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Abstract

Generalized Fused Lasso (GFL) penalizes variables
with L1 norms both on the variables and their pair-
wise differences. GFL is useful when applied to data of
which prior information is expressed on a graph. How-
ever, the existing algorithms for GFL incur high com-
putational cost and do not scale to high dimensionality.
In this paper, we propose a fast and scalable algorithm
for GFL. Based on the fact that the fusion penalty is
the Lovász extension of a cut function, we show that
the key building block of the optimization is equiva-
lent to recursively solving graph cut problems. We then
solve GFL efficiently via a parametric flow algorithm.
Runtime comparison demonstrates a significant speed-
up over the existing algorithms of GFL. Leveraging the
scalability of the proposed algorithm, we formulate the
diagnosis of Alzheimer’s Disease as GFL. Experiments
show that not only is the diagnosis performance promis-
ing, but the selected critical voxels are well structured –
being connected, consistent in cross-validation and in
accordance with clinical prior knowledge.

Introduction
Learning with sparsity-inducing norms has been one of the
main focuses in machine learning, and also has been suc-
cessfully applied to a variety of applications. As is well
known, learning with the L1 penalty, such as Lasso, en-
courages variables to be sparse (Tibshirani 1996). Recently,
this approach has been extended to explore structures on
variables, called structured sparse learning. A variety of
norms for different structures and efficient algorithms for
solving corresponding optimizations have been proposed,
e.g.,(Huang, Zhang, and Metaxas 2011; Bach et al. 2012).
Fused Lasso is one of such variants, where pairwise differ-
ences between variables are penalized using L1 norm, which
encourages successive variables to be similar (Tibshirani et
al. 2005).

Generalized Fused Lasso
Let {(xi, yi)}Ni=1 be a set of samples, where xi ∈ Rd and
yi ∈ R. Also, denote by X ∈ Rd×N and y ∈ RN the con-
catenations of xi and yi, respectively. Then, we start from
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the definition of (1D) Fused Lasso, which has been first pro-
posed by (Tibshirani et al. 2005) and is formulated as

min
β∈Rd

1

2
‖y −XTβ‖22 + λ1

d∑
i=1

|βi|+ λ2

d∑
i=2

|βi − βi−1|,

(1)
where β ∈ Rd and λ1, λ2 ≥ 0. Also, here, the variables
(i.e., β) are supposed to have some meaningful ordering
(e.g. forming a chain structure). Due to the L1 penalties on
both single variable and consecutive pairs, solutions tend to
be sparse and smooth, i.e., consecutive variables tend to be
similar. The third term is usually called the “fusion penalty”.

Classical fused lasso method (Eq.(1)) is proposed to pur-
sue sparse segments on a chain of variables. Thus, a natural
generalization of 1D Fused Lasso is to encourage smooth-
ness over neighboring variables on a general graph.

Assume that we have a graph G = (V,E) with nodes V
and edges E, where each variable corresponds to a node on
the graph. Then, such a generalization is given as

min
β∈Rd

1

2
‖y −XTβ‖22 + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |.

(2)
In general, Generalized Fused Lasso (GFL) is referred to as
Eq. (2).

In this paper, we propose to solve a further generalization
of the above problem with an arbitrary smooth convex loss
l : Rd → R:

min
β∈Rd

l(β) + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |, (3)

which we also refer to as GFL in this paper. The benefit of
such a generalization will soon be clear in the application.

Existing Algorithms
The first algorithm solving Fused Lasso, i.e. Eq. (1), pro-
posed by (Tibshirani et al. 2005), is based on the two-phase
active set algorithm SQOPT (Gill, Murray, and Saunders
1999). This algorithm can be extended to GFL and imple-
mented using an off-the-shelf convex optimization solver.
However it usually does not scale to high dimensional prob-
lems. Proximal gradient methods, such as the fast itera-
tive shrinkage-thresholding algorithm (FISTA) (Beck and



Teboulle 2009), solves a convex problem whose objective
consists of both smooth and non-smooth parts. Applying
FISTA, Liu et. al. proposed to solve Eq. (1) by designing
specific proximal operators (i.e., generalized projections)
(Liu, Yuan, and Ye 2010). Although their algorithm is ef-
ficient and scalable for the 1D case, in principle, it cannot
be extended to GFL. Friedman et. al. has proposed a path-
wise coordinate descent algorithm for a special case of Eq.
(2) (Friedman et al. 2007), where the design matrix X is the
identity matrix. The reported efficiency of the algorithm is
impressive, but as claimed in (Friedman et al. 2007), this al-
gorithm has no guarantee to find exact solutions for general
problems. In (Tibshirani and Taylor 2011), a solution path
algorithm is proposed for Eq. (2). This algorithm solves it
for all possible parameters (λ’s) by finding “critical” chang-
ing points in a dual problem, which however, tend to be very
dense in large problems.

In this paper, we propose an efficient and scalable algo-
rithm for solving GFL. Using proximal methods (FISTA),
the key building block of our algorithm is the Fused Lasso
signal approximation (FLSA). Based on the fact that the
fusion penalty is the Lovász extension of a cut function,
we apply a parametric flow algorithm and then the soft-
thresholding method to finally efficiently solve FLSA. The
proposed algorithm can find an exact solution of GFL and
also can be implemented with a stable and efficient paramet-
ric flow solver. The runtime experiments show that the speed
of the proposed algorithm is competitive with the state-of-
the-art 1D Fused Lasso algorithms and significantly outper-
forms the existing algorithms for GFL, especially on high
dimensional data.

Motivation: the Diagnosis of Alzheimer’s Disease
Our work is motivated by a challenging real-world applica-
tion, the diagnosis of Alzheimer’s Disease (AD) problem.
This is usually formulated as a classification task, where
structural magnetic resonance images (sMRI) of human
brains are used as input. Because of its practical benefit, this
problem is attracting more and more researches from fields
like medical image analysis and machine learning. Since the
dimensionality of brain images can be as high as millions,
whereas the number of available samples is usually limited,
e.g. in hundreds, a proper regularization is needed.

Critical brain voxels should be both sparse and spatially
assembled into several early damaged anatomical regions.
Existing methods either assume independence between vox-
els (e.g. univariate selection (Dai et al. 2012)), or use Vol-
ume Of Interest (VOI) (Zhou et al. 2011) as processing unit
which loses much pathological information, and therefore
might not be sensitive enough for early diagnosis.

Considering the structure of a brain sMRI as a 3D grid
graph, we propose to formulate the diagnosis of AD as GFL.
However, the existing algorithms do not scale enough to
solve this problem in feasible time. We demonstrate the ef-
fectiveness of the proposed algorithm, which not only solves
it within limited memory and time, but achieves promising
classification accuracy, which is among the state-of-the-art.
Also, the selected voxels are well structured – being con-
nected, consistent in cross-validation and in accordance with

clinical prior knowledge.

Efficient Optimization for GFL
In this section, we propose an efficient and scalable opti-
mization for GFL. We first introduce the fast iterative shrink-
age thresholding algorithm (FISTA), which is applied to
solve GFL by iteratively calculating proximal operators. For
GFL, we show that the computation of the proximal opera-
tor is formulated as one of the Fused Lasso signal approx-
imations (FLSA). We then propose a parametric optimiza-
tion formulation to efficiently solve FLSA: we introduce a
soft-threshold strategy to remove the sparse term, transform
FLSA to a minimum-norm-point problem under a submod-
ular constraint, prove its equivalence to recursively solving
graph cuts and solve this problem via a parametric flow
method.

Proximal Methods and Fused Lasso Signal
Approximation
In smooth convex problems, it was shown (Nesterov 2004)
that there exists a gradient method with O(1/k2) complex-
ity, which is an “optimal” first order method in the sense
of (Nemirovsky and Yudin 1983). By extending the Nes-
terov’s method to the general case with non-smooth terms,
FISTA achieves the same complexity (Beck and Teboulle
2009). FISTA has been applied to various sparse learning
problems, e.g., (Beck and Teboulle 2009; Bach 2010), and
for 1D Fused Lasso, e.g. (Liu, Yuan, and Ye 2010). We also
apply FISTA to solving GFL in this paper.

It is known that for the optimization of any smooth objec-
tive function l(β) can be achieved by a gradient method; the
updating rule of β at each iteration, in general, can be seen
as a proximal regularization to the linearization of l() at the
previous βk (k is the iteration index), (Polëiı̀ak 1987) i.e.,

βk+1 = argmin
β

{
l(βk)

+ 〈β − βk,∇l(βk)〉+
L

2
‖β − βk‖22

}
,

(4)

where L > 0 is the Lipschitz constant of l().
Let us denote the regularization terms in Eq. (3) as

Ω(β) = λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |.

When there is a non-smooth part Ω(β) in the objective
function of GFL (Eq.(3)), using FISTA, the updating rule
turns into

βk+1 = argmin
β

{
l(βk) + 〈β − βk,∇l(βk)〉

+
L

2
‖β − βk‖22 + Ω(β)

}
,

(5)

where the minimization admits a unique solution. After
some simple manipulation of Eq.(5) (ignoring some constant



term of βk), we have

βk+1 = argmin
β

{
Ω(β) +

L

2

∥∥∥β − (βk −
1

L
∇l(βk))

∥∥∥2
2

}
.

(6)
Thus, the key to solve Eq. (3) is how efficiently we solve

Eq. (6). The optimization Eq. (6) can be rewritten as

min
β∈Rd

1

2
‖β − z‖22 + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |, (7)

where z = βk − 1
L∇l(βk), and λ1 and λ2 are scaled from

Eq. (3) by L. Problem (7) is equivalent to FLSA defined in
(Friedman et al. 2007; Tibshirani and Taylor 2011).

An Efficient Solution to FLSA by Parametric Flow
To our best knowledge, there lacks an efficient method to
solve FLSA for high-dimensional problems in the literature.
In this paper we propose an efficient solution to the mini-
mization problem Eq.(7) using a parametric flow method.

L1 Soft-Thresholding Let first denote the objective in
Eq. (7) by f(β;λ1, λ2) and βλ1

λ2
= arg minβ f(β, λ1, λ2).

We then introduce the following lemma (Friedman et al.
2007; Liu, Yuan, and Ye 2010) :

Lemma 1. For any λ1, λ2 ≥ 0, we have

βλ1

λ2
= sign(β0

λ2
)�max(|β0

λ2
| − λ1, 0), (8)

where � is an element-wise product operator.

From Eq. (8), a solution to Eq. (7) can be obtained through
a soft-thresholding process (Donoho and Johnstone 1995),
which is often applied to solve Lasso problems.

Based on this lemma, we first solve the following prob-
lem:

β0
λ2

= argmin
β

1

2
‖β − z‖22 + λ2

∑
(i,j)∈E

|βi − βj |. (9)

Then, using Eq.(8), a soft-threshold process to β0
λ2

w.r.t λ1,
we have a solution to Eq. (7).

Minimum-Norm-Point Problem under Submodular
Constraint According to Lemma 1, we can leave the L1

term aside and focus on the fusion term (i.e., Problem (9))
to calculate the proximal operator. However, since the sec-
ond term of Eq.(9) is non-smooth and non-separable w.r.t.
β, its optimization is still not trivial 1. In order to develop an
efficient algorithm for Problem (9), we consider transform
Problem (9) to a minimum-norm-point (MNP) problem un-
der submodular constraint.

First, we prove the following lemma, which describes a
relation between the fusion penalty and a cut function.

1(Goldfarb and Yin 2009) has applied a parametric flow algo-
rithm to solve (9), which is nontrivial to be extended to exact GFL,
mainly because of both the theoretic gap we bridge over and their
discretized formulation and optimization, where β, z ∈ Zd

+.

Let denote by V := {1, . . . , d} a finite set. Given a set of
non-negative weights w : V × V→ R+, a cut function of a
set S ⊆ V is defined by

fc(S) =
∑

i∈S,j∈V\S

wij , (S ⊆ V).

Lemma 2. The fusion term
∑

(i,j)∈E |βi − βj | is equivalent
to the Lovász extension of a cut function.

Proof. We define the weights of the cut function wij = 1 if
(i, j) ∈ E and 0 otherwise, which results in a cut function

fc(S) =
∑

(i,j)∈E,i∈S,j∈V\S

1.

We denote (j1, ..., jd) is a decreasing ordering index such
that βj1 ≥ · · · ≥ βjd and Uk := {j1, ...jk} is a subset.
Applying the definition of the Lovász extension (Fujishige
2005), we have

f̂c(β) =

d∑
k=1

βjk(fc(Uk)− fc(Uk−1))

=

d∑
k=1

(−
∑

(i,jk)∈E,i∈Uk

βjk +
∑

(i,jk)∈E,i∈V\Uk

βjk)

=
∑

(i,j)∈E,βi≥βj

(βi − βjk) +
∑

(i,j)∈E,βi<βj

(βj − βi)

=
∑

(i,j)∈E

|βi − βj |.

Similarly, for arbitrary non-negative weightswij , the Lovász
extension of the cut function can be shown equal to∑

(i,j)∈E wij |βi − βj |.

With this lemma, we can rewrite Eq. (9) as

min
β∈Rd

1

2
‖β − z‖22 + λ2 · f̂c(β), (10)

Since a cut function is submodular, this optimization prob-
lem can be transformed to a minimum-norm-point problem
under a submodular constraint:
Proposition 3. Problem (10) is equivalent to the following
problem:

min
t∈Rd,t∈B(fc−λ−1

2 z)
‖t‖22, (11)

whereB(•) is the base polyhedron of a submodular function
•. A minimizer β∗ of Problem (10) is obtained by β∗ =
−λ2t∗, where t∗ is a minimizer of Problem (11).

Proof. From the definition of the Lovász extension, we have
f̂c(β) = maxs∈B(fc) β

T s (Fujishige 2005). Hence, we have

min
β

1

2
‖β − z‖22 + λ2 · f̂c(β)

= min
β

max
s∈B(fc)

1

2
‖β − z‖22 + λ2 · βT s

= max
s∈B(fc)

−1

2
‖λ2s− z‖22 +

1

2
‖z‖22 (since β∗ = z− λ2s)

⇔ min
s∈B(fc)

‖s− λ−12 z‖22



Let t = s − λ−12 z and, with the basic property of the base
polyhedron of a submodular function, we have

min
s∈B(fc)

‖s− λ−12 z‖22 ⇔ min
t∈B(fc−λ−1

2 z)
‖t‖22

From the derivation, it follows β∗ = −λ2t∗.

For general submodular functions, Problem (11) is
solvable using submodular minimization algorithms, such
as the minimum-norm-point (MNP) algorithm (Fujishige,
Hayashi, and Isotani 2006). However, since the fastest com-
plexity of submodular minimization isO(d5EO+d6) (Orlin
2009), this approach to our high-dimensionality scenario is
infeasible in practice.

Parametric Graph Cut We utilize a parametric property
of the MNP problem and apply a parametric flow algorithm,
which can run much more efficiently, to solve Problem.(11).

A set function g(S) = fc(S)−λ−12 z(S) in Eq. (11) is the
sum of a cut function and a modular function, which is still
submodular (but, not necessarily, non-decreasing). Thus,
Problem (11) is a special case of a separable convex min-
imization problem under submodular constraints (Nagano
and Aihara 2012), which can be solved by parametric opti-
mization (if the submodular function is non-deceasing). We
will describe how to satisfy the non-deceasing requirement
later in Lemma.4 & 5.

For a parameter α ≥ 0, we define a set function gα(S) =
g(S)− α · 1(S). If g is a non-decreasing submodular func-
tion, there exists l + 1 (≤ d) subsets

S∗ = {(∅ =)S0 ⊂ S1 ⊂ . . . ⊂ Sl (= V)} ,

and l + 1 subintervals of

R0 = [0, α1), R1 = [α1, α2), . . . , Rl = [αl,∞),

such that, for each j ∈ {0, . . . , l}, Sj is the unique maxi-
mal minimizer of gα(S) for all α ∈ Rj (Nagano and Ai-
hara 2012). Then, the unique optimal solution t∗ ∈ Rd
to Problem (11) is determined by, for each i ∈ V with
i ∈ Sj+1 \ Sj (j ∈ {1, . . . , l − 1}),

t∗i =
fc(Sj+1)− fc(Sj)

1(Sj+1 \ Sj)
. (12)

That is, by computing the unique maximal minimizer of gα
for some appropriately chosen α’s, we can find all Sj’s and
therefore t∗. One possible option of finding all “proper” α’s
would be to apply the decomposition algorithm (Fujishige
2005; Nagano and Aihara 2012).

As stated above, in order to apply the above procedure,
g has to be a non-decreasing function. We first introduce
two lemmas from (Nagano and Kawahara 2013) to apply
the above to g:

Lemma 4. For any γ ∈ R and a submodular function f ,
t∗ is an optimal solution to mint∈B(f) ‖t‖22 if and only if
t∗ + γ1 is an optimal solution to mint∈B(f+γ1) ‖t‖22.

Lemma 5. Set γ = maxi=1,...,d{0, f(V \{i})−f(V )}, then
f + γ1 is a nondecreasing submodular function.
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Figure 1: Construction of an s-t graph for Problem (13).
Given a graph G = (V,E) for GFL, the capacities on edges
are defined as in the following: c(vi, vj) = wij (i, j ∈ V ),
cs,vi = λ−12 zi−(γ−α) if λ−12 zi < γ−α or cs,vi = 0 other-
wise (i ∈ V ), and cvi,t = (γ−α)−λ−12 zi if λ−12 zi > γ−α
or cvi,t = 0 otherwise (i ∈ V ), where cs,vi and cvi,t mean
the capacities on source-to-node and node-to-sink edges.

Applying Lemma 5 to our case with f := g, we solve

min
S⊂V

fc(S)−λ−12 z(S) + (γ−α) · 1(S) (:= g′α(S)). (13)

and then apply Lemma 4 to obtain a solution of the original
problem. Due to the specific form of Problem (13), we can
solve it as an easier problem:
Proposition 6. For any cut function fc, Problem (13) is
equivalent to an s-t cut problem with the s-t graph defined
as in Figure 1.

Proof. Problem (13) is composed of modular terms and a
submodular pairwise term. This is a typical F2 type energy
function (Kolmogorov and Zabin 2004), which is known to
be “graph-representable” and to be able to be minimized via
graph-cut algorithms. Hence, by following the construction
way of an s-t graph by (Kolmogorov and Zabin 2004), we
can solve Problem (13) by solving a s-t cut on this graph.
Note that a detailed proof of a similar problem can be found
also in (Azencott et al. 2013).

As a consequence, we can obtain a solution to Eq. (11) by
solving s-t cut problems for some different α’s:

Find minimum s-t cuts w.r.t. Eq. (13) for α ≥ 0. (14)

However, since the parameter α affects only edges from the
source node or to the sink node, we do not need to search
α’s that give different solutions. That is, as can be seen from
the construction of the s-t graph, the capacities on source-to-
node or node-to-sink edges have the following properties: (i)
the capacities on source-to-node edges are non-decreasing
functions of α; (ii) the capacities on node-to-sink edges are
non-increasing functions of α; (iii) the capacities on node-
to-node edges are constant with respect to α. For such cases,
it is known that the parametric flow algorithm by (Gallo,
Grigoriadis, and Tarja 1989) (GGT algorithm) can be ap-
plied to find all solutions for all α ∈ R. Hence, we can
obtain the sequence of solutions to Problem (13) for dif-
ferent α’s by just applying GGT algorithm, which runs in
O(d|E| log(d2/|E|) at the worst case.



Runtime Comparison
We investigated the efficiency of the proposed algorithm, ab-
breviated as fGFL (fast Generalized Fused Lasso). All ex-
periments were carried out on an Intel(R) Xeon(R) E5-2687
CPU at 3.10GHz with 64G memory. Our implementation of
FLSA is written in C++ and FISTA in Matlab.2

As mentioned above, several algorithms have been pro-
posed for FLSA and GFL. Here we compare the proposed
fGFL with the following state-of-the-arts:
• SLEP package (Liu, Ji, and Ye 2009; Liu, Yuan, and Ye

2010): Implemented with Matlab and C for 1D Fused
Lasso and 1D FLSA.

• SPAMS (Mairal et al. 2011): Implemented with C for 1D
Fused Lasso and 1D FLSA.

• “flsa” R package: Implemented with R for general FLSA
and includes accelerated implementations for 1D and 2D
(grid) FLSA.

• “genlasso” R package (Tibshirani and Taylor 2011): Im-
plemented with R for generalized Fused Lasso and in-
cludes accelerated implementations for 1D and 2D (grid)
Fused Lasso (Note that these are limited to the cases of
N ≥ d.).

• CVX (Grant, Boyd, and Ye 2008): This is a general con-
vex optimization toolbox. We used its general-use opti-
mizer for GFL and FLSA.

We compared the algorithms in the application to 1D and
2D case of FLSA defined in Eq. (7) and GFL defined in Eq.
(2). Note that the proposed fGFL can be applied to a more
general case Eq. (3), where most existing algorithms do not
work. We will demonstrate the advantage of Eq. (3) and our
solution in the application to the AD problem.

We generated data for the runtime comparison in the fol-
lowing way. First, for 1D Fused Lasso i.e. Eq. (1), we set pa-
rameterβ as: βi = 0.5 for i ∈ {d/2−d/20, . . . , d/2+d/20}
and 0 otherwise. For 2D Fused Lasso, we set βi,j = 0.5 for
i, j ∈ {d/2 − d/20, . . . , d/2 + d/20} and 0 otherwise. For
FLSA defined in Eq. (7), we set z = β + 0.05e, where e
is a noise vector drawn from the standard normal distribu-
tion. For GFL as in Eq. (2), we generated N = d samples
(because ”genlasso” cannot solve Eq. (2) when N < d):
xi ∈ Rd and yi = βTxi+0.05ei, xi and ei for i = 1, . . . , N
are drawn from the standard normal distribution. We fixed
λ1, λ2 = 0.1 and applied the algorithm for different dimen-
sion d’s to compare the runtime. The graphs in Figure 2 and
3 show the runtimes by the algorithms.

The algorithm using the standard optimizer (e.g., CVX)
needs to handle the huge difference matrix D ∈ Rd×|E| for
high-dimensional problems. This results in a memory short-
age. The number of “critical” points found by “genlasso” ex-
plodes in high-dimensional problems, so we used the setting
of “maxsteps=10,000” (this means “genlasso” will find at
most 10,000 critical points). Both reasons explain for some
missing comparisons in the Figure 2 and 3. Nevertheless, as
illustrated, in 1D cases, our algorithm is not the fastest but
competitive with the faster ones. In general cases of GFL

2The codes can be found on the co-authors homepage.
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Figure 2: FLSA Runtime comparison (in seconds) by differ-
ent algorithms along dimensionality d.
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Figure 3: GFL Runtime comparison (in seconds) by different
algorithms along dimensionality d.

(e.g. 2D), our algorithm ran the fastest, with tens to hun-
dreds times speed-up.

Application to Alzheimer’s Disease Problem
Alzheimer’s Disease data used in this experiment were ob-
tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database3. We used 1.5T MRI images of 62
AD patients, 71 NCs (healthy controls) and 141 MCIs (Mild
Cognitive Impairment), 54 of them converted to AD (MCIC)
and 87 others did not (MCIS). Preprocessing was performed
following DARTEL VBM pipeline (Ashburner 2007). 2,873
8×8×8 mm3 sizes voxels with values larger than 0.2 in the
mean grey matter population template are used as features.

In the diagnosis of AD, two fundamental issues are
AD/NC classification and MCI conversion prediction
(namely MCIC /MCIS classification). Let xi ∈ Rd be sub-
ject’s sMRI features and yi = {0, 1} be subjects’ disease
status (AD/NC or MCIC /MCIS). Since our algorithm is ap-
plicable for smooth convex loss, we used logistic regression
loss for such a classification task and formulate the problem
as GFL in the following way

min
β∈Rd,c∈R

N∑
i=1

log (1 + exp (−yi(βTxi + c))) + λΩ(β).

(15)
Notice that, even if we adopt the least square loss as in Eq.
(2), other existing algorithms are not feasible in practice.

3http://adni.loni.ucla.edu
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Figure 4: Consistency of selected voxels over different folds of cross validation. The results of 5 different folds are shown in (a)-(e) respec-
tively and the overlapped voxels of all 10 folds are shown in (f). The top row illustrates the results from GFL and the bottom row shows the
results from L1. The percentages of the overlapped voxels are: GFL(66%) vs. L1(22%).

Table 1: Comparison of classification accuracies in the
Alzheimer’s Disease problem.

Task LR SVM LR+L1 LR+GFL
AD/NC 80.45% 82.71% 81.20% 84.21%

MCI 63.83% 67.38% 68.79% 70.92%

We compared GFL to logistic regression (LR), Support
Vector Machine (SVM), and logistic regression with L1 reg-
ularizer. The obtained classification accuracies with 10-fold
cross validation (CV) are shown in Table 1. As can be seen,
GFL achieves the highest accuracy in both tasks. Though
on the same dataset, works are not strictly comparable be-
cause different work might use a different part of the dataset.
Nevertheless, our results are among the state-of-the-art. In
(Cheng, Zhang, and Shen 2012), their best performance on
MCI tasks is 69.4% while ours reaches 70.92%. In (Chu et
al. 2012), using similar sample size, our performance on
ADNC tasks is comparable with or better than all theirs
(84.21% vs. 81-84%) and our performance on MCI tasks is
much better (70.92% vs. 65%).

We applied GFL to all samples with the optimal parame-
ter setting determined by CV. In Figure 5, we compare the
selected voxels with non-structured sparsity (i.e.L1). We see
that the selected voxels by GFL cluster into several spatially
connected regions, while the selected voxels by L1 scatter
around. We considered the voxels corresponding to the top
50 negative βi’s as the most atrophied voxels and projected
them onto a slice. We see that the selected voxels of GFL
are concentrated in Hippocampus, ParaHippocampal gyrus,
which are believed to be early damaged regions related to
A.D. On the other hand, L1 either selects less critical voxels
or probably selects noisy voxels not in the early damaged
regions (see Figure 5(b) and 5(c) for an illustration). The se-
lected voxels by GFL are also much more consistent than
those selected by L1, the percentage of overlapped voxels
across 10-fold of cross validation is GFL(66%) vs.L1(22%).

(a) (b) (c)

Figure 5: Compare GFL with L1. The top row illustrates the se-
lected voxels in a 3D brain model, the mid row shows the top
50 atrophied voxels, the bottom row shows the projection onto a
brain slice. (a) GFL (best accuracy 84.21%); (b) L1 (best accuracy
81.20%); (c) L1 (using a similar number of voxels as in GFL).

An illustration can be seen in Figure 4.

Conclusions
In this paper, we proposed an efficient and scalable algo-
rithm for generalized Fused Lasso. We showed that the pro-
posed algorithm significantly outperform the existing ones.
Leveraging the efficiency and scalability of the proposed al-
gorithm, we formulated the diagnosis of AD as GFL. Not
only does GFL achieves the state-of-the-art classification ac-
curacies, but the selected critical voxels are well structured.
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