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Abstract
It is one typical and general topic of learn-
ing a good embedding model to efficiently
learn the representation coefficients between two
spaces/subspaces. To solve this task, L1 regular-
ization is widely used for the pursuit of feature
selection and avoiding overfitting, and yet the
sparse estimation of features in L1 regularization
may cause the underfitting of training data. L2

regularization is also frequently used, but it is a bi-
ased estimator. In this paper, we propose the idea
that the features consist of three orthogonal parts,
namely sparse strong signals, dense weak signals
and random noise, in which both strong and weak
signals contribute to the fitting of data. To fa-
cilitate such novel decomposition, MSplit LBI is
for the first time proposed to realize feature se-
lection and dense estimation simultaneously. We
provide theoretical and simulational verification
that our method exceeds L1 and L2 regularization,
and extensive experimental results show that our
method achieves state-of-the-art performance in
the few-shot and zero-shot learning.

1. Introduction
This paper discusses the problem of learning representation
coefficients between two spaces/subspaces. This is one typ-
ical and general research topic that can be used in various
tasks, such as learning feature embedding in Few-shot learn-
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ing (FSL) and capturing relational structures in Zero-Shot
Learning (ZSL) (Palatucci et al. (2009)). In particular, FSL
(Fei-Fei et al. (2006)) aims to learn new concepts with only
few training samples, while ZSL tends to learn new concepts
without any training samples. The semantic spaces such as
attributes Lampert et al. (2013), textual descriptions Ba et al.
(2015) and word vectors Fu and Sigal (2016) are served as
the auxiliary knowledge to assist the ZSL. This paper con-
cerns the FSL and ZSL in transfer learning scenario. The
data in the source domain is abundant to train the feature ex-
tractors (e.g., deep Convolutional Neural Networks (CNNs)
Krizhevsky et al. (2012); Simonyan and Zisserman (2014);
Szegedy et al. (2016); He et al. (2016)); and the data in the
target are very limited to learn/fine-tune a deep model.

The natural solutions of FSL and ZSL are to learn the linear
embedding models, which can map the image features to
the label space (FSL) (or semantic space (ZSL)). To effi-
ciently learn such a linear model, L1 or L2 penalty terms are
frequently applied to regularize the weights of embedding
models. In particular, the L1 regularization can capture the
strong and sparse signals in the embedding weights, which
is also a process of feature selection. Nevertheless, the
feature selection property of L1 penalty suffers from two
problems. 1) the inaccurate estimation of strong signals if ir-
representable condition does not hold Zhao and Yu (2006a);
2) the underfitting of training data due to the ignorance of
weak signals from the embedding / relational weights. In
contrast, L2 penalty yet does a proportional shrinkage of
feature dimension, and thus it may introduce the bias in
learning the embedding model. However, in real-world ap-
plications, it is of equal importance to do both the feature
selection and well data-fitting. For example, in Text Classifi-
cation (Forman (2003)), Bioinformatics (Saeys et al. (2007))
and Neuroimaging Analysis (Sun et al. (2017)), researchers
need to fit the training data well; and meantime, select a
few strong signals (features) which are comprehensible for
human beings.

In this paper, we propose that the embedding features con-
sist of random noise, sparse strong signals and dense weak
signals. In Sec. 3.2, the MSplit LBI is for the first time
proposed to facilitate the decomposition of features. Par-
ticularly, in our linear embedding models, the MSplit LBI
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Figure 1. MSplit LBI is learned in linear embedding to decompose
the features into sparse strong signals, dense weak signals and
random noise. The sparse strong signals facilitate the feature
selection. The dense estimation can be done via the sparse strong
signals and dense weak signals.

will decompose the embedding weights into three orthogo-
nal parts (in Sec.3.3), namely, random noise, sparse strong
signals and dense weak signals as illustrated in Fig. 1.
The sparse strong signals can serve the purpose of fea-
ture selection, and the dense estimation can be done by
integrating both sparse strong signals and dense weak sig-
nals. Furthermore, we theoretically analyze the property of
MSplit LBI estimator in Sec. 3.4 which is less biased than
L2−regularization and can facilitate the feature selection at
the same time. We further show the way of using proposed
MSplit LBI in FSL and ZSL tasks in Sec. 3.5. Extensive
experiments had been done to validate the proposed MSplit
LBI can learn better embedding models.

Contribution. The main contributions are several folds:
(1) We for the first time propose the idea of decomposing
the feature representation into three orthogonal elements,
i.e., strong signals, weak signals and random noise. (2)
The MSplit LBI algorithm is for the first time proposed to
facilitate such orthogonal decomposition and thus learn two
estimators: the sparse estimator learning strong signals and
the dense estimator additionally capturing the weak signals
that also contribute to the estimation. (3) The theoretical
analysis is given in terms of the advantages over commonly
applied regularization penalties (e.g., L1, L2 or elastic net);
(4) The benefits and effectiveness of proposed methodology
are demonstrated on simulation experiments and tasks of
feature embedding learning in FSL and relational structure
learning in ZSL.

2. Related Work
2.1. Feature Selection and Variable Split

Feature Selection. The advantages of feature selection can
be many folds, such as avoid overfitting, or mining the
correlations between features and responses, or reducing
the time complexity of inference. Existing supervised fea-
ture selection methods can be classified into filter methods
Yu and Liu (2003), wrapper methods Kabir et al. (2010)
and embedded methods Saeys et al. (2007) integrating the
feature selection with the classification model. Compared

to filter methods, embedded methods have the superiority
that they integrate well with classifiers. Furthermore, em-
bedded methods are more computationally efficient than
wrapper methods. Therefore, embedded methods, e.g. L0

and L1 regularization, are widely used in many real-world
applications; for instance, object recognition Kavukcuoglu
et al. (2010), face recognition Wright et al. (2009), image
restoration Mairal et al. (2009), subspace clustering Elham-
ifar and Vidal (2009), few-shot learning Lee et al. (2015)
and zero-shot learning Kodirov et al. (2015). Because the
optimization with L0 regularization is NP hard, L1 regu-
larization, which is the tightest convex relaxation of L0, is
used for the sparsity in the most practice.

Variable Split. To deal with L1 penalty and other con-
strains, the operator splitting ideas are adopted by intro-
ducing an augmented variable satisfying the sparsity (or
non-negative) constraints, such as ADMM Wahlberg et al.
(2012); Boyd et al. (2011). By adopting such schemes,
the two estimators are introduced and split apart with one
being dense and the augmented one pursuing sparsity re-
quirements. For example in Ye and Xie (2011); Huang et al.
(2016), the variable splitting scheme is proposed to avoid
dealing with structural sparsity (such as fused lasso or total
variation penalty) directly. In addition to the computational
advantage, the Sun et al. (2017) discussed another benefit of
variable splitting term that by relaxing the distance between
two estimators, the dense estimator can show a better pre-
diction power than the sparse one since degree of freedom
to capture extra features that can fit data better. To achieve
similar effect, one can also use ridge or elastic net models
Zou and Hastie (2005) to select more correlated features by
enforcing strictly convexity via L2 penalty.

2.2. Few-shot and Zero-shot Learning

Few-shot Learning. The naive way to implement few-shot
learning is fine-tuning the model (trained on the source do-
main) on the target domain. However, the model will easily
overfit the several training samples and hardly generalize
to testing samples. The k-nearest neighbor classifier is of-
ten used as the baseline in few-shot learning Koch et al.
(2015a); Santoro et al. (2016). When only one sample per
target class is provided in training, i.e. k = 1, it can be
viewed as a linear model. The Siamese neural network is
proposed by Koch et al. (2015a), which contains twin deep
feature extractors for two input images. The L1 component-
wise distance between two feature vectors are computed
with the sigmoid activation function. Snell et al. (2017)
propose the prototypical network which is combined by the
deep feature extractor and linear model. Testing images are
mapped into the learned embedding space, then classified
based on a softmax over distances to class prototypes.

Zero-shot Learning. Currently, most popular methods in
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ZSL are linear models, as deep models may easily overfit on
target domain Zhang et al. (2017). L1 and L2 regularization
terms are frequently used in these linear models. Palatucci
et al. (2009); Li et al. (2015) try to learn the linear mapping
from the image feature space to semantic embedding space.
L2 regularization is utilized to avoid overfitting. Li et al.
(2015) considers ZSL as a sparse coding problem. They
try to regress the image features use the learned dictionary
with sparse codes (semantic embeddings). L1 regulariza-
tion is utilized to realize sparsity. In Wang et al. (2016);
Zhao et al. (2017), structural knowledge is learned by lin-
early regressing unseen semantic embeddings on seen ones.
L1 regularization is introduced, because they assume the
connection between seen and unseen classes is sparse.

3. Methodology
We take the transfer learning setting. The source
domain and target domain data are denoted as
{(xs1, ys1), ..., (xsNs , ysNs)} and {(xt1, yt1), ..., (xtNt , ytNt)}
respectively. Here xsi ∈ <d and xti ∈ <d indicate the visual
features; and ysk ∈ Ys and ytk ∈ Yt are the class labels.
We concern two different settings. (1) Few-shot setting.
Only few labeled training images are available in the target
domain. (2) Zero-shot setting. No training data but auxiliary
knowledge is available in target domain.

Each class is embedded in the label space and expressed as
esk and etk ∈ <p. The label embedding of each class is a
one-hot vector in FSL, while we use auxiliary knowledge
Lampert et al. (2013); Fu et al. (2015b) to embed each
label to be a semantic vector in ZSL. Thus we can learn the
linear classification models on training data. Without loss
of generality, we first consider the linear regression of the
label embeddings E = {e1, ..., eN} ∈ RN×p using visual
features X = {x1, ...,xN} ∈ RN×d. It is formulated as

E = XB, (3.1)

where B ∈ <d×p is the linear embedding matrix.

In particular, to learn the mapping, we optimize the follow-
ing formulation,

B = arg min
B

`(B,X) + λΩ (B) (3.2)

where `(B,X) = ‖XB−E‖2 is the loss function over the
training samples. Ω (B) indicates the regularization term
over B. The λ is the regularization parameter.

3.1. Weakness of Lasso Embedding

Various forms of regularization have been used in previous
work such as L2−penalty Fu and Sigal (2016); Romera-
Paredes and Torr (2015) and L1−penalty Kodirov et al.
(2015); Wang et al. (2016). Here we want to learn sparse

weights B to capture the strong signals in the embedding.
One can apply the L1 regularization as,

arg min
B

`(B,X) + λ

p∑
j=1

∥∥B(j)

∥∥
1

(3.3)

where B(j) refers the j-th column. Eq (3.3) turns out to
be a classical Lasso formulation which can linearly regress
the sparse strong signals and set dense weak signals to be
zeros. In general, Lasso is sign consistent if there exists a
sequence1 λn such that P

(
B̂ (λn) =s λ

∗
)
→ 1, as n →

∞ and if Irrepresentable Condition and Beta Min condition
hold (Fan and Li (2001); Wainwright (2009); Zhao and Yu
(2006b)). Here we define =s such that B̂ (λ) =s B∗ iff
sgn

(
B̂ (λ)

)
= sgn (B∗) element-wise; and sgn (x) = 1

if x > 0; = −1 if x < 0; = 0 otherwise. B∗ indicate
the true sparse embedding weights with the corresponding
regularizing parameter λ∗.

The Irrepresentable and Beta Min conditions are not easy
to be satisfied in many real-world applications. The Irrepre-
sentable Condition implies the low correlation between the
informative and uninformative feature dimensions. Unfortu-
nately, the correlated variables of features, especially in a
high-dimensional space (p >> n), are a perennial problem
for the Lasso. Such a problem will frequently lead to sys-
tematic failures and an inaccurate estimation of index set of
strong signals. On the other hands, The Beta Min condition
requires the strong feature dimension of non-zero coeffi-
cients should be higher than the threshold pre-specified.
Nevertheless, some feature dimensions of weak signals that
are totally ignored by Lasso, may still be very helpful in
estimating the response variables in Eq (3.3); and thus the in-
ferior linear embedding mapping is usually learned than the
embedding learned by ridge regression. For example, the
recent neuroimaging analysis work Sun et al. (2017) showed
the lesion features (strong signals) are most contributed to
identifying the disease concerned. In addition, although
“procedural bias" features are weak signals, they can still be
leveraged to improve the prediction of the disease.

3.2. Multiple Split LBI

This paper targets at alleviating the Irrepresentable Condi-
tion and capturing the weak signal in Eq (3.3). The key idea
is to generalize the Split LBI algorithm (Huang et al. (2016))
to general loss function with response variables embedded
in multiple (p > 1) columns (E ∈ RNs×p). Thus, we
call it Multiple Split LBI (MSplit LBI). Specifically, rather
than directly dealing with

∑p
i=1 ‖B(j)‖1 in Eq (3.3), we

introduce an augmented variable Γ of the same size as B.
Here we want Γ to: (1) be enforced sparsity of each column
and select the set of strong signals (2) be close to B from

1Here λn indicates that λ is a function of n.
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which the distance is controlled by the variable splitting
term 1

2ν ‖B− Γ‖2F in the following loss function:

`(B,Γ) = `(B,X) +
1

2ν
‖B− Γ‖2F (ν > 0) (3.4)

To pursue the sparsity requirement of Γ, we utilize Lin-
earized Bregman Iteration (LBI) on each column of B and
concatenate them together (please refer supplementary ma-
terial for details), which can give a sequence of estimation
as a regularization solution path, i.e. {Bk,Γk, B̃k},

Bk+1 = Bk − κα∇B`(Bk,Γk), (3.5a)
Zk+1 = Zk − α∇Γ`(Bk,Γk), (3.5b)
Γk+1 = κ · S (Zk+1, 1) , (3.5c)

B̃k+1 = PS̃k+1
Bk+1 = Bk+1 ◦

[
1{i ∈ S̃(j),k+1}

]
{i,j}
(3.5d)

where Z0 = Γ0 = B̃0 = 0 ∈ Rd×p, S̃k = supp(Γk) and

S (Z, λ) = sign(Z) ·max (|Z| − λ, 0) (λ ≥ 0).

By implementing the soft-thresholding S (Z, 1) in Eq(3.5c),
the LBI returns a path of sparse estimators Γk with different
sparsity levels at each iteration. The parameter tk = kα
is the regularization parameter which plays a similar role
with λ in Eq (3.3). In real applications, it can be determined
via cross validation (please refer to Osher et al. (2016) and
therein). The parameter κ is the damping factor. The larger
value of κ can de-bias estimators however at the sacrifice of
computational efficiency. Parameter α is the step size, which
should satisfy κα ≤ ν/κ(2 + νΛH)2 (Huang et al. (2016))
to ensure the statistical property. Parameter ν in Eq (3.4)
controls the distance between B and B̃. Such two estimators
are tending to be close with smaller value of ν.

3.3. Decomposition property of MSplit LBI

The proposed MSplit LBI has several advantages. Most
importantly, it has the decomposition property. Specifically,
the path of dense estimators Bk computed by Eq (3.5a–3.5d)
has the following orthogonal decomposition of elements,

Bk = Signalstrong ⊕ Signalweak ⊕ Random Noise
(3.6)

The strong signals are captured by the projection of Bk

to the subspace of support set of Γk (Eq (3.5d)), i.e. B̃k.
Hence Bk shares the same value of strong signals with B̃k.
The remainder of such projection is heavily influenced by
weak signals, which are captured by non-zero elements of
Bk with comparably large magnitude, while others with

2Here Λ(·) denotes the largest singular value of a matrix and
H denotes the Hessian matrix of `(B).

tiny values are regarded as random noise. Hence, the algo-
rithm gives a path of two estimators: Bk and B̃k. Thus,
our goal includes two folds: (1) Use B̃k to select the inter-
pretable strong signals; (2) use Bk for prediction since it
can additionally leverage weak signals for better fitness of
data.

The capture of weak evidences are influenced by parameter
ν and tk. Note that with larger value of ν, the B has more
degree of freedom to capture weak signal with less con-
straint between B and B̃, and vise-versa. Besides, it’s the
trade-off between (1) model selection consistency and (2)
prediction task. On one hand, the irrepresentable condition
is more easier to satisfy with larger value of ν and On the
other hand, it will lower the signal-to-noise ratio and hence
deteriorate the estimation of the parameter.

For the regularization parameter tk, note that as the algo-
rithm iterates, it tends to give B̃k with less sparsity levels
and limk→∞ ‖B̃k −Bk‖2F → 0. In such case, the estima-
tion of strong signals are inaccurate and B has not degree
of freedom to capture weak signals.

Compared against Lasso-type penalty, our MSplit LBI gen-
erally has more advantages, beside of its simpler iterative
scheme: (1) MSplit LBI can capture weak signals which
are ignored by `1 penalty due to the Beta Min condition.
(2) According to Theorem 1 in Huang et al. (2016), the
irrepresentable condition is more easier to be met when ν is
large enough, leading to more robust model selection con-
sistency. (3) Combined with the less bias property of LBI,
the estimation of strong signal is more accurate than Lasso
as discussed in next subsection.

3.4. Theoretical Analysis of MSplit LBI

Bias Vs. Unbiased. Although the ridge-type penalty and
elastic net can weaken the irrepresentable condition by de-
correlating column-wise correlation, the regularization pa-
rameter will introduce bias during the estimation of strong
signals. In contrast, our MSplit LBI is unbiased estimator
for strong signals and for weak signals when ν →∞. This
section introduces two lemmas comparing the differences.

To see this, the following lemma describes the biased esti-
mator given by ridge regression and elastic net under the
simplest case. In the following, we use (β, β̃) to denote the
vector notation of (B, B̃).

Lemma 1. Assume y = β? + ε where ε has independent
identically distributed components, each of which has a
sub-Gaussian distribution with 0 mean. S = {i : β?i &√

s log p
n }, the ridge estimator and the elastic net estimators

βridgeS = arg min
1

2
‖y − β‖22 +

λ`2
2
‖β‖22 (3.7)
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βelasticS = arg min
1

2
‖y − β‖22 +

λ`2
2
‖β‖22 + λ`1‖β‖1

(3.8)

we have

E(βridgeS ) =
1

1 + λ`2
β?S (3.9)

E(βelasticS ) =
β?S

1 + λ`2
+

1

1 + λ`2
EεS≤−β?

S−λ`1
(εS + λ`1)

β?S
1 + λ`2

P (−β?S − λ`1 ≤ εS ≤ −β?S + λ`1)

+
1

1 + λ`2
EεS≥λ`1

−β?
S
(εS − λ`1) (3.10)

When κ → ∞, α → 0, the 3.5a to 3.5c with {B,Γ} re-
placed with {β, γ} converges to

0 = −∇β`(βt, γt), (3.11a)
ρ̇γt = −∇γS̃c

t

`(βt, γt), (3.11b)

ργt ∈ ∂‖γt‖1, (3.11c)

Then the following lemma states that under the case defined
in lemma 1, we can give more accurate estimation of β?S ,
and also a slightly biased estimation of β?T :

Lemma 2. Under the same setting defined in lemma 1, if
there exists t̄ such that S̃t = S, then βt̄ in 3.11 satisfies

βS,t̄ = β?S + εS, βSc,t̄ =
ν

1 + ν
β?Sc +

ν

1 + ν
εSc (3.12)

and therefore

E(βS,t̄) = β?S, E(βSc,t̄) =
ν

1 + ν
β?Sc (3.13)

Hence, for strong signals, when ν is large enough, not only
the model selection consistency is easier to satisfy compared
to `1, but also the estimation of them are bias-free while
`1, `2 and elastic net are with biases. Moreover, βt̄ can
also capture weak signals in Sc with bias dependent on ν.
According to 3.12, larger ν can give less bias estimation
( 1
1+νβ

?
Sc ) at the sacrifice of more noise introduced ( ν

1+ν εSc ).
Note that the lemma 1 and 2 are given underX = I in linear
model, the more general cases are left to appendix.

3.5. Learning by Multiple Split LBI

As mentioned in previous sections, the MSplit LBI essen-
tially has the advantage of extracting strong signals and
weak signals, which can efficiently learn the embedding
in few-shot and zero-shot learning scenarios. In these two
tasks, the strong signals correspond to the good sparse em-
bedding, while the weak signals can capture the weak evi-
dences which are also useful to train the embedding.

Few-shot Learning. Our model can be directly used to
solve this task. We firstly use the source domain to learn the
feature extractor (i.e. deep CNNs). Then, image features
from target domain are extracted using the trained CNNs.
As few labeled training data in target domain are provided,
we use the MSplit LBI, i.e. Eq. (3.4 and 3.5), to learn the
linear embedding B from image features X to (one-hot)
label embeddings E. Here, the label embedding of each
training datum is a one-hot vector with 1 on the position cor-
responding to the label, while the values on other positions
are 0. With the learned embedding B, a testing image is first
embedded to the label embedding space êti = xtiB, then la-
beled as the one with maximum value ŷti = argmaxk êti(k).
The element êti(k) denotes the kth element in the vector êti.

Zero-shot Learning. On this task, our method is based on
the structural knowledge transfer. Specifically, the structure
among classes is learned in the semantic label embedding
space by linearly regressing the label embeddings of tar-
get domain classes (Et) on source target domain classes
(Es). The Eq. (3.4) is adapted to be Et = EsB. Similar
as Snell et al. (2017) , we use the prototype to represent
each class and implement nearest neighbour classification
in the image feature space. The prototype of each source
domain class is calculate as the mean vector of all samples
in the class, i.e. fsk = 1

Ns
k

∑Ns
k

i xsi s.t. ysi = k. Ns
k

denotes the number of training samples from the kth seen
class. Then the learned structure (B) is transferred to the
image feature space for synthesizing the prototypes of all tar-
get domain classes F̂t = FsB, where Fs = {fs1 , ..., fsKs}
and F̂t = {f̂ t1, ..., f̂ tKt} denote all prototypes in source
and target domain respectively. A testing image is clas-
sified based on the distance to these synthesized prototypes
ŷti = argmink ‖xti − f̂ tk‖F . In the experiments, we will
illustrate the learned strong and weak signals in our model.

4. Experiments
In this section, we conduct three parts of experiments.
First, the simulation experiments are conducted to statis-
tically validate the advantages of our MSplit LBI over Lasso
(L1−penalty), Ridge Regression (L2−penalty) and Elastic
Net. Furthermore, we have the experiments on zero-shot
and few-shot learning to illustrate the effectiveness of our
model. Finally, some visible evidences about the captured
strong and weak signals are shown in the Sec. 4.2.1.

4.1. Simulation Experiments

In this section, we conduct a simulation experiment. We
set N = 100, p = 80 and generate X ∈ RN×d denoting
N i.i.d samples from N (0,Σ) with Σi,j = 1 for (i = j)
and = σ for i 6= j. We consider four settings in which σ
increases from 0.2 to 0.8 with space 0.2. Then we generate
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σ = 0.2 σ = 0.4

MLE 0.2368 ± 0.0449 0.2739 ± 0.0516
Ridge 0.2057 ± 0.0388 0.2324 ± 0.0403

Elastic Net 0.1295 ± 0.0167 0.1359 ± 0.0178
Lasso 0.1323 ± 0.0166 0.1418 ± 0.0187

MSplit LBI (β̃) 0.1463 ± 0.0241 0.1714 ± 0.0255
MSplit LBI (β) 0.1238 ± 0.0112 0.1312 ± 0.0117

σ = 0.6 σ = 0.8

MLE 0.3358 ± 0.0630 0.4751 ± 0.0891
Ridge 0.2723 ± 0.0423 0.3479 ± 0.0455

Elastic Net 0.1643 ± 0.0241 0.2265 ± 0.0263
Lasso 0.1777 ± 0.0279 0.2369 ± 0.0254

MSplit LBI (β̃) 0.2016 ± 0.0206 0.2421 ± 0.0159
MSplit LBI (β) 0.1461 ± 0.0120 0.1749 ± 0.0127

Table 1. The estimation error of ‖β̂ − β?‖2/‖β?‖2

y = Xβ? + ε with β?i = 2 if 1 ≤ i ≤ 5; = 0.2 if 6 ≤ i ≤
40; = 0 otherwise and ε ∼ N (0, 0.5 · IN ).
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β
‖
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‖
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MSplit LBI (β̃)
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Figure 2. The comparative error of {βk, β̃k} in the regularization
solution of MSplit LBI. Red curve represents the βk (the dense
estimator that can capture both strong and weak evidences); blue
curve represents the β̃k (the sparse estimator that captures strong
evidences); black dot line represents the estimation of MLE.

We compare Maximum Likelihood Estimator (MLE), Lasso,
Ridge, Elastic Net and two estimators, βk and β̃k (coun-
terparts of Bk and B̃k in 3.5) in MSplit LBI. For λ in
Lasso, Ridge and Elastic Net, it ranges from {0, 0.002 ·
bλmax/(500 − 1)c, 0.004 · bλmax/(500 − 1)c, ..., λmax},
which λmax (which we take 5 here) is large enough in
our settings to be ensured greater than maxi{X

T
i y
N }. For

mixture parameter α in Elastic Net, it’s optimized from
{0, 0.05, 0.1, ..., 1}. For MSplit LBI, we set κ = 5, α =

κ
(2+ν‖X?X‖2) . The parameter ν varies with σ, it is set to 3 if
σ = 0.2, 5 if σ = 0.4 3, 7 if σ = 0.6 and 10 if σ = 0.4. In
each setting (σ), we simulated 20 times and in each time, we
recorded the minimum comparative error of β? optimized
from gird of parameters of each method.

As shown in Tab. 1, the β of MSplit LBI outperforms others
in all cases. Note that β is superior than β̃ since the former

Methods AwA CUB ImageNet

Top-1 Top-5

DAP/IAP 41.4/42.2 - – –

SJE 66.7 50.1 – –

SC_struct 72.9 54.7 – –

LatEm 76.1 47.4 – –

SS-Voc 78.3 - 9.50‡ 16.80‡

ConSE - - 7.80 15.50

DeViSE - - 5.20 12.80

JLSE 80.46 42.11 – –

MFMR-joint 83.5 53.6 – –

ESZSL 79.53 51.90 – –

RKT 81.41 55.59 – –

Lasso 83.19 56.00 8.30 18.72

Ridge 83.72 51.00 6.47 16.80

MSplit LBI (β̃) 84.58 56.62 7.98 17.83

MSplit LBI (β) 85.34 57.52 8.35 18.76

Table 2. Comparison to the state-of-the-art (%). ‡ means that ex-
tra vocabulary information (nearly 310k word vectors) is used.
ESZSL, RKT, Lasso and Ridge are implemented using the same
image features, while others are reported results.

can capture weak evidences. Besides, the advantage over
lasso is more obvious when σ grows. Particularly, when σ =
0.8, the irrepresentable condition is hard to be satisfied for
Lasso while easier for MSplit LBI when ν is large enough.

The Fig. 2 shows the curve of comparative error of {βk, β̃k}
in the regularization solution. From the start when k =
1 (tk = 0), β̃ = 0 and β is the solution of ridge regression
with λ = 1

2ν . As tk evolves, more strong signals are se-
lected and βk is more similar to β̃k in strong evidences. At
some point (near 3.2), the βk can not only capture strong evi-
dences and also can capture weak evidences to fit data better.
When tk continues to grow, the ‖βk − β̃k‖2 gets smaller
(blue curve (β̃k) and red curve (βk) converges together).

4.2. Zero-shot Learning

Datasets. We evaluate our method on three datasets – Ani-
mals with Attributes (AwA) (Lampert et al. (2013)), Caltech-
UCSD Birds-200-2011 (CUB) (Wah et al. (2011)) and Ima-
geNet 2012/2010 (Deng et al. (2009). These three datasets
are widely used for evaluating ZSL algorithms. AwA is a
coarse-grained dataset which contains images of 50 kinds
of common animals. 85 binary and continuous attributes are
provided. As the standard split (Lampert et al. (2013)), 10
classes are used as the target domain (unseen) classes with
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the rest source domain (seen) classes. CUB is a fine-grained
dataset that contains 200 kinds of birds. 312-dim continuous-
valued attributes are provided. As in Akata et al. (2013), 50
classes are used as the target domain (unseen) classes. The
rest 150 classes are source domain (seen) classes. ImageNet
2012/2010 is a large-scale image dataset. No attributes are
provided in this dataset. Following the setting in Fu and Si-
gal (2016), we use 1,000 classes in ImageNet 2012 as source
domain classes. 360 classes in ImageNet 2010 which do not
exist in ImageNet 2012 serve as target domain classes.

Competitors and Settings. Our embedding model is
compared against the state-of-the-art methods, including
DAP/IAP (Lampert et al. (2014)), SJE (Akata et al. (2015)),
SC_struct (Changpinyo et al. (2016)), LatEm (Xian et al.
(2016)), LEESD (Ding et al. (2017)), SS-Voc (Fu and
Sigal (2016)), DCL (Guo et al. (2017)), JLSE (Zhang
and Saligrama (2016)), ESZSL (Romera-Paredes and Torr
(2015)), RKT (Wang et al. (2016)) and MFMR-joint (Xu
et al. (2017)). We also compare two baseline methods,
i.e. those using Lasso and Ridge Regression (Palatucci
et al. (2009)) as the embedding methods for ZSL. For AwA
and ImageNet, we use VGG-19 models pre-trained on Ima-
geNet2012 as feature extractor. For the fine-grained CUB
dataset, we concatenate the GoogLeNet and ResNet features
both pre-trained on ImageNet 2012 dataset. We compare all
ZSL methods under the inductive settings. In other word, we
donot have the features of testing instances in the training
stage, not as the transductive setting in Fu et al. (2015a).

Features. The visual representations of images (i.e. visual
features) are very important in ZSL. Here, to make the ZSL
results more comparable, we implement the ESZSL, RKT,
Lasso and Ridge, MSplit LBI by using the same image
features on each dataset. For the rest results, we report the
best results in their corresponding papers.

Results. We compare the performance of different ZSL
methods in Tab. 2. It is obvious that our method MSplit
LBI (β) achieves very competitive results on three datasets.
In particular, on AwA and CUB datasets, our model can
achieve the highest accuracy of 85.34% and 57.52%. On
ImageNet dataset, our results achieve 8.35% Top-1 and
18.76% Top-5 accuracy. Note that (1) though our Top-1
result is slightly worse than 9.50% Top-1 accuracy reported
in Fu and Sigal (2016), the results of SS-Voc are using large
scale word vectors to help inform the learning process. (2)
We can find that, except on AwA, Lasso method always per-
forms better than ridge method. This shows the importance
of learning the good sparse strong signals. In contrast, on
small-scale datasets (AwA and CUB), our MSplit LBI (β)
obviously outperforms the Lasso method by a clear margin
– 2.15% and 1.52% respectively. (3) Our sparse model –
MSplit LBI (β̃), also achieves comparable results on all
these datasets and yet slightly lower results than dense esti-

mation model – MSplit LBI (β). For example, the results
of MSplit LBI (β̃) is around 1% lower than those of MSplit
LBI (β) on these dataset. This performance gap verifies that
those dense weak signals of embedding also contribute to
the learning of linear embedding, and again thanks to the
decomposition ability of our MSplit LBI of being able to
capture both the strong and weak signals.

4.2.1. VISUALIZATION AND INTERPRETATION

In this section, we visualize the strong and weak signals
learned in the zero-shot learning tasks of the embedding
model. In particular, we utilize the AwA dataset as the
testbed. Among all the 50 coarse-grained animals, 10 target
classes are regressed by 40 auxiliary source classes with
corresponding weights. In other words, each target class
can be represented as the linear combination of existing 40
source classes. We visualize the linear regression weights on
three target classes in Tab. 3. We sort the absolute value of
weights of strong signals (β̃) and weak signals (comparably
large value in |β − β̃|). Then we display the largest 3 strong
and weak signals respectively.

Strong Signals. The strong signals (with large magnitudes)
imply the strong correlations between the target animals and
source animals. This can be clearly showed by the weights
of strong signals. For example, "cow", "rhinoceros", and
"ox" have similar shape (hooves, tail), size (big) as "pig";
and thus the weights of these strong signals, are 0.4267
(cow), 0.1837 (rhinoceros) and 0.1375 (ox) individually.
These strong signals are well captured by our model.

Weak Signals. The weak signals (with small magnitudes)
indicate the relatively weak correlation between the source
animals and the target animals. For instance, "hamster",
"skunk" have very different visual appearance from "pig",
while their only possible relationship may be the similar
habitats. Thanks to the decomposition ability of our MSplit
LBI model, these weak signals can be captured to further
help learn the embedding, and hence our method can achieve
better classification result (see Tab. 2).

4.3. Few-shot Learning

Datasets. We test our method on two datasets, namely Om-
niglot Lake et al. (2011) and SUN attribute dataset (SUN)
(Forina). Omniglot is a handwriting dataset with 1,623 char-
acters from 50 alphabets. Each character has 20 handwriting
images. There are 14,340 images belonging to 717 classes
in SUN. 102 attributes are annotated for all images.

Setting-Omniglot. We implement the basic few-shot learn-
ing task, i.e. N way k-shot learning task. We have k labeled
training samples from each of N target domain classes. The
rest instances from these N classes are utilized as testing
data (chance level = 1/N ). For Omniglot, we follow the
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Unseen Strong Signals Weak Signals

Pig 0.4267
cow

0.1837
rhinoceros

0.1375
ox

0.0182
hamster

0.0152
skunk

0.0151
chihuahua

Hippopotamus 0.4002
rhinoceros

0.3482
elephant

0.2214
blue whale

-0.0163
antelope

-0.0136
cow

0.0132
polar bear

Raccoon 0.4117
skunk

0.3385
wolf

0.3035
squirrel

-0.0202
lion

-0.0155
horse

0.0142
killer whale

Table 3. Regression weights of three target domain (unseen) animals on AwA.

Method Finetune 5-way 20-way
1-shot 5-shot 1-shot 5-shot

MANN N 82.8 94.9 - -

C-Siam N 96.7 98.4 88.0 96.5
Y 97.3 98.4 88.1 97.0

M-Net N 98.1 98.9 93.8 98.5
Y 97.9 98.7 93.5 98.7

Lasso N 94.7 99.1 85.3 97.4
Ridge N 96.8 99.4 88.7 97.5

Ours (β̃) N 94.7 98.9 83.7 97.3
Ours (β) N 94.8 99.2 83.7 97.6

Table 4. Few-shot learning performance on Omniglot dataset.

Method LASSO Ours (β̃) Ours (β)
Accuracy(%) 59.09 59.32 61.47

Table 5. Few-shot learning performance on SUN dataset.

setting in Vinyals et al. (2016) in which 1,200 characters
are used for source domain, while the rest are the target
domain. We choose the MobileNet Howard et al. (2017)
as the feature extractor, then train it on the source domain.
The data augmentation strategy including rotation and shift
is the same as that in Vinyals et al. (2016). The model is
trained via SGD optimizer with learning rate 0.05. Then
the trained model is utilized to extract features for the target
domain. For speeding up the experiments, we further use
PCA (Bishop, 1999) to realize dimensionality reduction and
obtain 40-dim features. We compare all methods under four
settings: 5 way 1-shot/5-shot and 20-way 1-shot/5-shot.

Setting-SUN. For SUN dataset, we consider all classes as
the target domain. The 102-dim attributes are utilized as the
features. We implement 5 way 1-shot image classification.

Result-Omniglot. In Tab. 4, we compare our method with
several baselines, including MANN Santoro et al. (2016),
C-Siam (Convolutional Siamese Net Koch et al. (2015b)),
M-Net (Matching Networks Vinyals et al. (2016)), Ridge
(Ridge Regression) and Lasso on Omniglot dataset. It shows
that our results outperform Lasso in most settings, except 20-
way 1-shot setting. On this dataset, Ridge performs better
than ours. One possible reason is that, after dimensionality
reduction, most signals are strong ones. Hence, further

feature selection may damage the performance. The deep
model M-Net achieves the best performance in most settings.
We further highlight several observations.

(1) The gap between our method and M-Net narrows in
5-shot settings. A possible reason is that when only one
sample is provided, the calculating of linear embedding is
not stable. This phenomenon is also viewed in Lasso and
Ridge regression.

(2) Doing the fine-tuning may not matter. The improvement
(averagely 0.4%) brought by fine-tune is slight in C-Siam.
In contrast, doing fine-tune in M-Net depresses the perfor-
mance in most settings.

(3) Linear models can achieve state-of-the-art performance.
These linear models (Lasso, Ridge and MSplit LBI) achieves
state-of-the-art classification accuracies in few-shot learning,
compared to deep models.

Result-SUN. Tab. 5 shows the 5 way 1 shot image classifi-
cation results of LASSO and our method on SUN dataset.
The classification accuracies for Lasso, ours(β̃) and ours(β)
are 59.09%, 59.32% and 61.47% respectively, which means
ours(β) outperforms ours(β̃) by 2.15% due to additional
weak signals.

5. Conclusion & Future Work
In this paper, we assume that the features consist of sparse
strong signals, dense weak signals and random noise. Hence,
we propose the novel MSplit LBI to capture both strong
and weak signals. Our method can realize the feature se-
lection (i.e. capture strong signals) and dense estimation
(i.e. additionally capture weak signals) simultaneously. We
prove both theoretical and experimental comparison to the
L1 (lasso) and L2 (ridge) regularization terms which show
advantages of our method. Experiments on simulation data
and four popular datasets in few-shot and zero-shot learning
show that our method achieves state-of-the-art performance.

As our MSplit LBI is a kind of regularization method, it can
be integrated in many regression/classification models. A
natural future work is the integration of MSplit LBI and deep
neural networks, which may split sparse strong signals and
dense weak signals at the headstream of feature extraction.
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