
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 9, SEPTEMBER 2015 2811

Depth-Preserving Warping for
Stereo Image Retargeting

Bing Li, Student Member, IEEE, Ling-Yu Duan, Member, IEEE, Chia-Wen Lin, Senior Member, IEEE,
Tiejun Huang, Senior Member, IEEE, and Wen Gao, Fellow, IEEE

Abstract— The popularity of stereo images and various display
devices poses the need of stereo image retargeting techniques.
Existing warping-based retargeting methods can well preserve
the shape of salient objects in a retargeted stereo image pair.
Nevertheless, these methods often incur depth distortion, since
they attempt to preserve depth by maintaining the disparity of
a set of sparse correspondences, rather than directly controlling
the warping. In this paper, by considering how to directly control
the warping functions, we propose a warping-based stereo image
retargeting approach that can simultaneously preserve the
shape of salient objects and the depth of 3D scenes. We first
characterize the depth distortion in terms of warping functions to
investigate the impact of a warping function on depth distortion.
Based on the depth distortion model, we then exploit binocular
visual characteristics of stereo images to derive region-based
depth-preserving constraints which directly control the
warping functions so as to faithfully preserve the depth of
3D scenes. Third, with the region-based depth-preserving
constraints, we present a novel warping-based stereo image
retargeting framework. Since the depth-preserving constraints
are derived regardless of shape preservation, we relax the
depth-preserving constraints to fulfill a tradeoff between shape
preservation and depth preservation. Finally, we propose a
quad-based implementation of the proposed framework. The
results demonstrate the efficacy of our method in both depth
and shape preservation for stereo image retargeting.

Index Terms— Stereo image retargeting, image warping,
optimization, depth preservation.

I. INTRODUCTION

STEREO images are becoming more and more popular in
our daily media consumption as they offer rich and joyful
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real-world viewing experience. The popularity of binocular
cameras brings about the explosive growth of stereo images.
Moreover, with the development of display technologies,
stereo images can be viewed on a variety of devices with
different display resolutions and aspect ratios, such as cinema
screens, televisions, computers, and mobile phones. To fit the
stereo image contents into the display of various resolutions
and aspect ratios calls for efficient stereo image retargeting
methods.

2D Image Retargeting: Recently, content-aware image
retargeting schemes have been proposed to adapt 2D images
to heterogeneous display devices with various resolutions
and aspect ratios. Following [1], we classify the content-
aware retargeting schemes into two categories: discrete
approaches and continuous approaches. Discrete approaches,
mainly including cropping [2], [3] and seam carving [4], [5],
treat an image as a discrete entity (i.e., pixels) and retarget
the image by iteratively removing or inserting pixels.
In contrast, continuous methods [6]–[11] retarget an image via
continuous-domain warping. These warping-based methods
first divide an image into regions (e.g., a mesh partition). Then
the image regions are non-uniformly warped in a continuous
manner, where the local warping functions of those regions
with high importance (e.g., salient regions) are constrained
to preserve the shapes of such important regions. Thanks
to the continuous warping manner, these methods do not
introduce discontinuity artifacts. Nevertheless, since such kind
of methods (e.g., in [7]) allow the shape of a retargeted quad
to be arbitrary quadrilateral, some quads would be deformed
significantly, causing noticeable distortion on a structural
object. To assess the visual qualities of retargeted images,
effective objective quality metrics that agree with subjective
assessments reasonably well have been proposed [12], [13].

Stereo Image Retargeting: Compared with 2D images,
stereo images contain an additional depth dimension. With
the additional depth dimension, stereo image retargeting
aims at simultaneously maintaining the depth of scenes and
preserving shapes of salient objects to provide satisfactory
3D viewing experience. Although many content-aware
2D image retargeting approaches can well preserve the shapes
of salient objects via non-uniform image resizing, applying
these approaches to independently resize the left and right
images of a stereo pair1 would incur depth distortion. Specif-
ically, in a perceived 3D scene, the depth of a 3D point is
related to the disparity (i.e., the location difference) between

1We focus on stereo images consisting of two images captured from two
perspectives.
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Fig. 1. Illustration of the impact of different depth-preserving constraints on depth preservation. From top to bottom: the mesh of the left image and the mesh
of the right image, where every two dots with the same color indicate a correspondence pair. (a) An example of sparse correspondence-based depth-preserving
constraints that enforce the disparity of one correspondence pair (indicated by blue dots) to remain unchanged. The disparity of yellow correspondence and
green ones, however, are not maintained. (b) After grouping the quads into paired regions r (indicated by red blocks) and non-paired regions r̄ (indicated
by blue blocks), respectively, the proposed depth-preserving constraints are imposed to control the warping functions to preserve the width of non-paired
regions r̄ , and consistently resize paired regions r and their corresponding regions. The disparity of all correspondences are maintained in warped meshes.

the pair of corresponding 2D points (i.e., the correspondences)
in the left and right images. Since the left and right images
are slightly different, independently resizing these images in
a non-uniform manner would change the relative positions of
correspondences in the retargeted pair, causing inconsistent
disparity/depth with the original value.

Recently, there have been a few works studying how to
retarget a stereo image pair. To preserve the shapes of salient
objects while maintaining the depths of 3D scenes, most exist-
ing stereo image retargeting methods extend content-aware
2D image retargeting approaches by introducing additional
depth-preserving constraints. For example, Niu et al. [14]
proposed to extend cropping-based retargeting to stereo image
retargeting by preserving the aesthetic value of an input photo.
However, the method may still partially or completely discard
salient objects or useful context information due to cropping.
Moreover, when an image is significantly cropped, those
objects with negative disparity in the retargeted image may
hit the side frame of display, leading to window violation. The
methods proposed in [15] and [16] extend seam carving [17]
to stereo image pairs by iteratively removing a pair of seams,
one per stereo image pair. The removal of each seam pair
is subject to the constraint that pixels of a removed seam
in one image of a stereo pair shall correspond to those
of the seam removed from the other image. Owing to the
discrete manner, such seam removal does not change the
relative position of remaining correspondence pairs, thereby
maintaining the depth well. Nevertheless, these methods often
introduce discontinuity artifacts in a retargeted image pair, due
to its discrete nature.

In contrast, the methods proposed in [18]–[20] extend
warping-based image retargeting to stereo image retargeting
by imposing depth-preserving constraints over a sparse set of
correspondences in the stereo pair. As illustrated in Fig. 1a,
these methods divide each image of a stereo pair into a quad

mesh, and then warp each quad by a local warping function
for the quad, such that the image is non-uniformly resized.
To achieve depth preservation, these methods resort to depth-
preserving constraints, which are inspired by depth remapping
techniques (see [21]–[24]). In particular, the depth remapping
techniques proposed in [21] and [22] extend image warping to
depth remapping by imposing depth-editing constraints which
enforce the disparity values of a sparse set of correspon-
dences to be identical to the target disparity. Similarly, the
warping-based stereo image retargeting methods [18]–[20]
propose to preserve depth by keeping the disparity val-
ues of a sparse set of correspondences consistent with
their original values as much as possible. They, however,
often fail to faithfully maintain depth consistency of 3D
scenes, since their depth-preserving constraints work on a
set of sparse correspondences rather than directly controlling
the warping functions, making them ineffective for depth
preservation.

More specifically, the constraints for preserving the disparity
of a sparse set of correspondences can only indirectly influence
the local warping functions for a few quads, which, however,
may not faithfully maintain the disparity of remaining
correspondences. For example, as shown in Fig. 1a, the
constraints are built to maintain the disparity of the blue cor-
respondence pair. Since its disparity depends on the first five
warped quads in the second row of the left image and the first
three warped quads in the second row of the right image, the
constraints indirectly influence the warping functions of these
quads. Yet, such influence may not effectively maintain the
disparity of the remaining correspondence pairs. For example,
for the yellow correspondence pair, although all its associated
warping functions (i.e., the warping functions of the first two
quads in the second row) are influenced by the constraints, its
disparity are changed in warped pair. Similarly, for the green
correspondence pair, some of its associated warping functions
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are even not influenced by the constraints, leading to disparity
inconsistency.

In this paper, to preserve the scene depth of warped
stereo images, we address the issue: how to explicitly
control the warping functions to preserve the depth for
quad-based warping, which, to the best of our knowledge, has
not yet been addressed before. From this new perspective, we
propose a warping-based stereo image retargeting approach,
which achieves high-quality retargeting in both object shape
preservation and scene depth preservation. In particular, we
characterize the depth/disparity distortion energy in terms
of local warping functions, such that we can estimate the
depth distortion in a retargeted stereo pair. Based on the
depth distortion model, we can then figure out the conditions
for eliminating the depth distortion, so as to derive effec-
tive depth-preserving constraints for two different kinds of
regions, respectively, as shown in Fig. 1b. The region-wise
depth-preserving constraints are used to directly control the
local warping functions of the quads of each region class
to achieve depth preservation. By adequately integrating the
proposed depth-preserving constraints with shape-preserving
constraints, we propose a novel warping-based stereo image
retargeting framework, which can achieve a good tradeoff
between depth preservation and shape preservation.

The main contributions of this paper are three-fold:
(i) We model and analyze the depth/disparity distortion
in terms of warping functions to study the relationship
between a warping function and the resulting depth distor-
tion, which was ignored in existing warping-based retargeting
methods; (ii) According to the depth distortion model, we
propose depth-preserving constraints which directly control
local warping functions to achieve depth preservation, without
sacrificing shape preservation performance; (iii) We propose
a practical quad-based retargeting platform to realize
the proposed framework with reasonable computational
complexity.

The rest of this paper is organized as follows. Sec. II.
formulates the problem of the warping-based stereo image
retargeting. Sec. III models the depth distortion in terms of
warping functions, and then proposes the depth-preserving
constraints accordingly. The proposed warping-based stereo
image retargeting framework is detailed in Sec. IV.
Sec. V describes the quad-based implementation of the pro-
posed warping-based retargeting framework. Sec. VI reports
the experimental results. Finally, we conclude the paper
in Sec. VII.

II. PROBLEM FORMULATION

In this paper, we propose a quad-based warping framework
for stereo image retargeting. To formulate the problem of
quad-based warping for stereo image retargeting, we first
introduce the representation of quad-based warping. The
quad-based warping first partitions an image by a quad mesh,
and then individually warps each quad using a local warp-
ing function, such that the image is non-uniformly resized.
To obtain the local warping functions of quads, generally most
existing warping-based retargeting methods represent the local

TABLE I

NOTATION

warping functions in terms of the vertices of the warped mesh.
Specifically, let I L and I R denote the left and right images
of a stereo image pair, respectively, qz

k denotes the k-th quad
qz

k in I z , z ∈ {L, R}. For qz
k , its local warping function is

represented by ṽz
k , which consists of four vertices of qz

k in
the warped mesh. Accordingly, the warping functions of the
stereo image pair can be represented by the set of all quads’
local warping functions, i.e., Ṽ = {vz

k}. Readers are referred
to Table I for the list of notations in this paper.

The warping-based stereo image retargeting aims to find
the optimal warping functions for individual quads, which
can simultaneously minimize the shape distortions of salient
objects and keep the scene depth in the retargeted stereo pair
faithful to the original one. To this end, we formulate the
stereo image retargeting problem as the following optimization
problem:

Ṽ∗ = arg min
Ṽ

Ds s.t Dd = 0 (1)

where Ds denotes the shape distortion energy, and Dd the
depth distortion energy.

The above problem can be factored into two subproblems:
shape preservation of salient objects (min Ds ) and depth
preservation (Dd = 0) for 3D scenes. We propose to solve
the two subproblems separately to reduce problem complexity.
Furthermore, since the shape preservation subproblem has
been successfully addressed using shape-preserving constraints
in existing quad-based retargeting methods, we focus on
finding effective depth-preserving constraints to solve the
depth preservation subproblem. We then propose a method to
properly integrate the proposed depth-preserving constraints
with existing shape-preserving constraints to solve the stereo
image retargeting problem.

To the best of our knowledge, the joint depth and shape
preservation problem for stereo image retargeting has not been
well addressed. Existing methods [18]–[20] solve the depth
preservation subproblem by resorting to depth-preserving
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constraints which attempt to preserve as much as possible
the disparity values of a sparse set of correspondences in
the retargeted stereo pair. Such depth-preserving constraints,
however, may fail to faithfully maintain the disparity of the
remaining correspondences of the retargeted stereo pair, since
these constraints do not have direct control on the warping
functions.

Different from the existing methods, our approach aims to
figure out how to explicitly constrain the warping functions,
such that the depth is faithfully maintained. To this end,
we first model Dd in terms of the warping functions Ṽ for
the stereo image pair (see Sec. III-A for details), so as to
reveal the relationship between local warping functions and the
depth distortion. With such model Dd (Ṽ), we derive depth-
preserving constraints which explicitly constrain the warping
functions (see Sec. III-B), by exploiting the binocular visual
characteristics of regions. More specifically, according to the
binocular visual characteristics of regions, we divide image
regions into two classes, and then derive the depth-preserving
constraints for the two region classes by finding the conditions
that the local warping functions of each region class should
satisfy for keeping Dd (Ṽ) = 0.

With the derived depth-preserving constraints, we then
jointly consider shape preservation and depth preservation.
Since depth-preserving constraints are separately derived with-
out taking into account shape preservation, they may contradict
shape-preserving constraints. Thus, we propose a set of relaxed
disparity-preserving constraints, based on region attributes as
will be elaborated later. By integrating the relaxed depth-
preserving constraints with shape-preserving constraints, we
propose a region-wise warping-based optimization framework
for stereo image pair retargeting in Sec. IV. We further propose
a quad-based warping platform to efficiently implement the
propose framework in Sec. V.

III. REGION-WISE DEPTH-PRESERVING

WARPING CONSTRAINTS

In this section, we aim to figure out how to faithfully
preserve the depths of 3D scenes in a stereo image pair by
explicitly constraining the warping functions. To this end, we
first model the depth distortion energy as a function of warping
functions such that we can analyze the effect of local warping
on depth distortion. We then derive effective depth-preserving
constraints for local warping functions by exploiting the
binocular visual characteristics of different region classes in a
stereo images pair.

A. Depth Distortion Energy

To characterize depth distortion energy, we represent depth
in terms of horizontal disparity, since the magnitude of depth
is inversely proportional to the associated horizontal disparity
value given the same viewing configuration. Furthermore,
since the vertical disparity does not impact the depth magni-
tude and non-zero vertical disparity can be easily eliminated,
without loss of generality we assume there is no vertical
disparity between each pair of correspondences in the original
stereo pair and the retargeted version.

Fig. 2. Example of representing x-coordinates of cz
i by the local warping

functions. The blue dots indicate the correspondence cz
i , the green triangles

in the warped mesh represent the vertices of quad qz
k , the pink lines represent

the horizontal line segment Ez
i crossing cz

i , which intersects qz
k at ok and

ok+1 (indicated by yellow squares). (a) Original mesh. (b) Warped mesh.

Let C = {ci } denote the set of all correspondence pairs in
the stereo pair, ci = {cL

i , cR
i } the i -th pair of the corresponding

pixels between the left and right images I L and I R . We define
the total depth distortion energy Dd of a stereo pair as the
sum of depth distortion energy of all correspondence pairs as
follows2:

Dd =
∑

ci ∈C

�di =
∑

ci ∈C

|di − d̃i |

=
∑

ci ∈C

|(x R
i − x L

i ) − (x̃ R
i − x̃ L

i )| (2)

where �di , representing the depth distortion energy of ci ,
is defined as the absolute difference between ci ’s horizontal
disparity in the retargeted stereo pair and that in the original
pair. di = x R

i − x L
i and d̃i = x̃ R

i − x̃ L
i respectively denote the

horizontal disparity values of ci in the original pair and the
retargeted pair, x z

i and x̃ z
i z ∈ {L, R} indicate the x-coordinates

of cz
i in the original pair and the retargeted pair, respectively.

The above formulation, however, does not explicitly incor-
porate the effects of each mesh unit’s warping function on
the depth. Instead, we reformulate the depth distortion energy
in terms of local warping functions. First, to characterize the
effect of a local warping on the disparity values of associated
correspondences, we assume a fine-granular quad mesh, where
a quad contains only one single pixel located at the left
edge in the quad. Then, we represent xz

i and x̃ z
i in terms of

quads (see Fig. 2). In particular, as shown in Fig 2, since xz
i

is equal to the length of horizontal line segment Ez
i which is

bounded by cz
i and the left edge of I z , we discretize Ez

i by
quads to represent xz

i in terms of quads. That is, let qz
1 . . . qz

Nz
i

represent the quads that are crossed by Ez
i and lie at the left

side of cz
i . We represent x z

i = ∑Nz
i

k=1 wz
k , where wz

k is the width

of quad qz
k , and similarly, x̃ z

i = ∑Nz
i

k=1 ez
k , where ez

k is the width
of qz

k on horizontal line Ei . We propose to further represent
ez

k in terms of local warping functions, i.e., ez
k = �(ṽz

k)
(see Appendix A for more details). As a result, the depth
distortion energy in (2) can be rephrased as follows:

�di =
∣∣∣
∑

k=1

wR
k −

∑

k=1

wL
k − (

∑

k=1

�(ṽR
k ) −

∑

k=1

�(ṽL
k ))

∣∣∣ (3)

2The position of a correspondence can be non-integer, as an image is
considered as a sampled continuous function.
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Fig. 3. Region classification results on Snowman. From top to bottom: left
images and right images, where paired regions and non-paired regions are
colored red and blue, respectively. (a) Original images. (b) Classified images.

where

�(ṽz
k) = (1 − α)ṽz,3

k,x + α · ṽz,4
k,x − ((1 − α)ṽz,1

k,x + α · ṽz,2
k,x )

(4)

where ṽz
k is composed of ṽz,1

k , ṽz,2
k , ṽz,3

k , ṽz,4
k that denote the

left-top, left-bottom, right-top, and right-bottom vertices of
qz

k ’s retargeted version (see Fig. 2), respectively, ṽ
z, j
k,x is the

x-coordinate of ṽ
z, j
k,x , and α denotes the barycentric coordinate,

as elaborated in Appendix A.
To derive the ideal depth-preserving warping functions that

yield Dd = 0, we set the depth distortion energy of each
correspondence to be zero individually, that is

�d1 = �d2 = . . . = �dNc = 0, (5)

where Nc is the total number of correspondences.
Note, we do not need to precisely solve the ideal depth-

preserving warping functions, since we just need to figure
out the conditions that the local warping functions need to
satisfy for depth preservation. Therefore, we reformulate (5)
by exploiting the binocular visual characteristics of the stereo
images, and then derive the depth-preserving constraints for
the local warping fuctions.

B. Region-Based Depth Preservation

As revealed in the literature [25]–[27], different image
regions exhibit different binocular visual characteristics due
to the different viewing angles of cameras, thereby leading to
different levels of impact on the perceived depth, given a view-
ing configuration. We argue that quads, which are attributed
to different region classes with different characteristics, should
be imposed with different depth-preserving constraints. Hence,
as illustrated in Fig. 3, we propose to group image regions into
the following two classes:

Paired Region: A paired region in one image of a stereo pair
can find a corresponding region in the other image, both are
the projections of a 3D object onto the left and right images.
Hence, a correspondence pair consists of a paired region and
its correspondence.

Non-Paired Region: A non-paired region in one image
cannot find any correspondence in the other image. Such non-
paired region comes from a 3D object which is projected onto
only one image plane of a stereo image pair.

Accordingly, we refer to a pixel in one image as a paired
pixel if it belongs to a paired region; otherwise a non-paired
pixel.

Based on the above region classification, we reformulate
the depth distortion energy. We first group quads into the two
region classes. First, if the pixel in quad qz

k is a paired pixel,
qz

k is labeled as a paired quad; otherwise, it is labeled as a
non-paired quad. Subsequently, as shown in Fig. 1b, we treat
each paired-quad as a paired region r z which only contains
a single paired-quad. We then group horizontally consecutive
non-paired quads qz

k into a non-paired region r̄ z . Specifically,
given correspondence pair ci , its quads q L

1 . . . q L
N L

i
in the

left image are grouped into paired regions r L
1 , . . . r L

ni
and

non-paired regions r̄ L
1 , . . . r̄ L

mi
. Similarly, quads q R

1 . . . q R
N R

i
in the right image are grouped into non-paired regions
r̄ R

mi +1, . . . r̄ R
n′

i
and paired regions r R

1 , . . . r R
ni

, where r R
k denotes

the corresponding quad of r L
k .

Based on the above region partition, we reformulate (3) as
follows:

�di =
∣∣∣

n′
i∑

j=1

ρz
j

( ∑

qz
k ∈rz

j

�(ṽz
k) −

∑

qz
k ∈rz

j

wz
k

)

+
ni∑

j=1

∑

qz
k∈rz

j

(
�(ṽR

k ) − �(ṽL
k ) − (wR

k − wL
k )

)∣∣∣ (6)

where ρz = −1 if z = L, and ρz = 1 if z = R.
We then plug �di in (6) into (5), and show by mathematical

induction (see Appendix B for detailed derivation) that the
depth can be preserved, should the following constraints be
imposed on the local warping functions:

⎧
⎪⎨

⎪⎩

∑

qz
k ∈r̄ z

j

�(ṽz
k) = ∑

qz
k∈r̄ z

j

wz
k, ∀r̄ z

j ∈ ϒ̄

�(ṽL
k ) − wL

k = �(ṽR
k ) − wR

k , ∀qz
k ∈ r z

j ,∀r z
j ∈ ϒ

(7)

where ϒ̄ denotes the set of non-paired regions, and ϒ the set
of paired regions. For example, as shown in Fig. 1b, intuitively
the following constraints can be used: 1) for each non-paired
region, constraining the local warping function to preserve the
region’s width; 2) for each paired region, constraining the
local warping function to consistently resize the region and
its correspondence along the horizontal direction.

IV. WARPING-BASED FRAMEWORK FOR

DEPTH-PRESERVING STEREO

IMAGE RETARGETING

To provide satisfactory viewing experience, we need
to preserve both the shapes of salient objects and the
depths of scenes by adequately integrating depth-preserving
constraints with shape-preserving constraints. However, the
depth-preserving constraints derived in (7) may contradict
shape-preserving constraints, since they are derived by
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Fig. 4. Proposed quad-based warping for stereo image retargeting.

enforcing depth distortion energy Dd = 0 without considering
the shape preservation requirements. On one hand, the
depth-preserving constraints may lead to the shape distor-
tions of salient objects. For example, the depth-preserving
constraints do not allow non-paired regions to be horizontally
stretched or shrunk largely, even if the non-paired regions are
often visually unimportant. As a result, the space saved from
resizing such non-salient regions may be too few to allow
for shape preservation for salient objects, especially when
non-paired regions occupy a large area in an image pair. On the
other hand, should strong constraints be imposed to preserve
the shapes of salient objects, the shape-preserving constraints
and depth-preserving constraints may render conflict warping
behaviors (e.g., one requests stretching while the other requests
shrinking). Consequently, there may be no feasible solution to
meet such conflicting constraints.

To reach a good tradeoff between shape preservation
and depth preservation, we propose to relax the hard
depth-preserving constraints in (7) to allow nonzero depth
distortion energy Dd for paired regions. That is, for qz

k ∈ ϒ ,

the warping mismatch |�(ṽL
k ) − wL

k − (�(ṽR
k ) − wR

k )| can
be greater than 0. To do so, we define the following energy
function D p to measure the depth distortion in terms of the
warping mismatch:

D p =
∑

rz
j ∈ϒ

∑

qz
k∈rz

j

�k(�(ṽL
k ) − wL

k − (�(ṽR
k ) − wR

k ))2 (8)

where �k is the weight used to adjust the value
of |�(ṽL

k ) − wL
k − (�(ṽR

k ) − wR
k )|.

On top of the shape-preserving quad-based warping
schemes in [7]–[11] and [28], by integrating shape-preserving
constraints with the relaxed depth-preserving constraints,
we propose the following region-based optimization for
warping-based stereo image retargeting:

min Ds + λ · D p

s.t .
∑

qz
k ∈r̄ z

j

�(ṽz
k) =

∑

qz
k ∈r̄ z

j

wz
k, ∀r̄ z

j ∈ ϒ̄ (9)

where Ds represents the shape-preserving constraints, and
λ stands for the weight for depth distortion energy Dd .

Note that the relaxation of depth preservation may cause
inconsistent warping of some paired regions and their cor-
respondences, which may further accumulate quad by quad,

thereby yielding significant disparity distortion eventually.
In the following section we shall elaborate our quad-based
implementation of the depth-preserving stereo image retar-
geting which can effectively address such error accumulation
problem.

V. QUAD-BASED IMPLEMENTATION OF PROPOSED

RETARGETING FRAMEWORK

To achieve high computational efficiency, the quad-based
methods proposed in [10] and [11] present a rectangular
transformation based warping, which restricts the shapes of
retargeted quads to be rectangular. With such simplification,
these methods [10], [11] can well preserve the shapes of
salient objects, while achieving high computational efficiency
as the simplification significantly reduces the number of vari-
ables compared to [7]. Based on the quad-based schemes,
we propose a low-complexity quad-based implementation of
the proposed warping-based retargeting framework as shown
in Fig. 4. In the proposed system, each image of the input
stereo pair is partitioned by a uniform quad mesh. Our
method consists of the following steps. First, we preprocess the
stereo pair for building depth-preserving constraints. That is,
we establish the correspondences in the input stereo pair based
on stereo matching [29]. According to the stereo matching
results, we group the quads in the stereo image pair into
non-paired regions and paired regions. For each paired region
in one image of the image pair, we align it with those regions
containing its corresponding pixels in the other image. Second,
we formulate a constrained optimization model over quads.
In the model, depth-preserving constraints are built to preserve
the width of each non-paired region as well as constrain the
width of each paired region and its correspondences to be
consistently resized, whereas the shapes of salient objects
are maintained via shape-preserving constraints. Finally,
we employ a convex optimization solver to obtain the optimal
local warping functions for individual quads so as to generate
the final retargeted image pair.

A. Quad Classification

We first separate paired pixels from non-paired pixels in the
stereo image pair, according to the disparity map estimated
by stereo matching [29]. We subsequently group quads into
two region classes based on the disparity map. Since existing
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Fig. 5. Illustration of quad alignment. We align q L
i j (marked by yellow) with

quads containing corresponding content. Corresponding content of q L
i j in I R

is marked by green.

disparity estimation methods cannot precisely detect all corre-
spondences between the left and right images, we group quads
according to the ratios of paired pixels and non-paired pixels
in each quad. Specifically, given quad qz

i j , which denotes the
quad located at row i and column j in I z , if the ratio of
paired pixels in qz

i j is greater than δ1, qz
i j is a paired quad r .

Similarly, if the ratio of non-paired pixels in qz
i j is greater

than δ2, qz
i j is a non-paired quad r̄ . δ1 and δ2 are empirically set

to 20% and 30%, respectively. Note that a quad may be
attributed to both a paired quad and a non-paired quad, if the
ratio of its paired pixels and non-pared pixels are greater
than δ1 and δ2, respectively. Finally, we separate each
paired-quad as a paired region, and group horizontally
consecutive non-paired quads into a single non-paired region.

B. Quad Alignment

Depth-preserving constraints need to find the correspon-
dences of paired quads. That is, given a paired quad qz

i j ∈ r z
n ,

we align it with qz′
ik that contains the corresponding content

of qz
i j . Since qz

i j ’s corresponding content often appear in

multiple quads in I z′
(see Fig. 5), we allow a quad to be

aligned with multiple quads. Instead of hard alignment,
we propose a soft probabilistic quad alignment scheme,
where the alignment probability Pijk between qz

i j and qz′
ik is

defined as the ratio of those pixels in qz
i j that can find their

correspondence in qz′
ik .

C. Shape Preservation

We adopt the shape-preserving constraints proposed
in [10], [11], and [28]. The key to these constraints is to
restrict the shapes of retargeted quads to be rectangular. That
is, all retargeted quads in each row/column are restricted to
have the same height/width. Such rectangular transformation
has proven to be simple yet effective in preserving the shapes
of structural objects. Following [10], [11], and [28], the
constraints are expressed in three terms: shape distortion
energy, neighboring-quad constraints, and resizing-budget
constraints. As a result, the warping functions are also
represented as functions of the height of each quad row and
the width of each quad column, rather than the locations
of vertices, to reduce the computational complexity of the
optimization.

Shape Distortion Energy: The shape distortion energy of a
quad is simply measured by the change of the quad’s aspect

ratio, which is the ratio between the height of a quad row and
the width of a quad column. Hence, the total shape distortion
of an image pair is calculated by

Ds =
∑

z∈{L ,R}

∑

i=1

∑

j=1

‖wz
j · h̃z

i − hz
i · w̃z

j‖2 · sz
i j , (10)

where wz
j and hz

i respectively denote the width of the j th quad
row and the height of the i th column in the original quad
mesh, and w̃z

j and h̃z
i are the corresponding width and height

in the retargeted quad mesh, sz
i j is the importance of quad qz

i j

calculated by averaging the importance values of pixels in qz
i j .

Neighboring Quad Constraints: When the quads associated
with the same object undergo significantly inconsistent
warping, noticeable object distortion may occur. Therefore,
to avoid such spatially-inconsistent shape distortion, neigh-
boring quads are constrained to undergo consistent warping
according to the absolute difference of importance between
two horizontally/vertically neighboring quads as follows:⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

ϕw(|sz
i j − sz

i, j+1|)
≤ w̃z

j − wz
j

w̃z
j+1 − wz

j+1
≤ ϕw(|sz

i j − sz
i, j+1|)

1

ϕh(|sz
i j − sz

i+1, j |)
≤ h̃z

i − hz
i

h̃z
i+1 − hz

i+1

≤ ϕh(|sz
i j − sz

i+1, j |),
(11)

where ϕw(·) > 1, ϕh(·) > 1.
Resizing-Budget Constraints: Suppose the target size is

W ′ × H ′, the sizes of individual quads are constrained to meet
the following target size budget:

⎧
⎪⎪⎨

⎪⎪⎩

∑M
i=1 h̃z

i = H ′,
∑N

j=1 w̃z
j = W ′,

h̃z
i > 0, w̃z

j > 0.

(12)

D. Depth Preservation
We build up the depth-preserving constraints on paired

region and non-paired region in (9), respectively. In practice,
the vertical disparity is eliminated.

To derive the depth-preserving constraints in (9), we
first represent �(ṽz

i j ) in terms of w̃z
j and h̃z

i . Nevertheless,
the original formulation for �(ṽz

i j ) was based on the
“fine-granular mesh” assumption that each quad contains only
a single pixel, which is not the case for a coarse mesh where
one quad contains multiple pixels. To extend the “fine-granular
mesh” formulation to more general “coarse-granular mesh”
cases, we treat the pixels in a quad as a super-pixel that lies in
the left edge of the quad. Then we can calculate �(ṽz

i j ) = w̃z
j ,

since a retargeted quad remains rectangular.
Non-Paired-Region Constraints: For a non-paired region r̄ z

n ,
from (9), we have

∑
qz

i j ∈r̄ z
n
�(ṽz

i j ) = ∑
qz

i j ∈r̄ z
n
wz

j . Thus, for r̄ z
n ,

the following hard constraint is imposed to preserve the total
width of quads belonging to r̄n :

∑

qi j ∈r̄n

wz
j =

∑

qi j ∈r̄n

w̃z
j , ∀r̄n ∈ ϒ̄, (13)

Paired-Region Constraints: We impose the relaxed
depth-preserving constraints i.e., the energy function Dp
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in (9) to softly control the warping of paired regions, and
build additional constraints to avoid disparity distortions
caused by the relaxation. By substituting �(vz

i j ) with w̃z
j

in (8), we have Dp which softly constrains each paired-region
quad qz

i j ∈ r z
n and its aligned quad qz′

ik to undergo consistent
width change:

D p =
∑

rz
n∈ϒ

∑

qi j ∈rz
n

�i j k(w̃
z
j − wz

j − (w̃z′
k − wz′

k ))2, (14)

where weight �i j k depends on the alignment probability Pijk

between qz
i j and qz′

ik :

�i j k =
{

1, i f Pi jk = arg maxt Pi j t ,

Pijk , otherwi se,
(15)

Thus, the higher the alignment probability between
qz

i j and qz′
ik is, the smaller the value of |w̃z

j −wL
j −(w̃z

k −wR
k )|

will be.
We build additional constraints to avoid disparity distortions

caused by the relaxation. In particular, we choose a few left-top
quad vertices, which can find their correspondence in the other
image, as control points, and directly enforce the disparity
between these control points and their correspondences to
remain unchanged. Let Uc be the set of control points, cz

k ∈ Uc

the left-top vertices of qz
i,m , and cz′

k the correspondence of cz
k .

The constraints become

1

ϕc
≤ ( m∑

j=1

w̃z
j − x̃ z′

k − (

m∑

j=1

wz
j − x z′

k )
) ≤ ϕc ∀cz

i,m ∈ Uc

(16)

where
∑m

j=1 wz
j and

∑m
j=1 w̃z

j are the x-coordinates of cz
k in

the original quads and retargeted quads, respectively, ϕc > 1,
x z′

k and x̃ z′
k denote the x-coordinate of cz′

k in the original quads
and the retargeted quads, respectively.

Vertical Disparity: Since nonzero vertical disparity would
introduce unconformable 3D experience e.g., eye fatigue or
strain [30], we constrain the retargeted quads lying at the
same row to be of the same height, so as to eliminate nonzero
vertical disparity:

hz
i = hz′

i (17)

E. Solving the Optimization Model

To find the optimal retargeted quads, we minimize the
objective function Ds+λD p , subject to the shape-preserving
constraints in (11) and (12), and the depth-preserving con-
straints in (13), (14), (16), and (17).

The above optimization problem is a quadratic program-
ming problem and can be solved using the active-set method
proposed in [31].

VI. EXPERIMENTAL RESULTS

In the experiments, we first validate the effectiveness of
the proposed depth-preserving constraints, and then evaluate
the performance of the proposed method by comparing it
with the state-of-the-art approaches. We finally evaluate the

efficiency of the proposed method. Complete results are
available in [32].

Dataset: To make fair comparisons with existing methods,
we select stereoscopic image pairs from the following publicly
available datasets: the Middlebury stereo dataset [33] and the
Flicker datasets used in [15]. In selecting the test image pairs,
the following two aspects are taken into account: (a) Depth
diversity: a test pair should contain objects with diverse depths
in a significant depth range. Such depth diversity can better
evaluate the depth preservation performance of a stereo image
retargeting method. (b) Content diversity: part of the test stereo
pairs should contain enough non-salient regions for evaluating
the shape preservation performance of a retargeting method on
salient objects, whereas part should contain sufficiently large
salient objects to challenge a retargeting method in both shape
preservation for salient objects and depth preservation for
3D scenes.

A. Performances of Depth-Preserving Constraints

We evaluate the performances of depth-preserving
constraints in two aspects: (i) whether the constraints can
faithfully preserve the depth; (ii) whether they can properly
constrain the warping to preserve the depth, where the ideal
depth-preserving constraints in (7) are used as a reference.
For (i), we derive a map and define a metric to assess
the depth distortion of a retargeted stereo pair. For (ii),
we define two metrics to assess the inconsistency between
the ideal depth-preserving constraints and the warping
functions of the retargeted stereo pair, and derive a map to
indicate regions/pixels of which local warping functions are
inconsistent (mismatched) with the ideal depth-preserving
constraints. Specifically, for (i), the following map and quality
metric are calculated:

(a) Disparity map: The map is used to subjectively
evaluate the depth distortion of a retargeted stereo pair by
comparing the retargeted disparity map with the original map.
The disparity map is obtained by stereo matching [29].

(b) Average disparity distortion (ADD): The metric quan-
titatively evaluates the total depth distortion of a stereo image
pair by calculating the total disparity differences of quad
vertices and their correspondences as follows:

ADD =
∑

v L
i ∈Ug

|di − d̃i |
NUg

(18)

where Ug is the set containing those quad vertices which can
find a correspondence in the other image, and NUg is the size
of Ug .

For (ii), we define a map and two quality metrics as follows:
(a) Warping deviation map: The map is used to evalu-

ate the deviation (mismatch) between the warping functions
of a retargeted stereo pair and the ideal depth-preserving
constraints. In particular, given pixel pz

xy ∈ qz
k located

in (x, y), if pz
xy is a non-paired one, the warping deviation

map {�z
xy} records the deviation between the local warping

function of qz
k and the ideal depth-preserving constraints for a

non-paired region; otherwise, it records the deviation between
the local warping function of qz

k and the ideal depth-preserving
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Fig. 6. Retargeting results and the associated disparity maps and warping deviation maps using different depth-preserving constraints on Baby1 (its width is
enlarged by 10%). The first row shows the original images and maps (first row), and the second to fourth rows show the results of VDP+QW, SCDP+QW,
and WF+QW (our method), respectively. In the warping deviation map, a paired/non-paired pixel is colored green (darker green indicates higher deviation),
if the local warping functions of its associated quads deviate from the ideal depth-preserving constraints; otherwise, a non-paired pixel is colored by red and
a paired pixel is colored by blue. In the disparity map, we visualize the pixel disparity by colors ranging from dark red (the lowest absolute disparity) to dark
blue (the highest one).

constraints for a paired region as follows:

�z
x,y

=
{|�(ṽL

k )−wL
k −(�(ṽR

k )−wR
k )|, pz

xy is a non-paired pixel

| ∑qz
k ∈r̄ z

j
�(ṽz

k) − ∑
qz

k ∈r̄ z
j
wz

k |, otherwise.

(b) Average warping deviation over paired
regions (AWDP): The metric evaluates the total amount
of deviation between the individual local warping functions
and the ideal depth-preserving constraints over paired regions
as calculated:

AWDP =
∑

pz
xy∈UP

�z
x,y

NUP

(19)

where UP is the set of all paired pixels in the left and right
images of a stereo image pair, and NUP is the size of UP .

(c) Average warping deviation over non-paired
regions (AWDN P ): The metric evaluates the total amount of
deviation between the individual local warping functions and
the ideal depth-preserving constraints over non-paired regions
as calculated by

AWDN P =
∑

pz
xy∈UN P

�z
x,y

NUN P

(20)

where UN P is the set of all non-paired pixels in a stereo image
pair, and NUN P is the size of UN P .

We compare the performances of the proposed warping
function-based depth-preserving constraints (denoted by WF)
and two other heuristic depth-preserving constraints: the
vertical depth-preserving (VDP) constraints and the sparse
correspondences-based depth-preserving (SCDP) constraints.
The VDP constraints are to maintain the vertical disparity,
regardless of the horizontal disparity, whereas the SCDP con-
straints are to preserve as much as possible the disparity value
of a set of sparse correspondences [18], [20]. We conduct three
baseline experiments that apply the three types of constraints
(VDP, SCDP, and WF) to the quad-based warping method,
namely, VDP+QW, SCDP+QW, and WF+QW (our method),
respectively.

Fig. 6 and Fig. 8 show the subjective and objective compar-
ison results for test image pair Baby1, respectively. As shown
in Fig. 8, WF+QW (our method) preserves the depth very well
in terms of the ADD, AWDP , and AWDN P metrics (all the three
distortions are low), whereas VDP+QW and SCDP+QW
severely distort the depth, despite the image width is enlarged
by only 10%. This is because the VDP and SCDP constraints
do not have direct control on the warping functions, and hence
may not properly constrain the local warpings, thereby leading
to large deviations between the local warping functions and
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Fig. 7. Performance comparison for Snowman. From top to bottom: the left image, the right image, and the disparity map. We visualize the pixel disparity
by colors ranging from dark red (the lowest absolute disparity) to dark blue (the highest one).

Fig. 8. Comparison of depth distortion in terms of ADD, AWDP , and AWDN P
metrics with different depth-preserving constraints on Baby1 whose width is
enlarged by 10%.

the ideal depth-preserving warping constraints. For example,
Fig. 8 shows that the AWDN P values of VDP+QW and
SCDP+QW are 6.91 and 3.44, respectively, both indicating
large deviation of local warping functions from their ideal
depth-preserving constraints. The warping deviation maps of
VDP+QW and SCDP+QW in Fig. 6 also illustrate that, in
some paired and non-paired regions, the two methods lead
to significant deviation between their local warping functions
and the ideal depth-preserving constraints. In contrast, the
local warping functions of our method agree with the depth-
preserving constraints quite well, thereby achieving good
depth preservation performance.

B. Comparisons of Stereo Retargeting Methods

Shape and Depth Preservation: We subsequently compare
our method with three state-of-the-art stereo image retargeting
schemes including Stereo Seam Carving (SSC) [15],
Single-Layer Warping (SLW) [18], and Multi-Layer
Warping (MLW) [20] in terms of shape preservation

for salient objects and depth preservation for 3D scenes.
Following the resizing setting in [15], the test image pairs’
widths are shrunk by 20% fors Aloe and by 17% for the rest.

We first compare our method with two warping-based
schemes: SLW and MLW. Figs. 7, 9, 10, 11 illustrate the
retargeting results on test image pairs Snowman, Man, People
and Aloe, respectively. Overall, SLW, MLW, and our method
all perform well in shape preservation for salient objects,
thanks to the continuous manner of warping-based retargeting.
On the other hand, our method significantly outperforms
SLW and MLW in depth preservation, since SLW and MLW
tend to preserve as much as possible the disparity values of
a set of sparse correspondences (i.e., the SCDP constraint),
but often cannot do a good job in depth preservation due to
the lack of direct control on local warping functions of quads.
For example, as illustrated in Figs. 7, 9 and 10, SLW changes
the disparity maps significantly compared to the original
maps in most regions of Snowman, Man and People, whereas
MLW distorts the disparity maps of Snowman, Man and Aloe
(see Figs. 7, 9, and 11). Moreover, MLW and SLW tend to
produce inconsistent disparity changes in different regions.
For example, for Snowman, MLW decreases the disparity
for background while increasing the disparity for foreground
objects. Besides, SLW introduces holes in the disparity map
of Aloe, meaning that there exists depth discontinuity in
an object. In contrast, since the proposed depth-preserving
constraints directly control the warping functions, our method
preserves the depths of 3D scenes very well for all the test
images pairs.

In addition, we also compare our method with SSC [15]
which is a representative discrete retargeting method.
As illustrated in Figs. 7, 9, 10, and 11, although SSC can
do a good job in depth preservation, it yields noticeable
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Fig. 9. Performance comparison for Man. From top to bottom: the left image, the right image, and the disparity map. We visualize the pixel disparity by
colors ranging from dark red (the lowest absolute disparity) to dark blue (the highest one).

Fig. 10. Performance comparison for People. From top to bottom: the left image, the right image, and the disparity map. We visualize the pixel disparity
by colors ranging from dark red (the lowest absolute disparity) to dark blue (the highest one).

deformations on object shapes. For example, SSC severely
distorts the shapes of the flowerpot and aloe leaves in Fig. 11,
the red tube of the steering wheel in Fig. 7, and the upper
part of the man wearing a black sports jacket in Fig. 10.
The shape distortions are caused by SSC’s discrete
pixel-wise processing which trims a region in an unsmooth
manner, thereby incurring significantly inconsistent changes
in neighboring regions around an object. Such shape defor-
mations usually cause uncomfortable 3D viewing experience.
In contrast, our method achieves good depth preservation for
3D scenes without introducing severe shape distortions.

Subjective Paired Comparisons: We conduct subjective
evaluations on a 1680 × 1050 ViewSonic VX2286wm 3D
22-inch monitor with NVIDIA active shuttered glasses and
an NVIDIA GeForce 3D Vision Solution. The width and
height of the display screen are 0.474 m and 0.296 m,
respectively. We select a moderate display size to ensure

that the perceptual depth stays in the comfort zones for all
participants. The viewing conditions follow the guidelines of
ITU-R BT.2021 [34]–[36], that suggest a viewing distance
of 4 times the height of the display screen (1.1 m in our
experiments).

We invite 24 subjects (10 males and 14 females) with ages
ranging from 21 to 28 to participate in the subjective user
study, in which two of them have specialized experiences in
the 3D perception field. All subjects do not have any prior
knowledge about the experiment hypothesis.

We perform subjective paired comparisons in a way similar
to that of several 2D image and video retargeting methods [37].
In particular, an original image pair together with its two
retargeted versions generated by different retargeting methods
are displayed side-by-side on the screen, where the original
image pair is placed in the center, whereas the retargeted
versions are placed in a random order so that the subjects
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Fig. 11. Performance comparison for Aloe. From top to bottom: the left image, the right image, and the disparity map. We visualize the pixel disparity by
colors ranging from dark red (the lowest absolute disparity) to dark blue (the highest one).

TABLE II

WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

FOR DEPTH PRESERVATION QUALITY

have no idea about the associated methods. In the subjective
test, each subject is requested to choose one retargeted version
which he/she prefers according to each of the following three
criteria: (1) the quality in shape preservation, (2) the quality
in depth preservation, and (3) the overall quality incorporating
both shape and depth preservation.

We compare our method with four representative methods:
Uniform Scaling (US), SSC, SLW and MLW, using
four stereo image pairs: Snowman, Man, Aloe and
People. For a stereo pair, each subject spends about
10 minutes to perform 10 paired comparisons between
five compared methods. Following the suggestion of
ITU-R BT.2021 [34], [35], each subject would take a break
when the test duration reaches 20 minutes.

We collect 24 × 40 = 960 paired comparison results, in
which each method is compared 4 × 24 × 4 = 384 times.
All results are listed in Tables II, III, IV, where entry n of
row A and column B indicates that method A receives n
preference votes compared to method B. As listed in Table II,
in terms of depth preservation, our method outperforms the
other four methods in 78.1% of the paired comparisons on
average, including 93.8%, 79.2%, 78.1%, and 61.5% of the

TABLE III

WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

FOR SHAPE PRESERVATION QUALITY

TABLE IV

WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

FOR THE OVERALL RETARGETING QUALITY IN DEPTH

AND SHAPE PRESERVATION

TABLE V

RUNTIME COST

votes in preference for our method to US, SLW, MLW, and
SSC, respectively. Besides, Table III shows that, in terms
of shape preservation, our method receives 76.6% preference
votes on average, where our method is preferred to US
in 88.5%, to SLW in 83.3%, to MLW in 50.0%, and to SSC
in 84.4% of the preference votes, respectively. In terms of the
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Fig. 12. Results for Man where some randomly selected paired pixels are misclassified as non-paired ones. From top to bottom: the region classification map,
the left image, and the resulting disparity map. From left to right: (a) the original images, (b) the results based on the original disparity map,(c)-(e) the results
based on the noisy disparity maps, with different percentages of misclassified pixels. The region classification map in (b) is used as the ground-truth, where a
paired pixel and non-paired one are colored blue and red, respectively. In the top row of (c)-(e), those paired pixels that are misclassified as non-paired ones
are colored green.

overall retargeting quality, Table IV shows that our method
outperforms the other four methods in 77.6% of the preference
votes on average, where the breakdowns are 87.5%, 81.3%,
57.3%, and 84.4% of the votes in preference for our method
to US, SLW, MLW, and SSC, respectively.

C. Run-Time Complexity
We implement our method on a PC with a 2.26 GHz

Duo CPU and 4 GB RAM to compare the run-time costs
of our method, SLW and MLW. As shown in Table V, both
our method and SLW consume significantly lower time costs
compared to MLW. For our method and SLW, we divide
the time cost into two parts: the preprocessing before the
optimization and the optimization itself. For an 800 × 600
stereo image pair, our method consumes on average 4.32s in
disparity estimation of preprocessing, whereas SLW consumes
about 4.93s, mainly in SIFT feature extraction and matching.

Besides, our method also consumes a lower time cost in
optimization compared to SLW. Similar to the 2D video
retargeting method in [28], our optimization model is for-
mulated as a convex optimization problem, which can be
efficiently solved by an active set algorithm. In contrast,
SLW tackles the optimization problem by matrix factoriza-
tion and back substitution, in which matrix factorization
is computationally expensive especially for a large matrix
(i.e., involving a large number of variables). For a quad size
of 20×20, our method consumes about 0.380s, whereas SLW
spends about 2s in matrix factorization and 0.0086s in back
substitution.

Compared to our method and SLW, MLW’s time complexity
is significantly higher, since, besides disparity estimation,
MLW needs to segment each image into objects, which is
computationally expensive. In addition, the iterative optimiza-
tion used in MLW consumes a high time cost as well.

D. Discussions

Note that, the accuracy of disparity estimation affects
the accuracy of region classification, thereby influencing the

retargeting performance of our method. Nevertheless, our quad
classification based method can tolerate disparity estimation
errors to some extent, thanks to the soft quad classification
and the quad-based warping used in the method.

To show the error-tolerance capability of our method,
we intentionally change the disparity values for a
randomly selected set of non-paired/paired pixels (0%-7% of
the total non-paired/paired pixels), such that part of these non-
paired/paired pixels are misclassified. As shown in Fig. 12,
the retargeting results using the noisy disparity map are still
very close to those using the original disparity map. This
shows that our method can tolerate small disparity estimation
errors since the quad classification is based on the ratios of
paired/non-paired pixels. With such ratio-based classification,
even if some paired/non-paired pixels are misclassified due
to disparity estimation errors, a quad containing misclassified
pixels can still be correctly classified when the ratio of
misclassified pixels in the quad is not significant.

We then intentionally increase the amount of noise injected
to the disparity maps, leading to the misclassification of quite
a few quads, to further evaluate the error-tolerance capability
of our method. As shown in Fig. 13(c) and 13(d), when a
moderate percentage (0%-6%) of quads are misclassified, our
method still achieves comparable performances with that using
the original disparity map because our quad-based warping
scheme can partially compensate for quad classification errors.
In particular, our quad-based warping with the neighboring
quad constraints tends to warp a quad in a manner similar
to those of the quad’s neighbors with the same class. It is
very likely that, for most quads, a significant number of
their neighboring quads belong to the paired/non-paired class.
In such cases, although some quads are misclassified, thanks to
the neighboring quad constraints, these quads are warped in
a way similar to their neighbors with the same class. As a
result, these misclassified quads may be properly warped,
thereby tolerating quad classification errors to some extent.
However, as illustrated in Fig. 13(e), when too many quads
are misclassified (e.g., 21% misclassified paired quads in
this example), our method would incur depth distortions,
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Fig. 13. Results for Snowman where some paired regions are misclassified as non-paired ones. From top to bottom: the region classification map, the left
image and the resulting disparity map. From left to right: (a) the original images, and (b) the results based on the original disparity map, (c)-(e) the results
based on noisy disparity maps. The region classification map in (b) is treated as the ground-truth, where paired pixels and non-paired ones are colored blue
and red, respectively. In the top row of (c)-(e), those paired pixels that are misclassified as non-paired ones are colored green.

since the neighbors of misclassified quads are also largely
misclassified.

VII. CONCLUSION

In this paper, we investigated how to preserve scene depth
by directly controlling the local warping functions. Based on
the binocular visual characteristics of two different region
classes, we derived effective region-wise depth-preserving
constraints to control the local warping functions of the two
region classes directly. With the derived depth-preserving con-
straints, we have proposed a warping-based stereo retargeting
framework to simultaneously achieve both shape preservation
and depth preservation while retargeting a stereo image pair.
We have also proposed a quad-based implementation of the
proposed retargeting framework with a reasonable computa-
tional complexity. Our experimental results demonstrate that
our method achieves promising subjective and objective visual
qualities in both shape preservation and depth preservation for
various test stereo image pairs.

APPENDIX A
DETAILED DERIVATION OF (3)

We here elaborate how to represent x-coordinate x̃i of
correspondence ci in a warped image in terms of the local
warping functions of quads for (3). Given ci , let qz

1 . . . qz
Nz

i

be the quads that are crossed by Ez
i and lie to the left of cz

i ,

where Ez
i intersects the left edge of qz

k at ok in the warped
mesh (see Fig.2). Hence, x̃ z

i is discretized by the width |ez
k|

of line segment okok+1, i.e., x̃ z
i = ∑Nz

i
k=1 |ez

k|.
Furthermore, we represent |ez

k | by the local warping
functions of qz

k , using the barycentric coordinates:

|ez
k | = �(ṽz

k) = (1 − βk)ṽ
z,3
k,x + βk · ṽz,4

k,x

−((1 − βk+1)ṽ
z,1
k,x + βk+1 · ṽz,2

k,x ) (21)

where ṽz
k consists of ṽz,1

k , ṽz,2
k , ṽz,3

k , ṽz,4
k which represent the

left-top, left-bottom, right-top, right-bottom vertices of the
retargeted version of qz

k , respectively, vz,1
k,x , vz,2

k,x , vz,3
k,x and

vz,4
k,x represent the x-coordinates of vz,1

k , vz,2
k , vz,3

k and vz,4
k ,

respectively, βk the barycentric x-coordinate of ok .
We present a simplified calculation of βk , based on

the domain knowledge of warping-based image retargeting.
Almost all existing warping-based image retargeting methods
enforce the angle between the original edge and the warped
edge to be as small as possible. In such case, the top and
bottom edges of a warped quad are parallel or approximately
parallel, making the barycentric coordinates of ok approximate
that of ci . Therefore, we assume βk = α, where α is the
barycentric x-coordinates of cz

i . Note, α is a known value,
since it just depends on the mesh partition. Moreover, pixels
whose quad lying in the same row have the same barycentric
coordinates. Hence, we can easily determine αk after mesh
partition. For example, if we use a uniform mesh with 1 × 1
quad size and all pixels lie at the middle of the left edge of a
quad, β1 = β2 . . . = α = 1/2.

APPENDIX B
DETAILED DERIVATION OF DEPTH-PRESERVING

CONSTRAINTS IN (7)
We prove that, given ∀ci ∈ C, di = 0 if V satisfies
⎧
⎪⎨

⎪⎩

∑

qz
k∈rz

j

�(ṽz
k) = ∑

qz
k∈rz

j

wz
k, ∀r z

k ∈ ϒo

�(ṽL
k ) − wL

k = �(ṽR
k ) − wR

k , ∀q L
k ∈ r L

j , q R
k ∈ r R

j .

(22)

Proof : We use mathematical induction to prove the above.
Note that the depth-preserving constraints for a quad only
depend on the region class that the quad is attributed to.
Therefore, we just need to prove that for ci , no matter how
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many quads lie to the left of cL
i or cR

i , and no matter which
region class these quads belong to, if these quads satisfy the
constraints related to their region class, �di = 0.

We first prove the simplest case. That is, given ci , no region
lies to the left of cR

i , while only a non-paired region r̄ L
1 lies

to the left of cL
i and is crossed by the horizontal line Ei .

For ci , �di is then calculated by

�di = ∣∣ − (
∑

q L
k ∈r̄ L

�(ṽL
1 ) −

∑

q L
k ∈r̄ L

wL
k )

∣∣ r̄ L
1 ∈ ϒ. (23)

If
∑

q L
k ∈r̄1

�(ṽL
1 ) = ∑

q L
k ∈r̄1

wL
k , �d1 = 0. Therefore, the

result is true for the simplest case.
Assume the result is true for the case : N quads

q L
1 . . . q L

N lie to the left of cL
i , which are grouped into paired

regions r L
1 , . . . r L

n and non-paired region r̄ L
1 , . . . r̄ L

m ; N ′ quads

q R
1 . . . q R

N ′ lie to the left of cR
i , which are grouped into

r R
1 , . . . r R

n and r̄ R
m+1, . . . r̄ R

n′ . Thus, we have

�(ṽR
k ) − wR

k − ((�(ṽL
k ) − wL

k )) = 0, r z
j = r z

1 , . . . r z
n∑

qz
k ∈rz

j

�(ṽz
k) −

∑

qz
k ∈rz

j

wz
k = 0, r̄ z

j = r̄ L
1 , . . . r̄ L

m ,

r̄ R
m+1, . . . r̄ R

n′ (24)

Then we need to prove that the result also holds for the
cases that more than N (or N ′) quads lie to the left of cL

i
(or cR

i ). Due to the space limit, we prove for two cases.
In the first case, N + 1 quads q L

1 . . . q L
N+1 lie to the left

of cL
i , where q L

N+1 are grouped into a paired region r L
n+1;

N ′ + 1 quads q R
1 . . . q R

N ′+1 lie to the left of cR
i , where q R

N ′+1

are grouped into r R
n+1. In this case, the depth distortion �di

of c is calculated by

�di =
∣∣∣

n+1∑

j=1

∑

qz
k ∈rz

j

(
�(ṽR

k ) − wR
k − (�(ṽL

k ) − wL
k )

)

+
n′∑

j=1

ρz
j

(∑

qz
k ∈rz

j

�(ṽz
k) −

∑

qz
k∈rz

j

wz
k

)∣∣∣ (25)

Plugging (24) into (25), we have

�di =
∣∣∣(

∑

qz
k ∈rz

n+1

(
�(ṽR

k ) − wR
k − (�(ṽL

k ) − wL
k )

)∣∣∣. (26)

Since �di = 0, if �(ṽR
k )−wR

k = (�(ṽL
k )−wL

k ) for qz
k ∈ r z

n+1,
the result holds for the first case.

The second case is that quads q L
1 . . . q L

N lie to the left
of cL

i , and q R
1 . . . q R

N ′ . . . q R
N ′+a lie to the left of cR

i , where
q R

N ′+1 . . . q R
N ′+a are grouped into r̄ R

n′+1. Similarly, according
to (24), the depth distortion �di of ci can be calculated by

�di = ∣∣(∑

qz
k ∈r̄ R

n′+1

�(ṽz
k) −

∑

qz
k ∈r̄ R

n′+1

wz
k

)∣∣ (27)

�di = 0, if
∑

q L
k ∈r̄ R

n′+1
�(ṽz

k) = ∑
q L

k ∈r̄ R
n′+1

wz
k .

Therefore, depth preservation is achieved for all
correspondences.
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