, and mod-

ulates the resulted numbers to a dense constellation (e.g. 64k-

QAM) for OFDM transmission. A pair of numbers from the

stream is mapped to a point in the constellation, using the two

numbers as the I- and the Q- components respectively, and

transmitted by one OFDM sub-carrier. The receiver gets a

noisy version of the stream due to channel noises. The scal-

ing operation serves the purposes of power allocation and un-

equal protection against noises. The scaling factors are deter-

mined by a power-distortion optimization (PDO) procedure

and shared between the sender and the receiver via a limited

number of meta data. See [1–3] for more details of SoftCast.
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Fig. 1. Framework of the SoftCast scheme [8].

2.2. Power-Distortion Optimization

Suppose x = (x1, x2, . . . , xN ) ∈ R
N are the coefficients to

transmit. To achieve efficient power usage, the encoder scales

each coefficient xi by a factor gi and sends out yi = gi · xi

directly using raw OFDM (WHT is ignored in this paper1).

After demodulation, the receiver gets ŷi = yi + ni, where

ni is channel noise. The decoder gets an estimation of xi by

x̂i = ŷi/gi.
2 In this process, the expected distortion in x̂i

1The Walsh-Hadamard transform for signal whitening can be ignored dur-

ing power-distortion analysis, because the forward or inverse WHT transform

of a white noise is still a white noise.
2The receiver may actually employ a linear least-square estimator (LLSE)

to derive x̂i, if σn is known [1–3]. However, this aspect is ignored by the

power allocation procedure since σn is unknown by the sender.

is Di = E[(x̂i − xi)
2] = σ2

n/g
2

i . The transmission power

for sending xi is Pi = E[y2i ] = g2i · E[x2

i ]. Therefore, the

distortion-power relationship is Di · Pi = σ2

n · E[x2

i ].
To achieve optimal performance, the transmission power

is allocated among the coefficients {xi} by minimizing the

overall distortion
∑

i Di subject to the total power constraint
∑

i Pi 6 Ptotal. The can be easily solved by setting ∂Di/∂Pi

of all i to be equal. This eventually leads to (see [7]):

gi ∝ (E[x2

i ])
−1/4

(1)

and Pi = c
√

E[x2

i ], Di =
1

cσ
2

n

√

E[x2

i ], where the constant c
is determined by the total power Ptotal.

2.3. Distortion Characteristics of SoftCast

It is well recognized that natural images typically contain

higher energy in its low-frequency bands (L-bands) but lower

energy in its high-frequency bands (H-bands). For this reason,

the above power allocation strategy brings two side effects in

the transmission signals and reconstruction errors. Firstly, the

gi in (1) is smaller for L-bands and larger for H-bands. In ef-

fect, the power allocation procedure scales down the L-bands

and scales up the H-bands, relatively. Secondly, the Di is

larger for L-bands and smaller for H-bands. That means the

reconstruction error has strong low-frequency components

and is not white.

To provide intuitive insight, Fig. 2 illustrates the images

at various stages of the SoftCast transmission procedure. Fig.

2(a) is the original image to deliver. Fig. 2(b) is the result

of power allocation, also the input to the OFDM channel (the

data is actually transmitted as a stream of transform coeffi-

cients but we show it in image domain). We see that Fig. 2(b)

looks like Fig. 2(a), but its low-frequency components are

attenuated. Fig. 2(c) is the output from channel, containing

AWGN noises. Fig. 2(d) and 2(e) are the reconstruction im-

age and error by SoftCast LLSE decoder, respectively. It is

clear that the error is annoying and not white.

3. THE PROPOSED RECONSTRUCTION SCHEME

The residual error produced by SoftCast decoder cannot be

handled efficiently by postprocessing using a general purpose

image denoising algorithm. In this part, we propose a scheme

to solve the decoding and denoising problem jointly.

Suppose u ∈ R
N is the original image, with the pixels

arranged in lexicographic order, x = Tu and y = Λgx are

the results of transform and power allocation, respectively.

Here T is the transform matrix and Λg = diag(g1, g2, ..., gN )
is the power allocation matrix. The transmission over noisy

OFDM channel can be formulated as

ŷ = y + n. (2)

The reconstruction scheme aims to find a proper estimate for

u, such that ΛgTu is close to ŷ. This is an inverse problem.
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(a) (b) (c) (d) (e)

Fig. 2. An example of SoftCast transmission. (a) Original image, (b) Input to OFDM channel ({yi} shown in image domain),

(c) Output from channel ({ŷi} shown in image domain), (d) Image decoded by LLSE, (e) Reconstruction error in (d).

3.1. The Choice of Image Prior Model

To obtain stable estimation and reduce the influence of chan-

nel noise, prior knowledge of the image should be incor-

porated into the reconstruction scheme. According to the

Bayesian rule, the maximum a posteriori probability (MAP)

estimation of u can be formulated as

min
u

1

2σ2
n

‖ΛgTu− ŷ‖
2

2
+Φ(u) (3)

where −Φ(u) = log Pr(u) is the log prior probability of u.

Various image prior models have been proposed in lit-

eratures. Some approaches assume that patches in the im-

age are sparse in transform domain, formulated by Φ(u) =
∑

k ‖Ψuk‖p. Here uk is image patch located at position k,

Ψ is decorrelation transform. Some other approaches assume

local smoothness in the image. For example, total variation

(TV) model assumes image gradients to be close to zero, for-

mulated by Φ(u) =
∑

i ‖Diu‖p where Di is gradient opera-

tor at position i.
To utilize both the local correlation and non-local simi-

larity, we employ an adaptive non-local collaborative sparsity

model. For each patch uk in the image, we search for a group

of similar patches Sk = {u1

k,u
1

k, ...,u
N
k } and organize them

into a 3-D data cube. We apply a 2-D PCA transform on

each patch and apply another transform (e.g. DCT) along the

third dimension. This forms an adaptive 3-D transform Tk for

decorrelating Sk. The proposed model can be formulated as

Φ(u) =
∑

k

‖ΛkTk(Sk)‖p (4)

where Λk = diag( 1

σk,1
, 1

σk,2
, ..., 1

σk,L
) and σk,i is the esti-

mated standard deviation for the ith element of Tk(Sk). The

Λk is adaptively estimated, similar to BM3D [19].

3.2. Overall Optimization Algorithm

The optimization problem (3) is complicated and difficult to

solve directly. However, it can be solved with the assistance

of variable splitting and augmented Lagrangian methods [21–

25]. By introducing an auxiliary variable z = u, problem (3)

can be reformulated as

min
u,z

1

2σ2
n

‖ΛgTz− ŷ‖
2

2
+Φ(u), s.t. z = u (5)

The augmented Lagrangian function for (5) is

J(u, z) =
1

2σ2
n

‖ΛgTz− ŷ‖
2

2
+Φ(u)

+
β

2
‖z− u‖

2

2
+ v

T(z− u) (6)

Here the Lagrangian variable v has the same dimension as u

and z. The problem (5) can be solved by an iterative algo-

rithm, minimizing (6) with respect to u and z and then up-

dating vT by vT ← vT − β(z − u) in each iteration. The

minimization of (6) can be easily handled by solving the fol-

lowing two sub-problems.

3.3. The u Sub-problem

With z fixed, the problem (6) is reduced to

min
u

Φ(u) +
β

2
‖z− u− v/β‖

2

2
(7)

This is exactly the classical MAP formulation of denoising

problem with AWGN noise. The solution is easily obtained

by applying the image denoising algorithm (using the regu-

larizer Φ(u)) to the virtual noisy image u′ , z − v/β, with

the standard deviation of noise on u′ set to σ =
√

1/β.

3.4. The z Sub-problem

With u fixed, the problem (6) is reduced to

min
z

1

2σ2
n

‖ΛgTz− ŷ‖
2

2
+

β

2
‖z− u− v/β‖

2

2
(8)

Since T is orthogonal, by introducing z′ , u+v/β, w , Tz
and w′ , Tz′, the solution to (8) can be obtained by

w =
(

ΛT
gΛg + βσ2

nI
)−1

·
(

ΛT
gŷ + βσ2

nw
′
)

(9)

and z = T−1w. The (9) can be calculated efficiently in a

component-by-component manner.
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Fig. 3. PSNR results comparison between the four SoftCast reconstruction schemes.

Fig. 4. Comparison of reconstruction images produced by different SoftCast reconstruction schemes (CSNR=2dB). From left

to right: (a) Original image, (b) SoftCast+LLSE, (c) SoftCast+BM3D, (d) the proposed scheme. Enlarge the figure for details.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of four schemes.

The first two schemes, SoftCast (w/o LLSE) and SoftCast (w

LLSE), are the original SoftCast decoder with LLSE turned

off or on, respectively. The third scheme, SoftCast+BM3D, is

the cascade of the original SoftCast with BM3D [19], a state-

of-the-art image denoising algorithm. We assume the stan-

dard deviation of residual error is known by the BM3D algo-

rithm. The fourth scheme is our proposed method described

in Section 3. The method in [8] is used for power allocation

in all these schemes. A large test images set is used, includ-

ing [26] and [27]. The channel SNR range is set to 0 ∼ 10dB.

Fig. 3 summarized the PSNR results for Lena, Peppers

and Sailboat. We see that SoftCast(w LLSE) has a gain of

0 ∼ 2dB (high at low CSNR but low at high CSNR) over

SoftCast (w/o LLSE). We also see that BM3D as a postpro-

cessing only provides very slight gain. The proposed scheme

outperforms other schemes by up to 3dB at low CSNR and up

to 2dB at high CSNR. The improvement in subjective quality

is illustrated in Fig. 4. It is clear that the proposed scheme

produces much clear reconstruction images.

5. CONCLUSIONS AND DISCUSSIONS

This paper addresses the image reconstruction problem for

SoftCast. Due to the power allocation strategy in SoftCast,

reconstruction error produced by LLSE decoder is not white

noise and cannot be easily removed by existing general pur-

pose denoising algorithms. We propose an algorithm to solve

the decoding and denoising problem of SoftCast jointly, uti-

lizing the local correlation and non-local similarity within

images simultaneously. Experimental results show that the

proposed method outperforms the original SoftCast scheme,

achieving remarkable improvement in the objective and sub-

jective qualities of the reconstruction images.
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