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Abstract. Video shakiness is a common problem for videos captured
by hand-hold devices. How to evaluate the influence of video shakiness
on human perception and design an objective quality assessment model
is a challenging problem. In this work, we first conduct subjective ex-
periments and construct a data-set with human scores. Then we extract
a set of motion features related to video shakiness based on frequency
analysis. Feature selection is applied on the extracted features and an
objective model is learned based on the data-set. The experimental re-
sults show that the proposed model predicts video shakiness consistently
with human perception and it can be applied to evaluating the existing
video stabilization methods.

1 Introduction

With the development of digital video capture devices, such as smart phones
or wearable devices, more and more people are able to take videos in daily life
and upload these videos to the social media. Compared to traditional broadcast
videos, these handy videos usually are not perfect because most of them are taken
by amateurs. For example, due to the lack of tripods, many videos encounter
the problem of shakiness. If the shakiness is severe, it will influence the video
quality perceived by people. Therefore, understanding the subjective perception
of human to video shakiness is important for many video applications, e.g., video
editing, bootleg detection. Furthermore, how to design an objective assessment
model for video shakiness which is consistent with subjective perception is a
challenging problem. That is, given an input video, it is expected to output a
shakiness score which is consistent with human perception.

Video shakiness has been extensively studied by many researchers from dif-
ferent perspectives. Some works [1–4] take the amount of camera motion into
account. The underlying assumption is that the larger the camera motion is,
the more shaky the video is. However, this assumption is not always true. For
example, if the camera moves constantly, even if the motion is large, it would
not affect the video quality that much. On the other hand, if the camera moves
up and down frequently, even if the motion is small, it will be annoying for
the audience. Therefore, there are several methods proposed based on the fre-
quency analysis [5–8]. They apply different filters on the motion signals and
design frequency-based models.
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In this paper, we first conduct subjective experiments and construct a data-
set which can provide ground truth for the design of object assessment models.
Second, based on this subjective data-set, we propose a frequency-based model in
order to objectively evaluate the video quality with respect to shakiness. Specif-
ically, we extract motion signals (including translation, rotation and scaling)
from videos and then apply frequency band decomposition on each signal. Later
these frequency-related features from videos are selected by a genetic algorithm
and an objective video shakiness assessment model is learned by support vec-
tor regression method (SVR). The experimental results show that our objective
assessment model can predict the video shakiness score more consistently with
subjective scores than previous work.

Besides the above subjective experiments and objective model design, an-
other contribution of our work is that we apply the proposed video shakiness
assessment model on evaluating video stabilization methods. By comparing the
shakiness scores given by the proposed model before and after the video stabi-
lization, we can objectively compare the improvements of different stabilization
methods, while this comparison was usually performed by human eyes subjec-
tively before. This demonstrates one application of our method.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 explains the subjective experiments and Section 4 shows the
feature extraction for video shakiness. The objective model learning and experi-
mental results are shown in Section 5. Section 6 demonstrates its application of
evaluating performance of video stabilization algorithms. Finally conclusion is
given in Section 7.

2 Related Work

2.1 Video Quality Assessment

According to the availability of reference videos, video quality assessment (VQA)
can be classified as three kinds : full-reference (FR) VQA, reduced-reference(RR)
VQA and no-reference(NR) VQA. Among these works, NR-VQA is most chal-
lenging because no reference video information can be used. To solve this prob-
lem, many methods have been proposed. For example, Bovik et al. [9, 10] extract
video features and apply machine learning methods in order to design a general-
purpose VQA model. Our work also belongs to NR-VQA, but we are specifically
interested in video quality regarding shakiness.

2.2 Video Shakiness Analysis

Most previous work on video shakiness analysis can be classified as two categories
in general: one is based on camera motion without filtering and the other is based
on frequency analysis.

As for the former category, the underlying assumption is that the degree
of video shakiness depends on the amount of camera motion only. For home
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video editing, Girgensohn et al. [1] compute a numerical “unsuitability score”
based on a weighted average of horizontal and vertical pan. According to the
unsuitability score, videos can be classified as four categories. Besides pan, Mei et
al.[2] represent the camera motion as three independent components(pan, tilt
and zoom) and proposes a “jerkiness factor” for each frame as follows:

Si = max{(ωpP + ωTT )/(ωp + ωT ), Z} (1)

where Si denotes the jerkiness factor for i-th frame, P is pan, T is tilt, Z is
zoom. P, T, Z are all normalized to [0, 1], ωp and ωq are weighting factors. A
video’s jerkiness is defined as the average of frame-level factors. These two works
are cited by Xia et al. [3] and used as a component as a general video quality
assessment system for web videos with weighting parameters as ωp = 1, ωq =
0.75. Similarly, Hoshen et al. [4] defines the shakiness of t-th frame Qstab(t), as
the average square displacement of all feature points between adjacent frames,
i.e.,

Qstab(t) =

√
(dx(t))

2
+ (dy(t))

2
(2)

where dx(t) and dy(t) denote the horizontal and vertical movement of this frame.
The above methods all take the amount of camera motion between frames as
the indicator of video shakiness, but ignore that different frequency components
contained by the camera motion have different influences on human perception.

To address this issue, the latter category of previous work applies frequency
analysis on motion signals from videos. For example, Shrestha et al. [5] and Cam-
panella et al. [6] apply a FIR filter on the translation of video frames and then
take the difference between the filtered signal and original signal, which corre-
sponds to the high-frequency component, as the amount of shakiness. Alam et
al. [7] and Saini et al. [8] take similar approaches but median filter is used. Al-
though these works realize the importance of frequency decomposition, they only
exploit the high-frequency component and discard other frequency components.
In addition, the influence of frame rates on the filtering is ignored.

Besides these two categories, there are some previous work using other meth-
ods. For example, Yan et al. [11] compare the movement vectors between ad-
jacent frames. If the angle between the two vectors is larger than π/2, they
think this frame contains shakiness. In order to detect bootleg automatically,
Visentini-Scarzanella et al. [12] retrieve the inter-frame motion trajectories with
feature tracking techniques and then compute a normalized cross-correlation
matrix based on the similarities between the high-frequency components of the
tracked features’ trajectories. Bootleg classification is based on the comparison
between the correlation distribution and the trained models. However, these two
works do not give quantitative metrics for video shakiness evaluation.

It is worth noting that all the above works do not consider video watching
conditions, such as the screen size and watching distance. And these models are
not verified by subjective experiments devoted to video shakiness.
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3 Subjective VQA Experiment

3.1 Test sequences

We selected 4 queries, “scenery”, “animal”, “vehicle” and “sport”, designed to
retrieve the top ranked, high-definition real-world videos in four respective cat-
egories from youku.com. In November 2015, we issued the four queries to video
search engine, soku.com, and collected all retrieved videos. All original videos
we collected are encoded by H264/AVC codec, with target bit-rate 1600kbps,
all in .flv format. For the sake of compatibility with our test platform, we con-
verted the videos into .webm format encoded by VP8 codec. We used FFmpeg
libvpx library for trans-coding, and set the quality parameters of output videos
good enough (crf = 4, targetbitrate = 2Mbps) to guarantee the fidelity. Then
we cropped the videos into 512 sequences as our data-set. Each sequence lasts
10 seconds, and most (> 99%) of the sequences are cropped within one shot to
avoid the influence of scene switching between shots. Sequences with other se-
vere distortions, like blurring and color distortion, were eliminated to avoid the
masking effects. Numbers of the sequences in each categories are listed below:

Category Number of Sequences

scenery 35

animal 134

vehicle 297

sport 46

Total 512

Table 1. Size of our data-set

As recommended in ITU-T Recommendation P.910 [13], we calculated the
Spatial Information(SI) and Temporal Information(TI) of video sequences. SI
and TI metrics quantify spatial and temporal perceptual information content
of a given sequence. As shown in Fig. 1, the sequences span a large portion of
spatial-temporal information plane, which implied a good variety of our data-set.

Among 512 video sequences in the data-set, 2 sequences falling at the ex-
tremes of the shakiness quality scale (one for the best quality, the other for the
worst) were chosen for anchoring. Anchoring sequences were displayed with shak-
iness quality labeled to indicate the range boundaries of shakiness intensity. For
the purpose of training, another 10 sequences were randomly selected as dummy
(or stabilizing) presentations. Dummy presentations were adopted to familiarize
the participants with the experiment process and to stabilize their opinion. The
remaining 500 sequences were used as real presentations.

For the session division, the real presentations were divided into 4 parts (125
for each part). The session division, display orders of the dummy presentations,
and display orders of the real presentations, were randomized for each observer
to avoid the influence by the order of presentations.
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Fig. 1. Spatial-temporal plot for our test data-set: red circles for 2 anchoring sequences;
green circles for 10 dummy presentations; blue dots for 500 real presentations.

3.2 Test Protocol

Test Environment The test sequences were displayed on a Dell UltraSharp
U2414H 23.8-inch light-emitting diode liquid crystal display (LED-LCD) mon-
itor (1920 × 1080 at 60Hz). At default factory settings, the U2414H was set to
75% brightness, which we measured at 254cd/m2. The contrast ratio was 853:1
and the viewing angle reached 178-degree. Other room illumination was low. A
mini-DisplayPort video signal output from a HP folio 9470m laptop computer
was adopted as signal source. The distance between the observer and the monitor
was held at about 85cm which is about three times the height of the monitor.

Observers Twenty adults, including 9 female and 11 male, aged between 19 and
22, took part in the experiment. All of them were undergraduate college students,
13 majored in Computer Science, 5 in Electronics Engineering, 1 in Physics and
1 in Maths. 4 observers were practitioners in related fields (Computer Vision,
Computer Graphics, or Image Processing), and the remaining 16 observers had
no related expertise. No observers had experience with video quality assessment
study, and no observers were, or had been, directly involved in this study. All
observers reported normal visual acuity and normal color vision.

Voting Method The Single Stimulus (SS) non-categorical judgement method,
with numerical scaling, was adopted for this experiment. In our SS method, an
observer is presented with a video sequence, and then asked to evaluate the
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Fig. 2. The voting panel
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shakiness of the sequence by drawing a slider on a numerical scale from 0 to 100.
0 means “bad” in quality, or shaking violently, and 100 represents “excellent”
in quality, or shaking unnoticeably. We labeled 5 ITU-R semantics of quality
[14] with respective scores at two ends of scale and three intermediate points
(“Bad” at 0, “Poor” at 25, “Fair” at 50, “Good” at 75 and “Excellent” at 100)
for reference of more specific quality levels (see Fig. 2).

3.3 Experiment Procedure

An experiment contains 4 sessions in total. At the beginning of each session, an-
choring sequences were presented first, followed by dummy presentations, then
real presentations. Breaks were allowed between three phases. Although assess-
ment trials in real and dummy presentations are just the same, subjective assess-
ment data (voting scores) issued from real presentations were saved and collected
after experiment, but results for dummy presentations were not processed.

In an assessment trial, a 10-second sequence faded in, presented and faded
out. After that, voting panel faded in, the observer was asked to evaluate the
video. Then voting panel faded out when evaluation submitted. The rating time
was given at least 5 seconds, assuring that the observer voted carefully and
adjacent stimuli were well isolated. The duration of a fade-in or a fade-out was
set to 500 milliseconds, which provided comfortable transitions between tasks.

Observers were carefully introduced to the voting method, the grading scale,
the sequence and timing at the beginning of experiment. A session lasted about

A Fade

(500ms)

A Fade

(500ms)

Rating 

Panel
Video Sequence

A TrialFig. 4. A trial
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half an hour, which meets the requirement prescribed by [14]. Observers were
allowed to rest for a while between sessions. Usually an observer completed all
4 sessions at one time as suggested. Observers who didn’t complete at one time
were introduced again before their next session.

3.4 Results

A total number of 10,000 (500 sequences by 20 observers) voting scores were pro-
cessed. As recommended in [14], the outlier detection for observers were imposed,
but no outlier was detected.

The Mean Opinion Score (MOS) value of i-th sequence is defined as

MOSi =
1

K

∑
k

Ski, (3)

where Ski is score of sequence i voted by observer k,K is the number of observers.
A higher MOS indicates better subjective shakiness quality of a sequence.

4 Feature Extraction

In this section, we design a no-reference video quality metric to predict per-
ceived shakiness quality of web videos. Firstly, the global motion, namely the
motion between adjacent frames, is extracted from the video sequence. Next,
we transform the translation into the deflection angle, directly relating to the
signal perceived by human visual system (HVS). Thereafter, the motion signals
are decomposed into sub-bands, which contain frequency components of differ-
ent levels. In the end, the statistics of each sub-band of the motion signals are
calculated, as the features we designed for the video shakiness quality.

4.1 Global Motion Estimation

Global motion is defined as the geometrical transformation between adjacent
video frames. It also indicates the motion of camera. Here we describe the
global motion with a similarity transformation model, with four parameters
[dx, dy, θ, ρ], corresponding to pan, tilt, rotation and isotropic scaling. Assuming
(x1, y1) is the coordinates (with respect to the center of the frame) of a point in
current frame Ft, and (x2, y2) is the coordinates of the corresponding point in
next frame Ft+1, global motion can be illustrated by[

x2
y2

]
= ρ

[
cos θ − sin θ
sin θ cos θ

] [
x1
y1

]
+

[
dx
dy

]
. (4)

Generally, there are two types of global motion estimation (GME) approaches:
feature-based methods and featureless methods. Feature-based methods (e.g.
[15–18]) utilize geometric features extracted in frames, such as Harris corners
(see [19]), and then estimate the motion by matching the corresponding features
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between adjacent frames. Featureless approaches directly estimate the global mo-
tion from all pixels on each frame. Usually, feature-based approaches are fast and
accurate, however fragile. On the contrary, though time-consuming, featureless
approaches are usually robust. In our task, web videos contained complex and
intensive motion. So robustness is necessary. We adopted an FFT-based feature-
less approach in [20–22], measuring translation (dx, dy), rotation θ and scaling ρ
directly from the spectrum correlation between frames. During our test on web
videos, this FFT-based approach reaches a satisfying robustness and accuracy,
with an acceptable time cost.

4.2 Perceptual Modeling

To properly measure the influence of global motion perceived by the viewer, we
need to model the global motion signal in a physical meaning, and consider its
impact on human visual system (HVS).

In previous section, the translation signals (dx, dy) between adjacent frames
are estimated, in pixel unit. However, we need physics quantities directly related
to the stimulus received by HVS. Considering the viewing condition, including
viewing distance and display size, translation (dx, dy) shall be transformed into
deflection angle (αx, αy), i.e.,

αx,y(t) = arctan

(
Lddx,y(t)

Zs

)
≈ Lddx,y(t)

Zs
(5)

where dx,y(t) is translation at frame t in pixel unit, Ld is the diagonal length of
the display monitor, Z is the viewing distance, and s =

√
h2 + w2, where h,w is

the height and the width of the video frame in pixel unit, respectively. Deflection
angle indicates the shift of viewing angle caused by the translation between the
two frames (see Fig. 5).

It is noticed in [23] that the subjective sensation of motion is proportional to
the logarithm of the stimulus intensity, i.e., velocity (Weber-Fechner law [24]).
So we take the logarithm of αx,y(t), called logarithm of deflection angle, as

lx,y(t) = logαx,y(t). (6)

Rotation signal θ(t) and scaling signal ρ(t) are used directly, This is because
HVS perception of the rotation and scaling signals are not directly influenced
by viewing condition.

4.3 Sub-band Decomposition

There is evidence that different frequency compositions have different impact on
HVS perception [25], more specifically on shakiness perception. So we decompose
the signals into three different frequency sub-bands: low band for (0, 3Hz), mid
band for (3Hz, 6Hz) and high band for (6Hz, 9Hz). Decomposition is done by
filtering the original signal by three respective filters, i.e.,

Sl,m,h(t) = S(t) ∗ hl,m,h(t) (7)
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Fig. 5. Illustration of the deflection angle αx.

original αx(t) αy(t) lx(t) ly(t) θ(t) ρ(t)

low band αx,l(t) αy,l(t) lx,l(t) ly,l(t) θl(t) ρl(t)

mid band αx,m(t) αy,m(t) lx,m(t) ly,m(t) θm(t) ρm(t)

high band αx,h(t) αy,h(t) lx,h(t) ly,h(t) θh(t) ρh(t)

Table 2. Sub-bands of motion signals

where S(t) is the original signal, Sl,m,h(t) are filtered low-, mid- and high-band
signals, and hl,m,h(t) represent the corresponding impulse response functions of
the three filters, and ∗ denotes the convolution operation. An illustration of the
band decomposition is shown in Fig. 6.

Ideal filters are adopted in this decomposition work. The ideal filters keep
frequency components only in an interval of frequency. The frequency response
H(f) of ideal filters are

H(f) =

{
1 ft < f ≤ fh
0 else

(8)

where H(f) is the Fourier transform of impulse response h(t).
The six motion signals αx(t), αy(t), lx(t), ly(t), θ(t), ρ(t) are extracted from

every video sequence. Decompositions are done for each of them. As a result,
the six signals are decomposed into 18 sub-bands (see Table 2).

4.4 Statistics

Finally, statistical features that capture the impact of motion signals on HVS
are extracted from each sub-band. Suppose that si(t) is one of the sub-band
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Fig. 6. Band decomposition result of αx(t) signal of a video sequence.

signals, and T is the total number of frames of the video sequence, we estimate
the first to the fourth central or standardized moments of si(t), i.e.,

mean s1i =
∑

t s(t)/T
variance s2i =

∑
t [s(t) − s1i ]2/T

skewness s3i =
∑

t [s(t) − s1i ]
3
/[T (s2i )

3/2
]

flatness s4i =
∑

t [s(t) − s1i ]
4
/[T (s2i )

2
]

In summary, for each video sequence, six motion signals are extracted, and
decomposed into 18 sub-bands. In the next step, four statistics are estimated
from each sub-band. In total, 72 (6 × 3 × 4) feature values are calculated from
each video sequence.

5 Objective Experiment

In this section, we validate the performance of the extracted features, and obtain
an objective no-reference video shakiness metric. We run the cross-validation test
on the features, and validate the performance of the features by SROCC[26]. This
cross-validation process is used for feature selection, and an optimal subset of
features is obtained. We also compare our approach with other related works.

5.1 Cross Validation

We use a hold-out cross validation to evaluate the performance of the features. In
each iteration, the data-set is randomly split into two parts, training set (90%)
and validation set (10%). On the training set, a SVR model is trained, and then
tested by the validation set. Then the performance of features is validated by
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calculating SROCC between the subjective MOS and the output of the SVR
model on the validation set.

LIBSVM [27] is used for SVR training. We adopt a ν-SVR with RBF kernel
to get the optimal result of training. Given a set of features, this train-test
process is repeated on the data-set 1000 times randomly. The median SROCC
is calculated as the final performance of the set of features.

5.2 Feature Selection

In the previous section, 72 feature values are calculated from one video sequence.
To get the best performance, an optimal subset of features must be chosen where
SVR performs the best.

We resort to a wrapper model feature selection using a genetic algorithm
(GA) [28]. Each subset of features is regarded as a genome, represented by a
72-bit number x. x(i) = 1 denotes the feature i is chosen and x(i) = 0 denotes
the feature is not chosen. The fitness of genome x is determined by the median-
SROCC of a 1000-times cross validation with the corresponding feature subset:

fitness(x) =

{
SROCC1000 − P SROCC1000 ≥ P

0 SROCC1000 < P
(9)

where P denotes the pressure of the evolution. During each generation, genomes
with larger fitness are more likely to be selected to breed a new generation. More
specifically, genomes with 0 fitness would never be chosen. So P determines the
minimum fitness allowed in the evolution. The population of the next generation
is generated by both crossover and mutation of the selected genomes (see [28]).

We adopt a two-step solution to find the optimal feature subset. In the first
step, initialize the genomes by randomly choosing x(i) for each i, setting P = 0.8,
and run the genetic algorithm for 100 generations. In the second step, initialize
the genomes by the genomes of the last generation in the first step , setting
P = 0.85, and run the genetic algorithm again. The first run picks out a group
of genomes with high fitness (SROCC). The second run imposes a more strict
restriction, and purifies the genomes to be optimal. Finally the genome with the
highest fitness in the last 5 generations during the second GA run is selected to
be the optimal subset of the features. From the feature selection result, we find
the translation is more important than rotation and zooming, and the low-rank
moments of middle- and high-bands are more significant.

5.3 Results

The GA finally chooses an optimal set of 32 features from the 72 features. This
optimal feature set performs a good result in cross-validation, with median-
SROCC reaching 0.8767 (90% data for training, 10% for testing). Fig. 7 shows
the scatter plot of MOS versus objective scores.

By adjusting the portion of training data, the relationship between the al-
gorithm’s performance and the amount of training data can be investigated.
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Starting with 1%, we gradually increased the portion of training data, and got
a curve as shown in Fig. 8. With training portion exceeding 20% (train with
only 100 video sequences), median-SROCC reaches 0.8. When training portion
exceeds 40%, the SROCC will become stable. It shows that our approach can
reach a good performance with small amount of training data. The generalization
ability of our algorithm is excellent.

We compare our approach with related works [4, 3, 6], as well as only SI and
TI features (trained with SVR). See Table 3. Note that the authors of the related
works have not yet shared the source code, so we implement their works and test
on our data-set by ourselves. The result shows that, our approach outperformed
all the state-of-the-art methods.
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Fig. 8. The relationship between
the performance and the training
portion.

Method SROCC
SI + TI (SVR) 0.4945

[4] 0.6506
[3] 0.6534
[6] 0.7669

Our Approach 0.8767

Table 3. Results



No-reference Video Shakiness Quality Assessment 13

6 Benchmark for Stabilization Algorithms

Stabilization algorithms are designed to eliminate shakiness artifacts in videos.
However, objective benchmark to test the performance of stabilization algo-
rithms do not exist. As an application of our shakiness VQA approach, we pro-
pose a method to evaluate stabilization algorithms, by means of the NR-VQA
model we learned.

Suppose Vi to be i-th video with shakiness artifact, O(Vi) to be the original
score given by our shakiness NR-VQA model, and suppose V k

i to be the video
stabilized by k-th stabilization algorithm, O(V k

i ) to be the shakiness score of
the stabilized video. Then O(V k

i ) − O(Vi) is called the enhancement Ek
i of the

stabilization algorithm k on the video Vi.
It is supposed that, the shakiness score will increase after stabilization, i.e.,

Ek
i > 0. Unfortunately, Ek

i may also decrease after stabilization. For instance,
if a video without shakiness artifact is stabilized, it is possible that stabilization
algorithm unwillingly introduces a motion artifact to the video. In such cases,
Ek

i will be less than zero, and we call the video quality is degenerated.
To evaluate the performance of a certain stabilization algorithm k, we define

the following two indexes:
1. Average Enhancement Ek: the enhancement of stabilization algorithm k

on the given data-set.

Ek =
1

N

∑
i

(
O(V k

i )−O(Vi)
)
. (10)

2. Degeneration Frequency P k
d : the frequency of degeneration in videos stabilized

by algorithm k on the given data-set.

P k
d =

1

N

∑
i

I(O(V k
i ) < O(Vi)). (11)

N is the amount of videos in the data-set. I is the indicator function: I(A) = 1
when A is true, otherwise I(A) = 0.

We stabilize all videos in our data-set, by three popular stabilization tools:
Microsoft Project Oxford Video API [29], proDAD Mercalli 2.0 [30] and Adobe
After Effect CC 2015 (VX deformation stabilizer) [31]. Then, we score original
videos and stabilization videos by our NR-VQA model. We plot the scores of
stabilization videos of three algorithms, in reference of the original scores, see
Fig. 9. As shown in the figure, after stabilization the scores of videos increase
generally. This shows the effect of stabilization algorithms. It is also observed
that the enhancement of low-quality videos is more significant than that of high-
quality videos. Moreover, indeed some videos degenerate after stabilization, and
high-quality videos degenerate more frequently, exactly as expected.

Therefore, we calculate Ek and P k
d for each algorithm separately in videos

of three different quality levels: high-quality level (videos with the highest 100
O(Vi)), low-quality level (videos with the lowest 100O(Vi)), and mid-quality level
(the other 300 videos) . From the following table, it can be seen that proDAD
Mercalli 2.0 performs best.
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Fig. 9. Objective scores of stabilized and original videos. Dash lines indicate the bound-
ary of video quality levels.

Stabilization
Algorithm

Microsoft Project
Oxford Video API

proDAD
Mercalli

Adobe After
Effects CC 2015

Quality Level Pd E Pd E Pd E

Low 0.060 18.997 0.010 19.607 0.140 14.075

Mid 0.160 6.151 0.170 6.857 0.367 2.246

High 0.530 -0.137 0.440 0.860 0.450 -0.166

Overall 0.214 7.459 0.192 8.208 0.338 4.129

Table 4. Pd and E indexes of three stabilization algorithms

7 Conclusion

We propose a new method for video shakiness quality assessment. First, we
construct a data-set based on subjective experiments. Second, based on this
data-set we extract video features and learn an objective model to predict video
quality in terms of shakiness. The proposed model has been validated on the
constructed data-set and used to evaluate the performance of existing video
stabilization methods.
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