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ABSTRACT 

 

Most of the existing 3D video quality assessment methods 

estimate the quality of each view independently and then 

pool them into unique objective score. Besides, they seldom 

take the motion information of adjacent frames into 

consideration. In this paper, we propose an effective 

stereoscopic video quality assessment method which 

focuses on the inter-view correlation of spatial-temporal 

structural information extracted from adjacent frames. The 

metric jointly represents and evaluates two views. By 

selecting salient pixels to be processed and discarding the 

others, the processing speed is significantly improved. 

Experimental results on our stereoscopic video database 

show that the proposed algorithm correlates well with 

subjective scores. 

 

Index Terms—Stereoscopic video quality assessment, 

spatial-temporal structure, inter-view correlation, human-

visual system (HVS), asymmetric coding 

 

1. INTRODUCTION 

 

With the rapid development of 3D display technology, 3D 

video has entered the entertainment life of the public. Just 

by wearing a pair of glasses, people can enjoy the 

immersive feeling of stereoscopic films at the cinema or in 

front of a computer with three-dimensional display function. 

Compared with the traditional 2D video, 3D videos contain 

additional information and two eyes see different images at 

the same time. After binocular fusion, two views produce a 

single image and a sense of stereoscopic depth in the 

Human Visual System (HVS). The process of acquisition, 

coding, transmission and display may cause distortions with 

different types and intensities in the left and right views, 

which may result in different qualities sensed by HVS. 

Therefore, how to accurately evaluate the quality of 3D 

videos is an important problem worth exploring. 

As the final receptor of a video is human-beings, the 

most accurate and reliable method of the quality assessment 

is to use the scores rated by observers, which is called the 

subjective quality assessment. However, this method takes 

too much time, labor and money, and cannot be applied in 

real-time applications. In order to make up the shortcomings, 

the objective quality assessment method is used in practice, 

which estimates the quality by applying a quantitative 

mathematical model. A major issue is whether the results 

obtained are consistent with the subjective feelings. 

At present, stereoscopic image and video quality 

evaluation models can be mainly divided into two 

categories. The first category is assessing the quality of 

experience (QoE) or whether observers feel comfortable 

when watching 3D images and videos. An objective metric 

for stereoscopic crosstalk perception is proposed in [1] by 

considering the crosstalk level, camera baseline and scene 

content. In [2], the authors extract simple statistical features 

from both the disparity map and the spatial image and then 

select those which correlate well with the subjective scores 

using Principal Component Analysis (PCA) or Forward 

Feature Selection (FFS) to assess the quality of experience. 

The second category is to measure the degree of distortion 

caused by compression or coding. A no-reference objective 

quality assessment method aimed at JPEG coded 

stereoscopic images is introduced in [3]. It measures 

artifacts (including blockiness and zero-crossing) separately 

for blocks in the left and right views and evaluates the 

disparity between them. The work in [4] classifies pixels 

into edge, texture and smooth regions and assigns different 

weights to the local quality obtained by traditional 2D 

Image Quality Metrics (IQMs) of these regions and then 

averages between views. Wang et al. [5] proposed a stereo 

image quality assessment algorithm considering binocular 

spatial sensitivity. The algorithm takes Just Noticeable 

Difference (JND) values as the binocular spatial sensitivity 

of each pixel in the image pair and uses them as the weights 

to IQMs. In [6], the spatial frequency domain (SFD) 

information is extracted to estimate the quality of images 

coded asymmetrically. Perceptual quality metric (PQM) for 

2D videos is described in [7] and its application on 

stereoscopic videos rendered from color plus depth format 

using Depth-Image-Based-Rendering (DIBR) is addressed 

meanwhile. All of the above algorithms calculate the quality 

of both views separately and use different weighting 

strategies without considering the correlation between views. 

Jin et al. [8] find similar blocks between views to form 3D 

arrays. After applying 3D-DCT transform to each 3D array, 



they compute the modified MSE between the coefficients of 

the original and distorted blocks. Although the metric 

correlates well with subjective scores of four 3D video 

sequences according to [8], it does not take into account of 

the motion information of adjacent frames and depends on 

the performance of stereo matching which is time-

consuming thus cannot be applied in real-time applications. 

In this paper, we propose an effective stereoscopic 

video quality assessment method based on the spatial-

temporal structure (STS) metric. STS is previously used for 

2D videos quality evaluation in [9]. The metric constructs 

3D structure tensors which consider both edges in the 

spatial domain and motion in the temporal domain. 

Descriptors including eigenvalue and eigenvectors extracted 

from the 3D structure tensor are compared to evaluate video 

quality. We extend the STS metric to stereoscopic video 

quality assessment by constructing a joint descriptor which 

represents two views jointly without disparity estimation 

and considers inter-view correlation between 3D structure 

tensors of both views. Based on the joint descriptor, the left 

view is evaluated as the reference view in HVS and the right 

view is regarded as the auxiliary view. The distortion of the 

video is evaluated based on the difference between the joint 

descriptors of the distorted video and the reference video. 

The rest of the paper is organized as follows. In Section 

2, the STS metric used in 2D video quality assessment is 

described. The details of the proposed stereoscopic video 

quality assessment method are introduced in Section 3. 

Section 4 presents the experimental results. Finally, 

conclusion and future works are given in Section 5. 

 

2. SPATIAL-TEMPORAL STRUCTURE METRIC 

 

STS metric is proposed by Wang et al. in [9]. They apply it 

to predict the quality of conventional 2D video clips in 

LIVE database and VQEG FR-TV Phase-I database and 

find it not only robust to a variety of distortions appears in 

video but also of low computational complexity.  

The idea of STS is based on two widely accepted 

phenomenons of HVS. One is that edges are the basic 

features that arouse the greatest visual stimulation within a 

frame. In another word, degradation of edges in the spatial 

domain influences the perceived quality seriously. Another 

phenomenon is that motion along the temporal domain 

affects the quality mostly. Wang et al. think that motion can 

be represented by the position variation of edges between 

adjacent frames which would stretch out a plane along the 

motion trajectory. They set the direction perpendicular to 

the plane formed by spatial edge and its motion trajectory as 

the primary direction. Distortions within and between 

frames would change the localized spatial edge and motion 

trajectory respectively and finally resulting in a different 

primary direction. Therefore, the similarity between primary 

directions of corresponding pixels in the original video and 

the distorted video can reflect the visual quality. 

 

Fig. 1. 3D Sobel kernel for t direction [9]. 

 

Specifically, the STS metric firstly calculates the local 

gradients of each pixel along x, y and t directions using 3D 

Sobel kernels. The kernel for t direction is shown in Figure 

1 and kernels for x and y directions are acquired by rotating 

it. As can be seen from Figure 1, this step utilizes not only 

pixels around the central one in the current frame, but also 

both pixels in the same spatial regions of the forward and 

backward frames. 

Next, saliency of each pixel is computed according to 

the following equation [9]: 

  2 2 2  ( ) ( ) ( )sal p gx p gy p gt p                (1) 

where gx , gy and gt  are the local gradients of pixel p  

along x, y and t directions respectively. If both pixels at the 

same location in the original video and the distorted video 

have a great enough saliency value, they are marked as 

salient pixels. These salient pixels are more likely to be 

edge or motion regions which play important roles in HVS 

as previously discussed.  

The third step of the method is to generate 3D structure 

tensor from local gradients for each salient pixel and 

perform eigenvalue decomposition. The format of 3D 

structure tensor for a salient pixel p  is [9]:  

2

2

2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

W W W

W W W

W W W

str p g p g p

gx p gx p gy p gx p gt p

gx p gy p gy p gy p gt p

gx p gt p gy p gt p gt p

  

 
  

 
   
 
  
 

  

  

  

 (2) 

where W  is the local integration window. Jacobi method 

[10] is performed to decompose the largest eigenvalue and 

its corresponding eigenvector of the 3D structure tensor. 

The obtained eigenvector represents the primary direction 

mentioned above and the largest eigenvalue reflects the 

strength of variation along the direction [9]. After that, each 

salient pixel can be represented by a largest eigenvalue   

and its corresponding eigenvector ̂ . The eigenvector ̂  is 

a space vector as Equation (3). 
2 2 2ˆ , , ,    1x y t x y t                    (3) 

Then the similarity between 3D structure tensors of 

salient pixels in the reference video and the distorted video 

is calculated as Equation (4) as follows:  
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where p  and 'p  are corresponding salient pixels at the 

same location in the reference video and the distorted video 

respectively, ref and dis are the largest eigenvalues for 3D 

structure tensors of pixels p  and 'p  respectively, while 

ˆ
ref  and ˆ

dis  denote the corresponding eigenvectors.  

Finally, local scores for all salient pixels in every frame 

of the distorted video are averaged and thus produce a 

single score of the video. 

 

3. PROPOSED ALGORITHM 

 

In the proposed algorithm, the STS metric is applied to 

assess the quality of stereoscopic videos. The joint 

descriptor which takes into consideration of the correlation 

between two views is constructed and used to evaluate the 

video quality. Details of the proposed metric are described 

in the following sections. 

 

3.1. Representation of joint descriptor 

 

As discussed in Section 2, the eigenvector corresponding to 

the largest eigenvalue represents the local primary direction 

and the largest eigenvalue reflects the strength of variation 

along the direction [9]. In other words, eigenvectors 

indicate the directions of local variation of edge and motion 

information, while eigenvalues measure the intensities of the 

variation.  

Similar to the STS metric, an initial descriptor can be 

obtained for each pair of pixels at the same position in the 

left view and the right view. The format is: 

ˆ ˆ  , , ,initial L L R Rd                             (5) 

where L  and R are the largest eigenvalues of local 3D 

structure tensors of corresponding pixels in the left view and 

the right view respectively, ˆ
L and ˆ

R are the corresponding 

eigenvectors.  

From the initial descriptor, we construct a joint 

descriptor as follows: 

 t   , , , , ,join Rd X Y T                          (6) 

ˆ, , , ,L L L L L L L LX Y T x y t                    (7)                                       

where , ,X Y T   is the product of eigenvalue and 

eigenvector of the pixel in the left view as Equation (7), R  

is the largest eigenvalue of the pixel in the right view,   

is the orientation difference of ˆ
L  and ˆ

R  projected to the 

spatial domain (the xoy plane) and   is their orientation 

difference in the temporal domain (the yot plane). An 

illustration of how   and   are calculated is shown in 

Figure 2. Both of them are measured in radians. 
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Fig. 2. Illustration of the joint descriptor. ˆ

L and ˆ
R are the 

eigenvectors for pixels at the same position in the left view and the 

right view respectively.   is the orientation difference of ˆ
L  

and ˆ
R  projected to the spatial domain (the xoy plane).   is the 

orientation difference of ˆ
L and ˆ

R in the temporal domain 

(the yot plane). 

 

 
(a) The fourth frames of original left view and right view. Pixels 

located at the position of (116, 285, 4) are marked by a circle. 

 
(b)  Eigenvectors when QP  for      (c)  Eigenvectors when QP  for 

the left view equals to 0 and QP    the left view equals to 0 and QP 

for the right view equals to 0.        for the right view equals to 32.  

< R ,  ,  > =                            < R ,  ,  > = 

< 4.9x105, 0.083, -0.066 >.            < 5.4x105, 0.196, -0.017 >. 

 
(d)  Eigenvectors when QP  for      (e)  Eigenvectors when QP  for 

the left view equals to 0 and QP    the left view equals to 0 and QP 

for the right view equals to 42.      for the right view equals to 52.  

< R ,  ,  > =                            < R ,  ,  > = 

< 9.5x104, -0.198, -0.017 >.           < 4.3x104, 1.718, -0.017 >. 

 

Fig. 3. Illustration of Book Arrival [11] and eigenvectors of pixels 

located at (116, 285, 4) of the left view and the right view under 

different QP values. The dotted line is for the left view and the 

solid line is for the right view. R is the largest eigenvalue of the 

pixel in the right view.  and  are illustrated in Figure 2. 
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Fig. 4. Flow chart of the proposed method. 

 

As can be seen from Equation (6), the joint descriptor 

contains two kinds of information. The first three elements 

are features of the left view and the last three elements are 

features of the right view relative to the left view. We 

regard the left view as the reference view in HVS and the 

right view as the auxiliary view. Therefore, the features of 

the left view are constructed independently. However, the 

features of the right view contain the inter-view correlation 

information represented by orientation difference between 

eigenvectors of pixels in the left view and the right view. 

According to our test, the features of the left and right 

views correlate with the degree of distortion. For example, 

we encode the left view and right view of Book Arrival [11] 

(512x384) independently using the Joint Scalable Video 

Model (JSVM) reference software with different QP values 

(32, 42 and 52) and calculate the eigenvectors for each pixel. 

Figure 3(a) shows the 4
th

 frames of original left view and 

right view and Figure 3(b)-(e) shows the eigenvectors of 

pixels located at the coordinates of (116, 285, 4) under 

different QP values. Eigenvectors of the pixel in the left 

view are in dotted line and eigenvectors of the pixel in the 

right view are in solid line. The values of features of the 

right view used in the joint descriptor are also demonstrated 

in Figure 3. We can see that all of them change with greater 

QP values. This phenomenon confirms that the proposed 

joint descriptor can be used to evaluate quality. 

 

3.2. Similarity measurement 

 

Similarity of joint descriptors of pixels in the reference 

video and the distorted video is computed to get the quality 

score at the pixel level. We assume that the joint descriptors 

for pixels located at the same position in the reference video 

and the distorted video are: 
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The local quality of the pair of pixels is computed according 

to Equation (9), where Lq  donates the quality of the pixel in 

the left view and Rq donates the quality of pixel in the right 

view. Local quality q  equals to the product of Lq and Rq . 

As left view is regarded as the reference view in HVS, the 

quality of pixel in left view only considers the similarity of 

the first three elements in the joint descriptor which 

are X , Y and T . However, the quality of pixel in the right 

view considers both the similarity of eigenvalue Rq and the 

degree of change of inter-view correlation oriq . The latter is 

calculated as one minus the average of changes of   and 

 divided by their maximum value  , because we find 

that the values of changes of   and  increase with 

greater QP values as in Figure 3.  
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As can be seen from Equation (9), all of these terms are 

normalized to the range of [0, 1]. Greater value indicates 

better quality. 

 

3.3. Procedure of the proposed algorithm 

 

The process of the proposed algorithm is presented in 

Figure 4. 

First of all, gradient magnitudes are calculated for all 

pixels using the 3D Sobel kernel introduced in Section 2. 

Second, classify each pixel into salient pixel or non-

salient pixel. If the saliency calculated according to 

Equation (1) is greater than a predefined threshold (Th = 

900) for a certain pixel located at the coordinates of (x, y, t), 

all pixels located at the same positions in the original left 

and right views and the distorted left and right views are 

regarded as salient pixels. On the contrary, if none of the 

pixels located at the coordinates of (x, y, t) has a greater 

saliency value than the threshold, these pixels are all 

marked as non-salient pixels. 

Third, 3D structure tensors for each salient pixel are 

established. Eigenvalue decomposition is performed on 

each 3D structure tensor.  

From the above step, the initial descriptor can be 

obtained and then converted to the joint descriptor as 

mentioned in Section 3.1. 

In the next step, similarity of joint descriptors of salient 

pixels in the original video and the distorted video is 

computed as Equation (9) to get the quality score at the 

pixel level.  

Finally, we compute the video quality score as the 

average of the scores of every salient pixel in all frames. 

Each salient pixel has the same weight. 



4. EXPERIMENTAL RESULTS 

 

In order to test the performance of the proposed algorithm, 

we choose four stereoscopic videos to conduct subjective 

experiments. Details of the database and the performance of 

our metric compared with several previously proposed 

algorithms are presented below. 

 

4.1. Test sequences and subjective experiments 

 

Four stereoscopic videos in the format of uncompressed 

YUV 4:2:0 are chosen to establish our database. They are 

Poznan Street [12], Tsinghua Classroom, Balloons [13] and 

Pantomime [13]. The first frames of original left views of 

each sequence are illustrated in Figure 5 and more details of 

the sequences are demonstrated in Table 1. We cut all of 

these sequences into 250 frames and encode them using the 

Joint Multiview Video Model (JMVM) 2.1 software which 

is based upon the Joint Scalable Video Model (JSVM) 

reference software at different QP values (20, 30, 40 and 50) 

for both left views and right views independently and 

asymmetrically. Thus for each view, there are 5 distortion 

levels including the reference. For each sequence, there are 

25 (5x5) test sequences. Therefore, there are totally 100 

(5x5x4) stereoscopic video clips in our database. 

In the subjective experiments, all sequences are 

displayed on a computer with NVIDIA GeForce GTS 450 

display card and rendered by NVIDIA’s 3D Vision. 

Observers watch these sequences by wearing wireless 

glasses contacted to the IR emitter. 18 observers between 

the ages of 20-35 score all of the sequences on the five-

grade impairment scale using the single-stimulus (SS) 

method according to ITU-R BT.500-11 standard [14]. Each 

observer is trained to get familiar with the scoring scale 

before subjective experiments. To avoid visual fatigue, each 

observer rates 50 sequences for about 30 minutes without 

any break and then rates the remaining 50 sequences after a 

short rest of ten minutes. All video clips are displayed in the 

random order. By outlier detection [15][16][17], for each 

sequence, 2 observers are discarded and the remaining 16 

scores are averaged to obtain the final Mean Opinion Score 

(MOS) of our database. 

 

4.2. Results and analysis 

 

In order to evaluate the performance of proposed algorithm, 

we compare it with two widely used 2D quality metrics 

which are PSNR and SSIM [18], and three previously 

published 3D quality metrics including PQM [7], PHVS-3D 

[8] and SFD [6]. For 2D quality metrics, PSNR and SSIM 

[18] are calculated independently for left view and right 

view and then averaged to obtain the final objective score of 

stereoscopic video. PSNR value in the undistorted case is 

set to be 50 instead of positive infinity, because the 

maximum value under distortion circumstances is around 45  

 
 

Fig. 5. The first frames of original left views of all sequences in 

our database. 

 
Table 1. Information of original sequences 

Sequences  Resolution 
Frame rate 

(fps) 

View point 

Left Right 

Poznan street 1920x1088 25 4 3 

Tsinghua classroom 1280x720 25 0 1 

Balloons 1024x768 25 0 1 

Pantomime 1280x960 25 20 21 

 
Table 2. Performance comparison for considered metrics on the 

overall database 

Metrics CC SROCC RMSE BP 

PSNR 0.9091 0.9329 0.4618 3 

SSIM 0.8506 0.8731 0.5829 8 

PQM 0.8610 0.8935 0.5638 4 

PHVS-3D 0.7796 0.7832 0.6943 15 

SFD 0.6900 0.7049 0.8023 16 

Proposed  0.9488 0.9398 0.3500 0 

 

 
Fig. 6. The scatter plot of the MOS against mapped objective 

scores calculated by the proposed metric. 

 

in our database. For SFD [6], the threshold to MAD is set to 

be 50 in our experiments. We apply a nonlinear mapping 

between subjective scores and objective scores using a 4-

parameter logistic function as suggested by the VQEG 

Group as follows. 
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                      (10) 

Pearson correlation coefficient (CC), Spearman rank 

order correlation  coefficient  (SROCC),  root  mean  square  

error (RMSE)  and  the number  of  bad  point  (BP)  are  



computed between MOS and mapped objective scores. If 

the difference between mapped objective score and its 

corresponding MOS is greater than the standard deviation 

of all MOSs, the objective score is regarded as a bad point.  

Results on the overall database are listed in Table 2. It 

can be seen from Table 2 that the proposed algorithm 

outperforms the other metrics in all performance criteria 

with Pearson correlation coefficient equals to 0.9488 and 

SROCC equals to 0.9398. Although the PQM metric shows 

great alignment to MOS when applied to 3D videos in the 

format of color plus depth [7], it is not quite suitable for 

stereoscopic videos with binocular view. The PHVS-3D [8] 

metric does not perform well because the object motion in 

our database is faster than that in their own database. 

However, their algorithm does not take into account of 

motion distortion. An interesting fact in Table 2 is that the 

performance of the PSNR metric ranks the second. We find 

that its performance depends on the parameter settings in 

our experiments. As mentioned above, we set the maximum 

value of PSNR to be 50 in our experiments. Further trial is 

done to set greater values and the performance declines 

obviously. For instance, CC and SROCC equals to 0.8265 

and 0.8463 respectively when the maximum value of PSNR 

metric is set to be 80 in the undistorted case. 

Figure 6 shows the scatter plot of the MOS against 

mapped objective scores calculated by the proposed metric. 

It can be seen from the scatter plot that our metric correlates 

well with subjective scores. 

 

5. CONCLUSION AND FUTURE WORKS 

 

In this paper, we propose an objective quality evaluation 

method for 3D videos utilizing spatial-temporal structural 

information. The algorithm jointly represents and evaluates 

two views. In particular, we firstly select salient pixels 

based on the results of 3D Sobel filter. Then eigenvalues 

and eigenvectors are obtained from local 3D structure 

tensors of each salient pixel. Next, the similarity of joint 

descriptors constructed from eigenvalues and eigenvectors 

of pixels in the left view and the right view is calculated at 

the pixel level. Finally, all of the local scores are pooled 

into one global score. The experimental results show that 

our proposed metric correlates well with subjective quality.  

Future works could be done in two aspects. One is to 

explore an appropriate way to distinguish different degrees 

of the influence of salient pixels on HVS and thus improve 

the performance of proposed algorithm further. The other 

aspect is to extend the proposed metric to evaluate 

multiview videos in various disparities. 
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