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Abstract— Images coded at low bit rates in real-world appli-
cations usually suffer from significant compression noise, which
significantly degrades the visual quality. Traditional denoising
methods are not suitable for the content-dependent compression
noise, which usually assume that noise is independent and
with identical distribution. In this paper, we propose a unified
framework of content-adaptive estimation and reduction for
compression noise via low-rank decomposition of similar image
patches. We first formulate the framework of compression noise
reduction based upon low-rank decomposition. Compression
noises are removed by soft thresholding the singular values in
singular value decomposition of every group of similar image
patches. For each group of similar patches, the thresholds are
adaptively determined according to compression noise levels and
singular values. We analyze the relationship of image statistical
characteristics in spatial and transform domains, and estimate
compression noise level for every group of similar patches from
statistics in both domains jointly with quantization steps. Finally,
quantization constraint is applied to estimated images to avoid
over-smoothing. Extensive experimental results show that the
proposed method not only improves the quality of compressed
images obviously for post-processing, but are also helpful for
computer vision tasks as a pre-processing method.

Index Terms— Block transform coding, compression noise,
patch clustering, denoising, low-rank, SVD.

I. INTRODUCTION

ALONG with the fast development of portable digital
devices, e.g., digital cameras and smart phones, more

and more images and videos are captured and shared
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through Internet or mobile networks. Due to the limitation
of bandwidth, the shared images and videos are usually
compressed at low bit rates, and their qualities are severely
degenerated by compression noise. These low quality images
are not only with poor user experience but also deteriorate
the performance of many computer vision algorithms, which
are mainly designed for uncompressed images and videos.

In order to improve the quality of compressed images,
there are lots of image denoising methods proposed in recent
years. Most of the existing denoising algorithms assume
additive white Gaussian noises, which are independent and
with identical distribution in a whole image. In general denois-
ing procedures, the standard deviation of noise is usually
assumed known and utilized to control filtering strength to
avoid smoothing image structures excessively. However, in
practical scenarios, compression noise is content correlated
and is also difficult to estimate with existing noise level
estimation methods.

In this paper, we investigate the compression noise estima-
tion and reduction for block-discrete cosine transform (BDCT)
based compression. Since compression noises are mainly gen-
erated by quantizing transform coefficients, they are dependent
on the distribution of coefficients. To remove compression
noise as much as possible, we propose a content-aware method
to reduce compression noise by dividing images into dif-
ferent groups of similar image patches. For each group of
similar image patches, we formulate the compression noise
reduction as a low-rank optimization problem, and solve it
via soft-thresholding the singular values in singular value
decomposition (SVD) of group of similar image patches. Since
the thresholds for singular values are directly related with
compression noise levels, we also propose a content-dependent
compression noise estimation algorithm. First, we derive the
distribution parameters of coefficients from image correlation
model. Then, we derive the standard deviation of compression
noise for each group according to coefficient distribution and
quantization steps. Finally, we take the weighted average of
all these estimated patches to restore original images. To avoid
over-smoothing, narrow quantization constraint (NQC) [1] is
applied to the restored image. Therefore, our method with
content-dependent noise estimation is different from previous
works, which only utilize a global noise level by assuming
i.i.d for compression noise. Extensive experimental results
show that our method can significantly improve the quality of
compressed images, and it is also helpful for computer vision
tasks as a pre-processing method.
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TABLE I

MAIN NOTATIONS AND THEIR DESCRIPTIONS

The remainder of this paper is organized as follows.
Section II reviews related works and introduces useful nota-
tions. Section III introduces the framework of the pro-
posed compression noise reduction method based on low-rank
decomposition. Section IV introduces the proposed content-
dependent compression noise estimation method for each
group of similar image patches. The iterative implementation
of the proposed method is introduced in Section V. Section VI
report and analyses the experimental results, and conclusion
of this paper is in Section VII.

II. RELATED WORKS

In this section, a few concepts and notations related with
block transform image coding are briefly reviewed. Then, we
review the image compression noise reduction methods and
the compression noise level estimation methods, respectively.
The main notations in this paper are listed in Table I.

A. Block Transform Image Coding

Block transform coding is the most widely used image
coding framework, in which the block discrete cosine trans-
form (BDCT) is adopted by most of popular image/video
coding standards, e.g., JPEG [2]. In a typical BDCT coding
framework, an input image, I, is divided into non-overlapped
N × N blocks. Each block is transformed into frequency
domain using DCT, and then the transform coefficients are
quantized independently, and compressed by entropy coding.
At the decoder side, the inverse procedure is carried out to
reconstruct images. The whole process can be described as,

XB = T (xB), (1)

YB(u, v) = round

(
XB(u, v)

Q(u, v)

)
Q(u, v), (2)

where T is a transform operator, and xB and XB are the
original image data of block B in spatial domain and trans-
form domain respectively. Q(u, v) is the quantization step

for frequency band (u, v) and round(·) means rounding real
values into their nearest integers. YB(u, v) is the reconstructed
coefficient.

During the above process, the main source producing com-
pression noise is quantization in Eqn.(2). Since coefficients in
high frequency bands are very small for most image blocks,
the quantization operator may directly make them zeros,
which leads to insufficient coefficients to represent image local
structures and may generate ringing artifacts around edges.
In addition, due to the loss of inter-block correlation in quan-
tization process, similar coefficients in neighboring blocks may
be quantized into different ranges, which leads to discontinu-
ities at block boundaries, referred as to be blocking artifacts.
We will consider these distortions due to lossy compression
as a specific type of content correlated noise in the following
sections of this paper.

B. Compression Noising Reduction Methods

During the past three decades, numerous image denoising
methods have been proposed in the image processing field.
These methods can be roughly classified into two categories,
general denoising methods and specific denoising methods.
General denoising methods usually assume noise following
independent identical distribution, and utilize some image
prior models, e.g., local smoothness priors and sparse priors,
to depress the noise magnitudes, which do not conform
with image prior models. Besides the image prior models,
specific denoising methods further take advantage of some
side information on noise to improve their performance, e.g.,
quantization steps in compression noise reduction. This paper
will focus on compression noise reduction problem.

Although general denoising methods also can alleviate the
compression artifacts, e.g., BM3D [3] and CSR [4], their
performances are not as good as that in removing noise with
independent identical distribution (i.i.d). Therefore, a lot of
denoising methods specially designed for compression noise
are proposed in literatures, e.g., [5]–[20]. Reeve and Lim [5]
smooth out the blocking artifacts by directly applied a 3 × 3
Gaussian filter to the boundary pixels. In [6], a nonlinear
space-variant filters based on edge-oriented classifiers
is utilized to reduce blocking artifacts while preserving
image edges. To avoid oversmoothing image textures,
Minami and Zakhor [7] utilized the quantization intervals
of transform coefficients as a convex set to constrain the
filtered coefficients. In the latest video coding standards,
e.g., HEVC [8], the strength of deblocking filter is adaptive
according to coding modes, and the adaptive loop filter (ALF)
[9], [10] in HEVC is utilized to reduce the coding artifacts by
deriving Wiener filters in encoder side. Maggioni et al. [21]
extended BM3D by utilizing temporal information to reduce
video compression noise and estimated a global noise level
for each frame based on quantization steps.

Besides the filtering approaches, there are also many
compression noise reduction schemes with probability
estimation based on image prior models. Sun and Cham [11]
used a high order Markov random field (MRF) to mode
original images based on the field of experts (FoE) framework
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to reduce compression noise. Zhang et al. [12], [13] proposed
a multi-prediction adaptive fusion framework to remove
compression noise with multiple image prior models.
Ren et al. [14] applied low rank constraint to groups of
similar image patches to reduce compression artifacts, and
Zhang et al. [20] further improved this method by estimating
noise level adaptively. Chang et al. [15] first learned a dictio-
nary from compressed image, and then restored latent original
image by jointly minimizing image total variations and differ-
ence between estimated image and its sparse representation
with learned dictionaries. Liu et al. [16], [22] introduced
quantization in DCT domain dictionary learning, and proposed
to remove compression noise by jointly sparse coding for
compressed images in spatial and transform domains.
There are also numerous methods specially designed for
compression noise reduction in literatures, e.g., [17] and [18].

C. Noise Level Estimation

Noise level, e.g., standard deviation of noise, is generally
utilized to adjust the filtering strength of denoising. However,
in practice, the noise level is unknown and need to be
estimated from noisy images, which is also a difficult problem,
especially for content correlated noise. An intuitive method to
estimate noise level is to calculate the standard deviation of
difference between noisy image and filtered image by low-
pass filter [23]. Obviously, this method is difficult to get
accurate noise level estimation, because low pass filter is
inefficient to remove content-dependent noises. Based on i.i.d
assumption, Lee [24] proposed to calculate standard deviation
of noise from homogeneous regions, where pixel variance is
mainly dominated by noise. However, it is also a difficult
problem to identify the homogeneous regions in noisy images.
Sutour et al. [25] proposed a non-parametric approach to
detect homogeneous regions based on Kendall’s τ coefficient
and estimated noise level function of stationary noise assuming
that the noise is spatially uncorrelated.

Considering image sparsity in transform domain, Donoho
proposed to estimate noise variance from the coefficients
in diagonal bands of image wavelet decomposition [26].
Liu et al. [27] estimated content uncorrelated noise level
from single image by applying PCA to weak texture
patches. Ponomarenko et al. [28] utilized the K most similar
blocks in an image to estimate noise variance by applying
median filtering operation to these blocks in DCT domain.
Colom et al. [29] further extended the method in [28] to
estimate the variance of noise according to the intensity and
the frequency. Ponderated MSE is proposed to measure the
similarity among image patches to reduce the negative effects
of noise, by giving higher importance to the low frequencies
of the blocks. Colom et al. [30] further proposed a multi-
scale approach to improve the estimation accuracy for noise
low frequencies, which may not be captured by a small
image patch in original resolution. This method efficiently
improves the performance of the intensity-frequency depen-
dent noise reduction [31]. However, the compression noise is
more complex, and is difficult to describe by a simple model,
e.g., polynomial, based on image intensity and frequency.

Fig. 1. Framework of content-dependent compression noise level estimation
and reduction.

Furthermore, for images compressed at very low bit rates,
these methods can be inefficient to estimate noise level since
noise is highly correlated. This is also explained in the
conclusion section of [30].

III. COMPRESSION NOISE REDUCTION

VIA LOW-RANK DECOMPOSITION

In this section, we introduce the framework of the
proposed compression noise reduction method via low-
rank decomposition, which is illustrated in Fig.1. The top
part shows the framework of the compression noise level
estimation method, and the bottom part shows the framework
of the proposed compression noise reduction method. Herein,
the adaptive thresholds with content-dependent noise level
in noise reduction method and the corresponding content-
dependent estimation method for compression noise are the
main contributions of this paper.

In the proposed compression noise reduction method, a
compressed image, Iy, is divided into a set of overlapped
p × p image patches firstly, denoted as target patches, which
are extracted every s pixels (denoted as overlapped step) along
raster scanning order, and they are overlapped when s < p.
For each target patch, the K most-similar patches (including
itself) are found in a R×R neighborhood around it (R = 31 in
this paper), and these similar patches are denoted as reference
patches and selected according to their similarity measured
with the following equation,

d j = ‖yt − y j ‖2
F , (3)

where yt and y j are target patch and reference patch respec-
tively, which are rearranged into vectors according to row-
major order. ‖·‖2

F is the Frobenius norm of patch vector. After
that, the compressed image is organized into different image
patch groups, and each group of image patches are arranged
into a matrix,

YGi =
[

y(1)
Gi

, y(2)
Gi

, · · · , y(K )
Gi

]
. (4)
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We call this procedure Patch clustering as shown in Fig.1.
Since compression noise levels for image patches with similar
structure are usually approximate, a potential advantage of
similar patch clustering is that it is convenient to adjust the
control parameters of denoising algorithms according to image
content group by group.

In order to reduce compression noise, we assume the
compression noise as additive one, and the noisy image patch
matrix can be rewritten as,

YGi = XGi + NGi (5)

where XGi and NGi are the corresponding original image
patch matrix and compression noise matrix respectively. Since
column elements in YGi are similar image patches, the matrix
is able to be approximated via low-rank decomposition [14].
Then, compression noise reduction can be formulated as the
following low-rank optimization problem,

min
XGi

‖YGi − XGi ‖2
F , s.t . rank

(
XGi

)
≤ τ. (6)

Due to the rank of XGi equal to the number of its non-
zero singular values, it is difficult to solve efficiently. In order
to solve the optimization problem in Eqn.(6), we take Nuclear
norm [32] of XGi to approach its rank as done in many existing
works (such as [33]),

‖XGi ‖∗ = trace(
√

X∗
Gi

XGi ) =
min(p2,K )∑

k=1

λ′
k,Gi

, (7)

where p2 and K are the dimensions of matrix XGi in row and
column directions respectively. λ′

k,Gi
is the kth singular value

of XGi . In further, based on the Lagrange multiplier method,
the problem in Eqn.(6) can be rewritten as,

X̂Gi = arg min
XGi

‖YGi − XGi ‖2
F + τ‖XGi ‖∗, (8)

There are lots of methods ([33]–[35]) proposed to solve
the low-rank constraint optimization problem in Eqn.(8).
In this paper, we apply the soft-thresholding method to sin-
gular values to solve the problem considering its efficiency
and less parameters to adjust. The solution to the problem in
Eqn.(8) is as follows,⎧⎪⎨

⎪⎩
YGi = UGi �Gi V

∗
Gi

�τ ,Gi = Dτ (�Gi )

X̂Gi = UGi �τ ,Gi V
∗
Gi

,

(9)

where Dτ (·) is a nonlinear function which applies a soft-
thresholding rule at level τ to the singular values of the input
matrix. Traditional methods, e.g., [4] and [14], utilize a global
noise level to control the threshold for different image patch
groups,

τk,Gi = γ σ 2
n√

λ′
k,Gi

, (10)

where σn is the standard deviation of compression noise for
the whole image, and γ is a constant. λ′

k,Gi
is estimated by,

λ′
k,Gi

=
√

λk,Gi − σ 2
n , (11)

where λk,Gi is the kth singular value of YGi . This procedure
is denoted as Signal Power Estimation of Fig.1, which is the
same as that in [4] and [14]. And the soft-thresholding Dτ (·)
for the kth singular value is defined as,

Dτ (λk,Gi ) =
{

λk,Gi − τk,Gi sign(λk,Gi ), i f |λk,Gi | > τk,Gi

0, i f |λk,Gi | ≤ τk,Gi ,

(12)

Therefore, �τ ,Gi is the singular value matrix with the
shrunken singular values.

In this paper, we proposed an adaptive soft-thresholding
method to improve the performance of compression noise
reduction via content-dependent noise level estimation.
We estimate compression noise level for every image patch
group, which is shown in the upper part of Fig.1. In our
method, the threshold for the kth singular value of image patch
matrix YGi is,

τk,Gi = γ σ 2
n,Gi√

λ′
k,Gi

, (13)

λ′
k,Gi

=
√

λk,Gi − σ 2
n,Gi

. (14)

The standard deviation of compression noise, σn,Gi , is esti-
mated from the corresponding groups of similar image patches,
which is introduced in Section IV-B.

Considering the overlapping of image patches, there may
be multiple estimations for one pixel generated from different
groups. In order to reconstruct image while avoiding over-
smoothing, after all the image patch groups are processed
with soft-thresholding, we reconstruct image by taking the
weighted average of overlapped image pixels from different
image patches.

x̂(i, j) =
∑

B∈�i, j

wB x̂B(i ′, j ′). (15)

Here �i, j is the set of image patches including the pixel
x̂(i, j). (i ′, j ′) and (i, j) indicate the same pixel under the
image patch coordinate and the whole image systems, respec-
tively. wB is the weight for pixels in patch x̂B , which is
determined according to the rank of image patch matrix,

wB = 1

Z
max

(
(1 − r

M
),

1

M

)
, xB ∈ Gi ,

M = min(p2, K ), (16)

where r is the rank of the matrix YGi , and Z is a normal-
ized constant. The weight design is based on our denoising
assumption that similar image patch matrix is low-rank. If
a group of image patches are decomposed with less non-
zero singular values, they more conform to low-rank con-
straint and the corresponding estimation may be more reliable.
This procedure corresponds to the Weighted Reconstruction
of Fig.1.

In order to avoid oversmoothing, a narrow quantization
constraint operator is applied to DCT coefficients based on
the theory of narrow quantization constraint set (NQCS) [1],
which is also utilized in [17]. In this procedure,



4162 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2016

Fig. 2. Compression noise level variations for different images.

the reconstructed image from Eqn.(15) is further divided into
non-overlapped blocks as that in image coding process. For
each block, x̂B, we first transform it into DCT domain,

X̂B = T (x̂B) (17)

where T is the transform operation, e.g., 8 × 8 DCT in
JPEG. Then, each coefficient is processed with the narrow
quantization constraint operator as follows,

X̂B(u, v)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YB(u, v) + cQ(u, v)

2
,

i f X̂B(u, v) > YB(u, v) + cQ(u, v)

2
YB(u, v) − cQ(u, v)

2
,

i f X̂B(u, v) < YB(u, v) − cQ(u, v)

2
X̂B(u, v), others.

(18)

Here c (0 < c < 1) is a constant, and c = 0.7 in our proposed
method. This operation corresponds to the Quantization
Constraint of Fig.1.

IV. CONTENT-DEPENDENT COMPRESSION NOISE

LEVEL ESTIMATION VIA PATCH GROUPING

In this section, we first analyze the characteristics of
compression noise, and then introduce the proposed content-
dependent estimation method for compression noise via patch
grouping.

A. Compression Noise Analysis

Since compression noise is directly generated by quantizing
transform coefficients, its distribution is not only related with
quantization steps but also correlated with distribution of
transform coefficients. A simple but intuitive experiment
is illustrated in Fig.2, where images are compressed at
different quality factors (QF) by JPEG. The range of QF
is from 1 to 100, which corresponds to the image quality
from low to high with the increase of quantization steps.
In Fig.2, the horizontal axis indexes quality factor, and the
vertical axis is the standard deviation of compression noise
in images (denoted as global noise level). The compression
noise level not only changes along with quantization steps,

Fig. 3. The histogram of DCT coefficients in 8 × 8 blocks.

but also varies significantly in different images, which verifies
that compression noise is content-dependent.

The distribution of DCT coefficients has been widely
investigated in literatures, which is able to be well mod-
eled by Gaussian, Laplacian distribution [36] or Generalized
Gaussian [13]. Fig.3 shows histogram of DCT coefficients
in 8 × 8 blocks. We can see that Gaussian distribution can
well model the coefficient in low frequency, while Laplace
distribution can well model high frequency coefficients.
Therefore, the Generalized Gaussian Distribution (GGD) with
zero mean is suitable for coefficient modelling with the
following distribution,

GG(x; β, ρ) = β1/2

2
(1 + 1/ρ)
e−βρ/2|x |ρ , (19)

where ρ is the shape parameter and β is the inverse scale
parameter. When ρ is equal to 1, GGD is equivalent to
Laplace distribution. When ρ is equal to 2, GGD is equivalent
to Gaussian distribution. However, the shape parameter is
difficult to determine for different frequency bands, which
is also beyond the scope of this paper. Therefore, we take
Gaussian distribution (i.e., ρ = 2) to model the DCT coeffi-
cients in this paper, which is also an good approximation for
DCT coefficients, especially for low frequency bands where
compression noise is dominant. The proposed compression
noise estimation method also can be forwardly applied to other
distribution models, and we also show the results with Laplace
distribution (i.e., ρ = 1). If we take x as a Gaussian signal, and
t as the index of quantization interval, or the quantized value,
the reconstructed value of x in the t th quantization interval
can be written as,

y = tq, x ∈
[
(2t − 1)q

2
,

(2t + 1)q

2

]
, (20)

where q = Q(u, v) is a scalar quantization step. When
the reconstruction value y is known, the distribution of
quantization noise (in this paper, we regard the two terms,
compression noise and quantization noise, to be equivalent)
can be written as,

n = x − y (21)

g(n|y = tq) =
⎧⎨
⎩

1

Ct
√

2πσ
e
− (n+tq)2

2σ2 , n ∈
[

− q

2
,

q

2

]

0, others,
(22)
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Fig. 4. The distribution of quantization noise in different quantization
intervals for signals following Gaussian distribution, (b) the noise distribution
for signals in t = 0 interval, (c) the noise distribution for signals in t = 1
interval, (d) the noise distribution for signals in t = 2 interval.

where Ct is the integration of the Gaussian signal,

Ct =
∫ (2t+1)q

2

(2t−1)q
2

1√
2πσ

e
− n2

2σ2 dn. (23)

Here, quantization noise n is limited in the range defined
by quantization step, [− q

2 , q
2 ]. In this range, the quantiza-

tion noise follows the same distribution with that of DCT
coefficients x due to the additive noise assumption with
Eqn.(21), while beyond the range its probability is zero.
Ct is the normalized parameter to make the integration of the
probability density function in the whole range is 1.

Fig.4 illustrates the distribution of quantization noise in
different quantization intervals for signals following Gaussian
distribution with zero mean. Fig.4(a) shows Gaussian distrib-
ution of signal, x , and Fig.4(b)-(d) illustrate the distribution
of quantization noise when t = 0, 1, 2, respectively. We can
see that the quantization noise follows Gaussian distribution in
the dead-zone quantization interval (i.e., t = 0), while in other
intervals its distribution more resembles χ2 distribution. The
standard deviation of quantization noise distribution is depen-
dent on that of original signal distribution and the quantization
steps, which will be estimated in the following subsection.

B. Content-Dependent Compression Noise Level Estimation

Based on the above analysis, there are three necessary
factors for image compression noise level estimation, i.e.,
quantized values or reconstructed values (t or y), quantization
steps and standard deviations of image coefficients. The first
two factors are easily retrieved from the compressed bitstream.
However, the third factor is difficult to be derived from
compressed images. There are two reasons, 1) image structure
varies with different contents, which makes it difficult to for-
mulate image coefficient distribution with a single fixed global
standard deviation; 2) quantization with large quantization
steps directly removes most coefficients in high frequency
bands, which makes it difficult to derive coefficient distribution
parameters for every band by directly calculating statistics
from reconstructed values.

In order to estimate compression noise level, we propose
a content-dependent estimation method for compression
noise via patch grouping. First, we also divide image into
patches and classify them into different groups according

their similarity as that in section III. These similar image
patches in the same group can be regarded to share the
same distribution parameter, i.e., the standard deviation of
coefficient distribution. In this paper, we take the most widely
used image spatial correlation model [37], as illustrated in
Eqn.(24), to derive the parameters of Gaussian distribution for
DCT coefficients (The derivation process is also applicable to
other distributions, e.g., Laplace distribution). For a 2D image
Iy with size of H × W , the correlation between two pixels
x1 and x2 at locations (m1, n1) and (m2, n2) is modeled as,

r(x1, x2) = E(x1x2) = σ 2
x ρ|m1−m2|

H
ρ|n1−n2|

V
,

0 ≤ m1, m2 ≤ W, 0 ≤ n1, n2 ≤ H, (24)

where ρH and ρV are the correlation coefficients of
neighboring pixels in the horizontal direction and vertical
direction, respectively. σx is the standard deviation of image
signals in spatial domain.

We further derive the coefficient distribution from the
image spatial correlation model. For a 2D image patch, xB
with size of p × p, we reorganize it into vector, vB , in
row-major order, and the corresponding transform coefficient
vector denoted as fB,⎛

⎜⎜⎜⎝
f1
f2
...

f p2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

c1,1 · · · c1,p2

...
. . .

...
cp2,1 · · · cp2,p2

⎞
⎟⎠

⎛
⎜⎜⎜⎝

v1
v2
...

v p2

⎞
⎟⎟⎟⎠, (25)

where fB = { fi }, vB = {vi }, and transform matrix
T = (ci, j )p2×p2 . The variance of the transform coefficients is,

2
X(u, v) = E( f 2

i ) = E{(
p2∑

j=1

ci, j v j )
2}

=
∑

( j1, j2)∈S

ci, j1 ci, j2 E(v j1v j2)

= σ 2
x

∑
( j1, j2)∈S

{ci, j1 ci, j2ρ
| j1− j2|H
H ρ

| j1− j2|V
V }. (26)

Here | j1 − j2|H and | j1 − j2|V represent the absolute
difference of pixel coordinates in horizontal direction and
vertical direction, respectively. S represents the set of all
combinations of the element indices of vB . Herein, the index i
of f corresponds to transform band (u, v) of 2D image patch.

Furthermore, in order to estimate the variance of DCT
coefficients in different bands, we need to estimate spatial
correlation of adjacent pixels. For a group of similar image
patches, we estimate the adjacent pixel correlations from
the average of these similar patches ȳGi directly, which is
regarded as an initial estimation of the original image patch
and corresponds to the Average filtering in Fig.1.

ρH =
∑p

i, j=1( ȳGi (i + 1, j) − μ)( ȳGi (i, j) − μ)∑p
i, j=1( ȳGi (i, j) − μ)2

, (27)

ρV =
∑p

i, j=1( ȳGi (i, j + 1) − μ)( ȳGi (i, j) − μ)∑p
i, j=1( ȳGi (i, j) − μ)2

, (28)

ȳGi(i, j) = 1

K

K∑
k=1

y(k)
Gi

(i, j), μ= 1

p2

p∑
i, j=1

ȳGi (i, j), (29)



4164 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2016

TABLE II

STANDARD DEVIATION OF DCT COEFFICIENTS WHEN SPATIAL
CORRELATION ρH = 0.4, ρV = 0.9 AND σx = 1

where y(k)
Gi

is the kth image patches in group Gi . In addition,
the standard deviation σx,Gi of the corresponding original
image patches in spatial domain also can be calculated from
the initial estimation, ȳGi ,

σx,Gi = α

√√√√ p∑
i, j=1

( ȳGi (i, j) − μ)2, (30)

where α is a scale factor.
Based on Eqn. (26), we can derive standard deviation

�X(u, v) of coefficients in band (u, v). An example of
�X(u, v) for 8 × 8 DCT block is illustrated in TABLE II
when ρH = 0.4, ρV = 0.9 and σx = 1. In the example,
the derived standard deviations along horizontal direction are
larger than that along vertical direction, which implicitly shows
that there is relative higher probability for large coefficients
along horizontal direction than that along vertical direction.

Based on the derived standard deviation of coefficients and
coefficient prior model, we can estimate the compression noise
level in each band for every group as follows.

�n,Gi (u, v) =
√√√√∫ q

2

− q
2

(n − μn(u, v))2gu,v,Gi (n|y = tq)dn,

(31)

μn(u, v) =
∫ q

2

− q
2

ngu,v,Gi (n|y = tq)dn, (32)

where q = Q(u, v) is the quantization step for band (u, v).
gu,v,Gi is the distribution function for DCT coefficients in band
(u, v) of group Gi in Eqn.(22) with the standard deviation,
�n,Gi (u, v). Therefore, the compression noise level for group
Gi in Eqn.(13) is calculated by averaging noise standard
deviations in all the bands, which is shown as follows,

σn,Gi =
p∑

u,v=1

wGi (u, v)�n,Gi (u, v), (33)

wGi (u, v) = �n,Gi (u, v)/S, S =
p∑

u,v=1

�n,Gi (u, v). (34)

V. ITERATIVE IMPLEMENTATION FOR

CONTENT-DEPENDENT COMPRESSION

NOISE REDUCTION

In order to further improve the performance of the compres-
sion noise reduction, we will introduce the iterative implement

Algorithm 1 Compression Noise Estimation

Algorithm 2 Compression Noise Reduction

for the proposed compression noise reduction and noise level
update procedure.

Since the standard deviation of image signals is estimated
from an initial estimation, it is not so accurate. Therefore, we
take an iterative implementation for removing compression
noise, and update the compression noise level after each
iteration. When the whole image is reconstructed, the latest
reconstructed image is utilized as input to the next iteration
with the updated compression noise levels as follows,

σ
(k)
n,Gi

= max

(
0, σ

(0)
n,Gi

− std

(
X̂(k−1)

Gi
− YGi

))
, (35)

where σ
(0)
n,Gi

is estimated from the decoded image via Eqn.(33)

and X̂(k)
Gi

is the image patch matrix extracted from the recon-
structed image after the kth iteration. std(·) is the function
to calculate standard deviation. σ

(k)
n,Gi

is the standard devi-
ation of compression noise of image patches in group Gi
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TABLE III

PSNR RESULTS OF RESTORED JPEG IMAGES AT QF = 10 (PSNR: dB)

TABLE IV

SSIM RESULTS OF RESTORED JPEG IMAGES AT QF = 10

at the kth iteration. Finally, the proposed content-dependent
compression noise estimation and reduction algorithms are
described in Algorithm 1 and Algorithm 2, respectively.
In our method, we take the mean absolute difference of the
restored images of two consecutive iterations to decide the
termination of Algorithm 2, which is denoted as MAD(k)

after the kth iteration. When MAD(k) is smaller than 0.08,
Algorithm 2 will stop.

VI. EXPERIMENTS AND ANALYSIS

In this section, we test the proposed method on JPEG
images, which is the most widely used image compression
format. The test images used in our experiments include
popular images, e.g., Barbara, Lena, Peppers and some
standard images in Kodak. These test images are high quality
with lossless compression, which have been updated to

Google Drive1 to be connivent for users viewing them. These
high quality images are compressed by JPEG codec2 at
different quality factors (QF), and then restored with different
denoising methods. We first verify the performance of the
proposed compression reduction method by comparing it with
other state-of-the-art denoising methods according to the qual-
ity of restored images. Furthermore, we also verify the usage
of the proposed method in computer vision field based on
the performance of some basic operations in computer vision
applications, i.e., edge detection and image segmentation.
Finally, we analyze the complexity of the proposed method.
The main parameters are predefined in our method as, patch

1https://drive.google.com/folderview?id=0B09lxMhXreF1UDJEZy1rLUlHQ
U0&usp=sharing

2http://www.ijg.org/
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Fig. 5. The PSNR result comparison among different denoising methods for images compressed at different QFs. (a) Barbara. (b) Bike. (c) Car.

Fig. 6. The restored JPEG image, Lena, at QF = 10. (a) JPEG. (b) BM3D. (c) CSR. (d) FoE. (e) PSW. (f) ReJPEG. (g) Ren’s. (h) Proposed.

size p = 8, overlapped step s = 5, K = 40 in Eqn.(4),
γ = 2

√
2 in Eqn.(13), c = 0.7 in Eqn.(18), and α = 8

in Eqn.(30).

A. Performance Comparison on Compression
Noise Reduction

In this subsection, we compare the proposed compression
noise reduction method with state-of-the-art denoising meth-
ods, including BM3D [3], CSR [4], FoE [11], PSW [17],
ReJPEG [38], and Ren’s method [14]. Although BM3D and

CSR are general denoising methods, they also use similar
patch grouping and thresholding, which are similar with ours.
The others are denoising methods specially for removing com-
pression noise. For the compared methods, BM3D, CSR and
Ren’s methods need a global parameter, i.e., standard deviation
of compression noise. In order to get the best performance of
the compared methods, we utilize the original image to calcu-
late standard deviation of compression noise for them. In prac-
tice, the performance of the compared methods may be lower
than that with actual standard deviation of compression noise.
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Fig. 7. The restored JPEG image, Barbara, at QF = 10. (a) JPEG. (b) BM3D. (c) CSR. (d) FoE. (e) PSW. (f) ReJPEG. (g) Ren’s. (h) Proposed.

Fig. 8. (a) Edge detection result on original image, Barbara. (b) Segmentation
result on original image Gantrycrane.

In the proposed algorithm, we take the Gaussian distribution
to model the DCT coefficients. In order to verify its efficiency,
two widely used distributions for DCT coefficients are
compared, i.e., Gaussian distribution and Laplace distribution.
From the results in Table III, the proposed method with the
two distributions (denoted as Proposed-G and Proposed-L
for using Gaussian distribution and Laplace distribution)
achieves very approximate results, which shows that the two
distributions can well model the DCT coefficients. Although
Gaussian distribution may be not the perfect model for DCT
coefficients in different bands, it also can well approximate

the distributions of DCT coefficients, especially for that in low
frequency bands. In addition, considering that the compression
noise mainly exists in low frequency bands when using the
same quantization steps, the Gaussian distribution is reason-
able in modelling DCT coefficients in the proposed method.
Therefore, in the following results, we only show the results
of the proposed method with Gaussian distribution model.

Based on the PSNR results of the restored images with
different denoising methods in Table III, the proposed method
significantly improves the quality of decoded JPEG images,
and achieves up to 2.06 dB gain over JPEG decoder on aver-
age. Especially, the proposed method achieves up to 2.7 dB
gain for images, Barabra, which have more patterns with
similar structure and are more suitable for low-rank
approximation than other images. The proposed method
also outperforms other denoising methods, and achieves
about 0.43∼1.49 dB gain on average. To better show the per-
ceptual quality of the restored images, we also show the results
with another widely used quality metric, Structural Similarity
Index Metric (SSIM) [39], to further verify the superiority
of the proposed method. Table IV shows the corresponding
SSIM results for JPEG images compressed at QF=10, and our
method achieves about 0.012∼0.055 compared with JPEG and
other denoising methods. We also compares the performance
of NQCS with normal quantization constraint, and NQCS
achieves about 0.32 dB gain for these images in Table III.

Fig.5 illustrates the performance of different methods
on a large bitrate range, i.e., for images compressed at
different QFs. The proposed method works well over a wide
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TABLE V

F-MEASURE RESULTS FOR EDGE DETECTION ON RESTORED JPEG IMAGES AT QF=10

Fig. 9. Edge detection results using Canny operator on image, Barbara, (a) edge detection result on JPEG image compressed at QF=10, (b)∼(h) edge
detection result on restored image with methods, BM3D, CSR, FoE, PSW, ReJPEG, Ren’s method and the proposed method orderly.

quality or bitrate range. Fig.6 and Fig.7 show the subjective
quality of restored images, Lena and Barabra, with different
methods respectively. We can see that the proposed method
reconstructs more visual pleased results by removing most of
the compression artifacts obviously. Especially, at the face area
in Lena and scarf area in Barabra, the blocking and ringing
artifacts are removed much cleaner than that in compared
methods.

B. Application in Basic Computer Vision Tasks
Besides improving image quality, our method may help

improve the performance of basic computer vision tasks
when it is utilized as a pre-processing method. As an initial
exploration, we carry out two basic computer vision opera-
tions, i.e., edge detection and image segmentation, on images
reconstructed by JPEG decoder and denoising methods.
Fig.9 shows the results of edge detector, Canny operator [40],
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TABLE VI

RESULTS FOR SEGMENTATION ON RESTORED JPEG IMAGES AT QF=10

Fig. 10. Performance of image segmentation operation on image,
Gantrycrane, (a) segmentation result on JPEG image compressed at QF=10,
(b)∼(h) segmentation result on restored image with methods, BM3D, CSR,
FoE, PSW, ReJPEG, Ren’s method and the proposed method orderly.

on JPEG image at QF=10 and the restored images by
denoising methods. We can see that the edges detected
from the restored image by our method more approach with
that detected from original image in Fig.8(a), while lots of
false edges are detected from JPEG image due to severe

Fig. 11. The average running time of different methods on images with size
of 256 × 256.

compression noise. Table V shows the F-measure results,
which take the detection results on original image as anchors.
The F-measure is calculated with the following equation,

F1 = 2
precision · recall

precision + recall
. (36)

Based on the results, more true edges are detected from
the restored image by our proposed method and the best
F-measure results are achieved compared with other methods.

Fig.10 shows image segmentation results of method in [41]
for JPEG image at QF=10 and the corresponding restored
images by denoising methods, respectively. We can see that the
image segmentation method can efficiently separate different
contents from the image restored by our method as that from
original image in Fig.8(b), while its performance is degraded
fast on the JPEG image due to the negative effects of com-
pression noise. Table VI shows the results with three objec-
tive metrics for image segmentation, i.e., Global Consistency
Error (GCE) [42], Variation of Information (VoI) [43], and
Probabilistic Rand Index (PRI) [44], which take the segmen-
tation results on original images as anchors. The segmentation
results on the images restored by our method achieves the
best results according to all the metrics, which shows that our
proposed compression noise reduction method can effectively
improve the performance of the computer vision algorithm.

C. Complexity Analysis

To evaluate the computational cost of the proposed method,
we compare the running time of different methods on three
images with size of 256 × 256 compressed at QF = 10.
We calculate the average running time of different methods for
these test images with MATLAB 2012, Intel (R) Core (TM)
i5-4570@3.20GHz, and 64bit Windows 7 operating system.
Except for BM3D being optimized with C++, our method
and other comparison methods are all implemented only with
MATLAB. Fig.11 shows the average running time for different
methods. Compared with other methods implemented with
MATLAB, our method needs about 67.4s to process one image
on average, which is significantly faster than CSR (115.5s) and
FoE (85.4s). In addition, our method can be further speeded
up by processing every image patch group in parallel and
implementing with C++. Therefore, it is possible to apply
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the proposed method for practical applications even with the
real-time requirement.

VII. CONCLUSION

In this paper, we have proposed a content-dependent
compression noise level estimation and reduction framework
via similar patch clustering and low-rank constraint. The
compression noise is estimated based on quantization
steps, and image prior models, i.e., a transform coefficient
prior model and an image spatial correlation model. The
compression noise is removed by soft-thresholding the signular
values of similar image patch matrices adaptively according
to their noise levels instead of a global noise level. Extensive
experimental results have verified that the proposed method
not only significantly improves the quality of compressed
images against the relevant existing works, but also benefits
computer vision tasks by removing compression noise.
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