Uncalibrated Photometric Stereo under Natural Illumination

Zhipeng Mo!  Boxin Shi*?* Feng Lu?

Sai-Kit Yeung!  Yasuyuki Matsushita’

nformation Systems Technology and Design, Singapore University of Technology and Design
2National Engineering Laboratory for Video Technology, School of EECS, Peking University
3State Key Laboratory of VRTS, School of Computer Science and Engineering, Beihang University
4Graduate School of Information Science and Technology, Osaka University

Abstract

This paper presents a photometric stereo method that
works with unknown natural illuminations without any cal-
ibration object. To solve this challenging problem, we pro-
pose the use of an equivalent directional lighting model for
small surface patches consisting of slowly varying normals,
and solve each patch up to an arbitrary rotation ambiguity.
Our method connects the resulting patches and unifies the
local ambiguities to a global rotation one through angular
distance propagation defined over the whole surface. Af-
ter applying the integrability constraint, our final solution
contains only a binary ambiguity, which could be easily re-
moved. Experiments using both synthetic and real-world
datasets show our method provides even comparable results
to calibrated methods.

1. Introduction

Given a Lambertian object illuminated by three non-
coplanar directional lightings, surface normals of an object
could be estimated by photometric stereo [30]. The pixel-
level details of surface normal estimates are of great interest
for applications in 3D computer vision.

The classic setup has two assumptions on lighting — di-
rectional and calibrated lighting — restricting the applica-
bility of conventional photometric stereo. The directional
lighting model assumes a point light source placed far away
from the target object, and typically requires the data cap-
ture to be conducted in a dark lab setting. The calibrated
lighting assumption needs an external step for measuring
both lighting intensities and directions. If the former as-
sumption is relaxed, the problem becomes calibrated photo-
metric stereo under natural illumination; while relaxing the
latter assumption leads to uncalibrated photometric stereo
under directional lighting. The difference between natural
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Figure 1. Natural lighting vs. directional lighting.

and direction lighting is shown in Fig. 1. Generalizing cali-
brated and directional lighting assumptions at the same time
will make the problem rather complicated, since there is
a high-dimensional linear ambiguity which cannot be fully
removed [0]. A fully calibration-free method is desired be-
cause it will push photometric stereo from the lab to the
wild environment; however, it is still a challenging task.

In this paper, we propose a solution to uncalibrated pho-
tometric stereo under natural illumination. We develop a
“divide and conquer” approach to first “divide” the problem
into tractable sub-problems with locally resolvable ambigu-
ity, and then “conquer” them jointly by merging all sub-
results as the final output. Our key observation is that for a
small surface patch with slowly varying normals, the vis-
ible hemisphere of environment map also shows smooth
changes. Under this assumption, the environment lighting
could be approximated as an equivalent directional light-
ing by summing up all samples on the visible hemisphere
for that patch. Then for each patch, we solve uncalibrated
photometric stereo under directional lighting assumption to
a patch-wise rotation ambiguity. We further combine the
patch-wise solution to construct the normal map for the
whole surface through angular distance propagation and
matrix completion up to a unified global ambiguity, which
could be finally reduced to a binary ambiguity through inte-
grability constraint. Our pipeline is illustrated in Fig. 2.

The main contributions of this paper are twofold: 1) We
explore the equivalent directional lighting model to solve
patch-wise surface normal up to local ambiguities, without
using calibrated information of environment maps; 2) we
propose the angular distance matrix and the corresponding
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Figure 2. Complete pipeline of our method.

propagation method using shortest path search and comple-
tion method to connect the patch-wise solution as a com-
plete normal map up to a global rotation ambiguity.

Our final solution only contains a binary ambiguity, and
to the extend of our knowledge, this is the first method deal-
ing with photometric stereo under natural illumination with-
out relying on any calibration objects and producing accu-
rate results with the minimum inherent ambiguities.

2. Related Work

There are two major restricting assumptions that need to
be relaxed for photometric stereo [30] to be applied to prac-
tical applications — calibrated directional lighting assump-
tion and Lambertian reflectance assumption. Correspond-
ingly, to make photometric stereo work in more realistic
scenes, there are two directions to generalize the conven-
tional approach — generalization of lighting assumption and
generalization of reflectance model. This paper focuses on
the former problem, thus both calibrated and uncalibrated
photometric stereo methods with non-Lambertian objects
(e.g., [4, 20, 17, 26, 8]) are beyond the scope, and we refer
the readers to [27] for a comprehensive review and compar-
ison of non-Lambertian photometric stereo methods.

Calibrated, directional lighting: The calibrated Lam-
bertian photometric stereo with directional lighting assump-
tion is the most classic setup. The first photometric stereo
work [30] and its robust extensions rely on these assump-
tions. Various robust approaches have been proposed to
eliminate deviations from the classic model by treating
the corrupted measurements as outliers, such as Random
Sample Consensus (RANSAC) [19, 28], median-based ap-
proach [18], low-rank matrix factorization (Robust-PCA)
[31], and expectation maximization [32].

Calibrated, natural lighting: Natural illuminations can
be calibrated directly by using a mirror sphere as a light
probe or indirectly by approximating sunlight as a dominant
directional source. With mirror sphere measured environ-
ment maps, Yu et al. [35] show photometric stereo result by
directly sampling the captured natural illumination. Acker-
mann et al. [2] implement photometric stereo for outdoor

webcams using a time-lapse video, and Abrams et al. [1]
show the necessity of using images taken over many months
(thousands of images) for sufficiently observing illumina-
tion variations. Jung et al. [16] develop parameterized sun
and sky lighting models to apply photometric stereo under
outdoor illumination captured in one day. Hold-Geoffroy et
al. [15] recently analyze that outdoor observations recorded
within a few hours could also constrain a reliable normal
estimation.

Uncalibrated, directional lighting: Photometric stereo
without calibrated lighting as known input is called uncali-
brated photometric stereo. Even if the lighting assumption
is directional lighting, the solutions to both surface normal
and lighting are not unique due to some inherent ambigui-
ties. The shape (or lighting) can be estimated uptoa 3 x 3
linear ambiguity [12], and this ambiguity could be further
reduced to a 3-parameter General Bas-Relief (GBR) ambi-
guity for integrable surfaces [7, 36]. Recent works mainly
focus on estimation of the 3 unknowns to obtain final nor-
mal estimates, by using priors on albedo [5, 25], detecting
local maximum diffuse points [ 1], or reflectance symme-
try [29, 33]. If multiview inputs are available, the directionl
lighting directions could also be indirectly estimated, and
photometric constraints are used to refine the shape [13, 14].
The lighting can also be semi-calibrated with directions be-
ing provided and intensities remaining unkown [9].

Uncalibrated, natural lighting: This is the most diffi-
cult category for Lambertian photometric stereo since the
lighting assumption is general and unknown. Given only
single-view images, the natural illumination could be ap-
proximated using spherical harmonics. However, there is a
9 x 3 (= 27 unknowns) linear ambiguity in estimated sur-
face normals for second order spherical harmonics repre-
sentation [6]. And unfortunately, this high-dimensional am-
biguity cannot be completely removed without additional
information. For example, Shen and Tan [23] can only ob-
tain sparse surface normals without additional calibration.
A coarse geometry prior from multiview information can
be used as a ‘proxy’ for measuring natural lightings us-
ing sparse normals [3], resolving high-dimensional ambi-
guities [24] from [6], or even estimating general isotropic



reflectance [21].

Comparing to existing photometric stereo methods under
natural lighting, our method has three major advantages: 1)
Since it is a purely uncalibrated method, we do not need
either coarse geometry [3, 24] or a mirror sphere [35, 16,

] to calibrate the shape or light; 2) Our solution contains
the least ambiguity comparing to any existing method, i.e.,
only a binary convex/concave ambiguity exists, which could
be easily removed by hand; 3) In terms of data acquisition
complexity, our method only needs about 10 images, which
is much fewer than webcam-based[2, |] or Internet-images-
based method [3, 24].

3. Equivalent Directional Lighting Model

Our method is based on the Lambertian image formation
model under natural illumination. We assume the camera
is radiometrically calibrated or has a linear response, so the
pixel brightness equals to the radiance of the scene. When
cast shadow (self occlusion) could be ignored, given a sur-
face point with Lambertian albedo p and surface normal
n = [ng,ny, n,]" €R3*>1 its pixel brightness is written as

b= /pL(w)max((nTw),O)dw, (1)
Ja

where w € R3*! is a unit vector of spherical directions 2,
and L(w) is the lighting intensity from direction w.

For any normal ny, it uniformly receives illumination
from direction w sampled on the visible hemisphere of the
environment map ;. Then for any w €  satisfying
n'w > 0, we may perform the spherical integration over
;. to obtain

br = pn; / L(w)wdw = pn} 1. )
Ja,

1, denotes an equivalent directional lighting as the inte-
gral of all samples in €, and the subscript &k indicates
that for different surface normals, they face different vis-
ible hemispheres corresponding to different equivalent di-
rectional lightings. Note here n is a unit vector, but I is
not necessary of length one since it encodes intensity scaled
directional lighting direction.

We assume the natural illumination does not show abrupt
changes if the surface normal is slowly varying for a small
surface patch. This is reasonable because the environment
map is nothing than a natural image, which is smooth in
local areas. Based on this assumption, we could define
a surface normal patch A, in which the surface normals
show small difference (ny ;,n; ;) < J, where (-,-) mea-
sures the angular distance between two surface normals,
ie, (ny;,ng;) = arccos(ny,,ng ;). Then for such a
patch, all normals should share approximately the same vis-
ible hemisphere €2, as well as 1, so their brightness could

Figure 3. Illustration of environment lighting approximation. We
extract patches of different areas from a sphere normal, indicated
as concentric gray circles with varying radii. For each normal
patch, we draw the equivalent directional lighting directions (dot
on spheres) and intensities (red means strong while black means
weak) for three different environment maps (figures courtesy of
[10]). For patches with relatively small areas (radius < 10), the
summed up environment map samples are quite concentrated at
nearby locations to approximate directional lighting.

be calculated using Eq. (2), as illustrated in Fig. 2. Simi-
lar lighting representation has been denoted as mean light
vector in a per-pixel manner [15] for analyzing calibrated
outdoor illumination.

We illustrate and verify our lighting assumption using a
synthetic experiment. Given a surface normal, we calculate
its equivalent directional lighting by summing up all sam-
plings on its visible hemisphere of environment map, and
draw the intensity and direction of such a lighting vector on
the sphere as shown in Fig. 3. We use a sphere normal map
of 256 x 256 pixels (the radius of the sphere is 128 pixels
in the image domain) rendered with three light probes from
[10] to illustrate this. By selecting central patches with ra-
dius of {1,10,30} pixels (indicated as gray circles)', the
equivalent directional lightings distribute more scatteredly
with increasing patch sizes and normal variations. For rel-
atively smaller patches (radius < 10, around 300 pixels),
the lighting vetors are highly concentrated, which makes
it safe for us to apply directional lighting assumption in a
patch-wise manner. In the following computation, we nei-

!When the radius is 1 pixel, 6 pixels on the sphere normal map are se-
lected as one patch. So the equivalent directional lightings are not perfectly
overlapped.



ther know the direction and intensity of equivalent direc-
tional lightings nor solve them explicitly, while we develop
an uncalibrated photometric stereo method to directly solve
for surface normal.

4. Normal Estimation Method

Considering a photometric stereo image sequence, with
Q different environment maps, each patch N} (k =
{1,2,..., K}, where K is the total number of patches) is
illuminated by Ly = [lg.1,lg2, - ,lx.o] different equiv-
alent directional lightings. Denote the matrix stacking all
surface normals n' € R'*3 in patch N}, in a row-wise
manner as N, then the image brightness of patch A}, de-
noted as By, could be written as the following matrix rep-
resentation

Bix,x@ = Nix, x3bligsxo; 3)

where K, is the total number of pixels in patch Nj. This
representation is different from spherical harmonics for nat-
ural illumination, where a high-dimensional matrix decom-
position (9D decomposition for a second order spherical
harmonics) exists with unknown lightings [0, 24]. By di-
viding the whole surface A into K small patches N' =
N1 UMN> U -+ U N, the equivalent directional lighting
model in each patch allows us to use the conventional direc-
tional lighting based formulation, which is a simple 3D de-
composition. Such a problem is a well studied research area
with tractable solutions (‘uncalibrated, directional lighting’
methods in Sec. 2). In the following, we will discuss how to
solve surface normal for each patch first and then connect
them to obtain normal for the whole surface.

4.1. Solving normal for each patch

According to Eq. (3), for each patch N, the problem
approximately becomes the Lambertian photometric stereo
under directional lighting. So we perform SVD on By, as it
was done in classic uncalibrated photometric stereo meth-
ods [12]. The SVD decomposition gives us By, = UXV T,
where in ideal case 3 only contains three non-zero diago-
nal elements. We further denote Nk = UVX and I:k =
VEVT, where Nk and L & are pseudo surface normal and
pseudo equivalent directional lighting for each patch. Here,
both the normal and lighting solutions contain an unknown
3 x 3 ambiguity, denoted as Q, since any invertible matrix
can be inserted between N, and Ly, to maintain the equality.

Since we work on small patches, it is safe to assume a
piece-wise continuous albedo, so that the pixels within each
patch have roughly the same albdeo. Then we can build a
linear system to force the patch-wise uniform albedo con-
straint as

INE:iQil = NeiQeQU N[, = a, )

Normal space

Figure 4. Angular distance propagation through shortest path.

where N, ; € R is the i-th (i = {1,2,..., K3}) row
vector of N, and « is the unknown albedo for that patch.
Without losing generality, we set a = 1, so we need at least
6 pixels (QkQ;'; is symmetric) [12] with different normals
to solve the above linear system”. It has been proved in
[7, 25] that the uniform albedo constraint reduces the 3 x
3 linear ambiguity to a rotation ambiguity, which can be
represented using an orthogonal matrix O. Now for each
patch, we have

B, = NkOkO,If,k, Q)

where Oy, € SO(3) is a rotation ambiguity which is differ-
ent for each patch (we call it local ambiguity hereafter) and
N, is a patch of surface normal with unknowns w.r.t. to the
true normal of that patch Ny, .

4.2. Solving normal for the whole surface

For each patch, now we have N, with a local ambiguity
Oy, where Oy, equally rotates all normals in Nk. There-
fore, within each patch, pair-wise angular distances calcu-
lated using pseudo normal N, should be the same as those
calculated using true normals N. Such an angular distance
invariant property allows us to ‘connect’ all patches across
the surface and unify them to the same rotation ambiguity,

Patch connection through angular distance matrix. To
do this, we need to prepare an angular distance matrix
D € RP*P where P is the total number of pixels on the
whole surface. Such a matrix stores the angular distance for
all pairs of pixels, i.e., entry D; ; encodes the angular dis-
tance of the i-th and the j-th pixel, where ¢ and j are not
necessarily from the same patch.

Given the rotation-ambiguous normal for each patch, we
can directly get the pair-wise angular distance of pixels

2We simply use 3 x 3 square patch for simplicity in our implementation.



within that patch, since (f;, ;) = (n;,n;). To obtain the
angular distances for pixels that are not in the same patch,
we perform the shortest path search to propagate the angular
distance from a starting point to an end point. This is per-
formed for all P pixels to connect the whole surface. The
spirit here is analogue to what has been done for geodesic
distances of intensity profiles in [17]. The angular distance
propagation process is illustrated in Fig. 4. In the left ex-
ample, the angular distance (nj,ns) is calculated by the
shortest path connecting them, which adds the angular dis-
tance (nq,ny) and (ny, n3) which can be calculated from
their own patches.

Since angular distance is a positive scalar, a long-
distance propagation can only keep on increasing the an-
gular distance. To solve this problem and also to get avoid
of the error accumulation during long-distance propagation,
we identify pixels with the same normal using intensity pro-
files as done in [25]°. During the propagation for a long
distance, the distance between two normals indicated as the
same by intensity profiles will be reset as 0. In the right
example of Fig. 4, the distance (ni, n5) is calculated by us-
ing the shortest path connecting n3 and ns, since n3 and ny
are detected to have the same normal. An illustration of the
angular distance matrix is provided in Fig. 2.

Angular distance matrix completion. The angular dis-
tance matrix D obtained using angular distance propagation
and shortest path search is still sparse due to some discon-
nected graphs. In order to recover all the surface normals
reliably, we need to complete missing entries in D. Let Q2
and Q€ be the sets of filled and empty entries in D, respec-
tively, with which we build an observation matrix M as

M, — {cos((ﬁi,ﬁj» if D; ; € Qe |

6
0 lfDZ’7 S2Y) ©

M is directly related to the rotation-ambiguous surface nor-
mals N of the whole surface. In fact, if there is no miss-
ing entries in M, we can directly solve for N according to
Eq. (6). Based on this fact, we define A as the ideal version
of M without missing entries, and therefore A = NTN
with rank(A) = 3. Then A can be obtained by solving the
following optimization problem

A* = argmin |[A - M - E||%
A
s.t. rank(A) =3, Zo(E) =0, (7

where Zq () is the operator that keeps all the enties in 2 un-
changed and sets others as zero. Eq. (7) can be solved using

3In the original work of [25], the intensity profile works for directional
lighting. Our work deals with natural illumination, but we assume the
equivalent directional lighting model for each patch, so [25] is approxi-
mated applied here by assuming there is no cast shadow (the same normal
always faces the same visible hemisphere of environment maps).

Table 1. Verification of the lighting model approximation using
different patch sizes.

[ Patch size [ 3x3 [ 5x5 [10x10 [ 20x20 |
Total no. of patches 17457 | 17784 | 17962 16788
Mean ang. err. (deg.) 0.93 1.65 1.91 3.35
Median ang. err. (deg.) | 0.79 1.48 1.58 2.69

rank approximation in an iterative manner. After obtaining
the optimal A*, we perform a rank-3 factorization on it as
A* = USVT. Then the pseudo normal N for the whole
surface is obtained from

N=UVE=VIV'. (8)

So far, N contains only a global rotation ambiguity for
the whole surface. This ambiguity can be reduced to a
binary convex/concave ambiguity by forcing integrability
constraint as suggested in [17]. So our final normal es-
timates only contain a binary convex/concave ambiguity
which could be manually removed.

5. Experimental Results

We first use synthetic data to verify the quantitative ac-
curacy of our method, and then show real-world results by
comparing with calibrated methods.

5.1. Synthetic experiment

Data preparation. We collect 20 different environment
maps from USC light probes data [10] and the sIBL
Archive* as natural illumination sources, which include di-
verse natural illuminations from both indoor and outdoor
scenarios. We use three normal maps — SPHERE, BEAR
(from [27]) and BUNNY (with increasing geometric com-
plexity) — to render Lambertian objects with white albedo
under natural illumination. Ground truth normal and sam-
ple images in our synthetic dataset are shown in Fig. 6.

Lighting model verification. We use the SPHERE data
to verify the accuracy of our lighting model varying with
patch sizes. The patches are extracted using a sliding win-
dow whose size varies in {3 x 3,5 x 5,10 x 10,20 x 20}
and slides 1 pixel at each move. To focus on the normal
estimation errors from lighting approximation only, we use
the ground truth normal to remove the local ambiguity for
all patches. The angular errors varying with patch sizes are
shown in Table 1. It is clear that the lighting approxima-
tion is better on patches with smaller size and the minimum
patch size allowed (3 x 3) introduces small mean and me-
dian angular errors as 0.93° and 0.79°, respectively (this is
the lower bound until Sec. 4.1). We fix patch size as 3 in the
following experiments.

“http://www.hdrlabs.com/sibl/archive html
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Figure 5. Synthetic dataset. Environment maps (visualized as light probes for data from [10] and panorama images for data from sIBL
Archive according to their original formats) are show in the top row. Below we show ground truth normals for three objects in the first
column and examples of rendered images in other columns corresponding to the environment maps above.

Angular distance matrix verification. In addition to
lighting approximation above, the second error source for
our method comes from connecting patches using angular
distance matrix. We test this by using the angular distance
matrix calculated from the ground truth normal given input
without lighting approximation errors. The global rotation
ambiguity is also removed using ground truth normal. The
mean and median angular errors of the recovered sphere
normal are 1.35° and 0.66°, respectively for the SPHERE
data (this is the lower bound of independently running the
algorithm in Sec. 4.2). The final performance of our method
degrades from these lower bounds as a joint affect of the two
error sources.

Performance under varying lighting conditions. We
show the estimated normal maps from synthetic data in
Fig. 6. For each set of result, we show both the results
that manually resolve the global rotation ambiguity using
ground truth (‘up to rotation’) and the results from our com-
plete pipeline. For smooth shapes like SPHERE and BEAR,
our method produces smaller median angular error around
6°; the errors become larger for shapes with rapid variation
in curvatures like BUNNY due to the increased difficulty in
applying equivalent directional lighting approximation. We
select 10 and 15 subsets of environment maps out of 20 in
our dataset to further test how the normal estimation accu-
racy varies with lighting conditions. The results tell that

generally more input images and diverse lighting distribu-
tion bring more accurate normal estimates. We have also
tried further increasing the number of environment maps,
but the improvement is rather unobvious, so we fix the num-
ber of input images as 20 for the experiments hereafter.

Performance on multi-albedo objects. Our method can
naturally handles multi-albedo objects as long as the albedo
variation is not observed within each 3 x 3 patch. We add
albedo variation to the dataset in Fig. 5, and we also com-
pare with the uncalibrated photometric stereo method [22]
of the best performance according to the benchmark results
in [27]. The results shown in Fig. 7 demonstrate that [22] is
still able to produce the rough shape even if it assumes the
directional lighting model, but the errors are much larger
comparing to our method. Our results on multi-albedo ob-
jects are not as good as those on the uniform-albedo objects,
because patches across the albedo variation edges are un-
avoidable on these data, but the degradation is rather small
(mean and median angular errors increase by about 1°).

5.2. Real-world experiment

We evaluate and compare our method using the real-
world data from [35] (denoted as “YY13”) and [15] (de-
noted as “HJ15”). The data from YY13 [35] are captured
by fixing the relative position between the target objects and
camera while moving the whole setup to difference places
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Figure 6. Normal estimation results varying with lighting conditions. We show the estimated normal maps using different numbers of input
images (10, 15, and 20). The numbers on the upper left and bottom right corners of the normal maps show the mean and median angular
errors w.r.t. to the ground truth (shown in Fig. 5). For each data, we show results up to rotation in which we use ground truth to resolve the

global ambiguity and the results from our complete solution.

Rendered images Ours PF14

Figure 7. Normal estimation results on multi-albedo objects com-
pared with PF14 [22]. The mean and median angular errors are on
upper left and bottom right corner of normal maps.

with different natural illuminations, and the data from HJ15
[15] are captured within one day in a outdoor environment;
both datasets and methods have a mirror sphere to calibrate

the environment maps, but such information is not used in
our method.

We show the normal estimation results using HORSE-
HEAD (7 images), CHEF (multi-albedo, 7 images), and
MOTHER&BABY (10 images) objects from YY13 [35] in
Fig. 8, since we do not have ground truth for these data, we
can only qualitatively compare our results with them. Re-
ferring to the color map of ground truth sphere normal in
Fig. 5, our method produces more visually plausible normal
estimates comparing to YY13 [35]. For example, the nose
of the HORSEHEAD, the hands of CHEF and the knees of
person in MOTHER&BABY should show greenish color to
indicates normals towards upper direction, which are cor-
rectly estimated by our method even without knowing any-
thing about lighting condition.

Another result using OWL (66 images) object from [15]
is shown in Fig. 9. We use the ground truth normal pro-
vided by the authors and make a quantitative comparison
with their original result. Due to the patch-wise processing,
our result generally looks more noisy, but it is quantitatively
better than the calibrated result from HJ15 [15], especially
in local regions near the OWL’s eyes where HJ [15] shows
large errors.

6. Conclusion

We propose a method to solve photometric stereo un-
der natural illumination without calibrating the environment
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Figure 8. Qualitative comparison with real data from YY13 [35].

maps. Our method simplifies the natural illumination using
the equivalent directional lighting model that is valid for
small patches. We then solve each patch up to an arbitrary
local ambiguity. The patches are further unified to have the
global rotation ambiguity through solving the angular dis-
tance matrix for the whole surface. The global rotation am-
biguity is finally resolved to have a binary ambiguity, which
makes our method the solution with the minimum ambigu-
ity for uncalibrated photometric stereo under natural illumi-
nation. We believe such methods may have great potential
to bring photometric 3D modeling technique from lab setup
with controlled lighting to wild and large dataset on the In-
ternet.

Discussion. In Sec. 4.1, the patch-wise problem is uncal-
ibrated photometric stereo under directional lighting. We
simply use ‘SVD + constant albedo’ to solve it up to an ro-
tation ambiguity [12]. Theoretically it is possible to apply
integrability constraint on each patch, so that the pseudo
normals can be further constrained to only have the GBR
ambiguity [7, 36]. But we experimentally find that integra-
bility constraint is unreliably forced on small patches with
slowly varying normals, so we introduce it later when we
unify the local ambiguities to a global rotation (the whole
surface has sufficiently various normals).

Our patch-wise processing also shares similar spirits
with local shading analysis in [34], where they find local
shapes have simple parametric approximation under direc-
tional lighting. In contrast, we explore how local shapes
simplify natural illumination representation, and it might
be interested to combine local shape constraint in [34] to
further narrow the solution space.

The proposed method degrades for complex shapes

GT Ours HJ15

60

50

40

30

20

10

0

Input image
Figure 9. Quantitative comparison with real data from HJ15 [15].
The numbers on upper left and bottom right corners of error maps
are mean and median angular errors

Error map

where the lighting approximation is less accurate. Such an
lighting approximation also requires there is no cast shadow
in the scene. The angular distance matrix built with shortest
path propagation also brings extra errors in the computa-
tion. In the future, we need to develop more robust light-
ing model considering shadows and robust angular distance
computation method to further improve the accuracy.

The current implementation of our method takes about
30 minutes for image size 200 x 120 and 32GB RAM with
an unoptimized Matlab implementation. These issues could
be improved by enabling parallel patch processing and us-
ing better data structure for the distance matrix.
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