
A High-throughput Low-latency Arithmetic Encoder
Design for HDTV

Yuan Li, Shanghang Zhang, Huizhu Jia, Xiaodong Xie, and Wen Gao, Fellow, IEEE
National Engineering Laboratory for Video Technology

Peking University
Beijing, China

Email: yuanli@pku.edu.cn

Abstract — In this paper, we propose a high-throughput low-
latency arithmetic encoder (AE) design suitable for high
definition (HD) real-time applications employing advanced video
coding standards such as H.264/AVC or AVS and using a
macroblock (MB) level pipeline. First, in order to derive the
performance requirement on the AE, a buffer model in
connected with which it is designed is thoroughly analyzed. Then,
using joint algorithm-architecture optimization and multi-bin
processing techniques, we introduce a novel binary arithmetic
coder (BAC) architecture with throughput of 2~4 bins per cycle
sufficient for real-time encoding. Furthermore, a hybrid context
memory scheme is presented to meet the throughput
requirement on the BAC. Simulation result shows that our
design can support 1080p at 60 fps for AVS HDTV real-time
coding with a bin rate up to 107K per MB line. Synthesized with
the TSMC 0.13𝛍m technology, the AE can run at 200MHz and
costs 47.3K gates. By operating at 130MHz, the design is also
verified in an AVS HD encoder on a Xilinx Virtex-6 FPGA
prototype board for 1080p at 30 fps.

I. INTRODUCTION
Today’s video codec adopts a series of innovative coding

techniques to achieve high compression efficiency. Both
H.264/AVC [1] and AVS [2] use entropy coding to reduce the
redundancy of transformed coefficients after prediction, as
well as the motion information etc. Context-based Adaptive
Binary Arithmetic Coding (CABAC) [3] is adopted in
H.264/AVC Main/High profiles which can save up to 14% bit
rate compared to Context-based Adaptive Variable Length
Coding (CAVLC). AVS also adopts a similar Context-based
Binary Arithmetic Coding (CBAC) [4] in Jiaqiang profile
which can save up to 13% bit rate than Context-based 2D
Variable Length Coding (C2DVLC). However, the arithmetic
coding techniques cause additional computational complexity.
In order to implement a real-time HDTV encoder, it becomes
necessary to develop a high-throughput AE architecture with
strong considerations for the system latency.

Several AE architectures have been proposed in literature
to increase the throughput in recent years. Osorio [5]
introduced a multi-bin BAC by packing the equally probable
(EQ) bins with normal ones. The updates of Range and Low
are also separated to achieve a throughput around 2bins/cycle

in average. In Liu’s [6] article, a 4-stage pipelined BAC
architecture is presented, which can process one bin per cycle.
Since the delay of accessing neighboring syntax elements (SE)
is long, the throughput of this encoder is only 0.67bin/cycle.
Tian [7] proposed a RDO-support CABAC encoder with a
throughput of 1bin/cycle. By using high operating frequency,
the throughput of this encoder is higher than most of others.
Reported by Chen [8], a 6-stage pipelined BAC with multi-bin
processing capability is presented. By optimizing the
renormalization step, the average throughput of 1.42bins/cycle
can be achieved for the design.

These state-of-the-art AEs focus on the throughput mostly,
while for real-time coding applications, the system latency
caused by the large size of the front-buffer of the AE is also
important. In this paper, we analyze front-buffer behavior and
its requirement on the BAC processing speed and then
propose a novel BAC architecture with throughput of 2~4
bins per cycle by using joint algorithm-architecture
optimization and multi-bin processing techniques. A hybrid
context memory scheme is also presented to meet the
throughput requirement on the BAC. Implemented for AVS,
the proposed AE can achieve low delay and real-time
performance for HDTV (1080p at 60fps).

The rest of this paper is organized as follows. Section II
analyzes the buffer model and performance requirement. The
AE architecture and optimization strategies are proposed in
Section III. Section IV shows the implementation result and
comparison with other works. Finally, we conclude this paper
in Section V.

II. BUFFER MODELING
In AE, the throughput of BAC is the bottleneck since the

binarizer can generate large amount of bins by, for example,
processing multi SEs simultaneously. For real-time design,
MB-level pipelining is usually adopted to increase the
throughput and reduce latency. However, the quantity of input
bins (from binarizer) of BAC for a MB could fluctuate
tremendously, which makes the MB-level pipelining of AE
very difficult. It is obvious that we can use a large buffer to
smooth the input fluctuation and in our design we also make
such an arrangement. The problem then becomes the

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 998

SE
buffer Binarizer

)(tfin

Buffer Model
)(tQ

)(tfout BAC

Bottleneck

SE Bin Bit

Figure 1. The proposed buffer model.

balancing between the input (front) buffer size and its
throughput requirement, which directly translates into chip
area and system latency. In the following, we analyze the
assumed buffer model (as depicted in Fig. 1) to illustrate the
relationship between the buffer size and the throughput
requirement.

Let 𝑓𝑖𝑛(𝑡) be the input to the buffer with variable, time 𝑡,
let 𝑓𝑜𝑢𝑡(𝑡) be the output of the buffer with a constant read-out
speed 𝐶 and let 𝑇𝑇 be the length of a continuous time period.
Let 𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇) and 𝑄𝑄𝑜𝑢𝑡(𝑡,𝑇𝑇) be the quantities of data written
to the buffer and data read out from the buffer, respectively,
during time period (𝑡, 𝑡 + 𝑇𝑇]. Let 𝑄𝑄(𝑡) be the quantity of data
held in the buffer at time 𝑡 . Then we see the following
equations hold.

𝑓𝑜𝑢𝑡(𝑡) = {
𝐶, 𝑖𝑓 𝑄𝑄(𝑡) ≠ 0
0, 𝑖𝑓 𝑄𝑄(𝑡) = 0. (1)

𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇) = ∫ 𝑓𝑖𝑛(𝑡)𝑑𝑡𝑡+𝑇
𝑡 . (2)

𝑄𝑄𝑜𝑢𝑡(𝑡,𝑇𝑇) = {
𝑇𝑇𝐶, 𝑖𝑓 𝑄𝑄(𝑡) ≠ 0 𝑓𝑜𝑟 𝑡 ∈ (𝑡, 𝑡 + 𝑇𝑇]

∫ 𝑓𝑜𝑢𝑡(𝑡)𝑑𝑡
𝑡+𝑇
𝑡 , 𝑖𝑓 𝑏𝑢𝑓𝑓𝑒𝑟 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝑎𝑡 𝑠𝑜𝑚𝑒 𝑡

. (3)

𝑄𝑄(𝑡) = 𝑄𝑄(𝑡 − 𝑇𝑇) + 𝑄𝑄𝑖𝑛(𝑡 − 𝑇𝑇,𝑇𝑇) − 𝑄𝑄𝑜𝑢𝑡(𝑡 − 𝑇𝑇,𝑇𝑇). (4)

Based on these equations, we will prove the following
hypothesis about the buffer model.

Hypothesis 1: For any starting time 𝑡, if there exists an
upper bound 𝑄𝑄0 for the total input data to the buffer in a given
time period 𝑇𝑇0 (𝑄𝑄𝑖𝑛(𝑡,𝑇𝑇0) ≤ 𝑄𝑄0), then we can set the 𝑄𝑄0 as
the buffer size and 𝐶 = 𝑄0

𝑇0
 as the constant output speed of the

buffer to guarantee that the buffer will never overflow, which
is 𝑄𝑄(𝑡) ≤ 𝑄𝑄0 for any 𝑡.

Proof: We first prove the following lemma.

Lemma 1: If the buffer is empty at time 𝑡0 and is full or
overflowed at 𝑡1, then we can get that the time period from 𝑡0
to 𝑡1 is larger than 𝑇𝑇0, that is 𝑡1 − 𝑡0 > 𝑇𝑇0.

Proof: Because the total input data to the buffer is
monotonically increasing and 𝑄𝑄0 is the upper bound for any
given time period 𝑇𝑇0 , the total input data cannot exceed 𝑄𝑄0
unless the time period is equal or larger than 𝑇𝑇0. Moreover,
during the time period from 𝑡0 to 𝑡1 , there must have data
output from the buffer. So the time period from buffer empty
to buffer full or overflowed is strictly larger than 𝑇𝑇0.

Based on Lemma 1 we can further prove the Hypothesis 1.
Suppose at time instance of 𝑡𝑓 the buffer overflows at the first
time, then from Lemma 1, 𝑡𝑓 > 𝑇𝑇0 must be true. Considering a
time instance 𝑡𝑠 = 𝑡𝑓 − 𝑇𝑇0, the amount of data in the buffer at
time 𝑡𝑠 can be obtained by the following equation.

𝑄𝑄(𝑡𝑠) = 𝑄𝑄(𝑡𝑓) − 𝑄𝑄𝑖𝑛(𝑡𝑠 ,𝑇𝑇0) + 𝑄𝑄𝑜𝑢𝑡(𝑡𝑠 ,𝑇𝑇0) (5)

TABLE I. STATISTICAL RESULTS OF 𝑄𝑄0 AND 𝑇𝑇0 (GOP OF IBBP)

Sequence QP Bit rate
(Mbps)

𝑄𝑄0
(Bins)

𝑇𝑇0 Throu.
(Bins/cy.) Cycle MB

bluesky 14 114.3 100657 49020 120 2.05
sunflower 12 121.6 96706 49020 120 1.97

mobcal_ter 21 99.4 107160 49020 120 2.19
fireworks 40 106.3 71686 49020 120 1.46

pedestrian_area 20 103.7 77930 49020 120 1.59
BasketballDrive 16 113.5 79688 49020 120 1.63

It is obvious that 𝑄𝑄(𝑡𝑓) > 𝑄𝑄0 and 𝑄𝑄𝑖𝑛(𝑡𝑠,𝑇𝑇0) ≤ 𝑄𝑄0 . For
𝑄𝑄𝑜𝑢𝑡(𝑡𝑠,𝑇𝑇0) , we have two mutually exclusive situations as
follows.

1) From 𝑡𝑠 to 𝑡𝑓, the buffer is empty at time instance 𝑡𝑒.
2) From 𝑡𝑠 to 𝑡𝑓, the buffer has never been empty.

For Situation 1), we get that the time period from buffer
empty (𝑡𝑒) to buffer overflowed (𝑡𝑓) is 𝑡𝑓 − 𝑡𝑒 < 𝑇𝑇0, which
contradicts with Lemma 1. For Situation 2), since the buffer is
never empty, the total output data from the buffer is
𝑄𝑄𝑜𝑢𝑡(𝑡𝑠,𝑇𝑇0) = 𝑇𝑇0𝐶 = 𝑄𝑄0. Then (5) becomes

𝑄𝑄(𝑡𝑠) = 𝑄𝑄(𝑡𝑓) − 𝑄𝑄𝑖𝑛(𝑡𝑠 ,𝑇𝑇0) + 𝑄𝑄𝑜𝑢𝑡(𝑡𝑠 ,𝑇𝑇0) > 𝑄𝑄0 − 𝑄𝑄0 + 𝑄𝑄0 = 𝑄𝑄0.

This means that at time 𝑡𝑠 the buffer already overflows and
this contradicts with the assumption that the time 𝑡𝑓 is the very
first time that buffer overflows. The Hypothesis 1 is thus
proved.

With this buffer model, if we find 𝑄𝑄0 for a given 𝑇𝑇0 (this
implies that when a window of time 𝑇𝑇0 is checked across the
entire input bin stream, there are at maximum 𝑄𝑄0 number of
bins), the buffer size can be set to 𝑄𝑄0 and the throughput to 𝑄0

𝑇0
,

and this can guarantee the buffer will never overflow. In order
to obtain these two parameters, we tested a number of HD
(1080p) sequences at level 6.0.3 in AVS, which supports
resolution of 1920x1152@60fps and bit rate up to 100Mbps.
Table I shows the detailed results. From the test result, our
design is set to aim at using a buffer capable of holding the
data of a MB line (120MBs for 1080p) and achieving the
throughput of 2.2 bins per cycle when operating at 200MHz.

III. PROPOSED ARITHMETIC ENCODER
A. Top-level Arithmetic Encoder Architecture

The proposed AE architecture, which consists of three
main functional blocks, is shown in Fig. 2. Block Binarizer
converts the input SE into bin string. A line buffer holding
neighboring SE for context selection purpose is also located in
this block. Block CM (context management) contains the
proposed hybrid memory scheme and the context updating
logic. BAC block can support a throughput of 2~4 bins per
cycle. Since these three blocks are data independent (no
feedback loop), we adopt a 3-stage pipelined scheme among
them to increase the throughput. For the critical path in CM
and BAC, we optimize them according to the following
strategies.

B. Optimization of BAC Architecture
First, we construct a baseline BAC architecture with a

constant throughput of 2bins/cycle. The critical path in BAC is
the calculation of Low in the iteration, especially in LPS.
Hence the worst case of 2-bin calculation is in processing two

999

SE line
buffer

Binarization

Bin fifo

Ctrl&ctx
idx cal

Ctx RAM

Local
buffer

Updated ctxBAC

Low&range

Ctx update

m
ux

Bit packing Output

Input

Reg
group

mux

SE buffer

A

C

B

A: Binarizer B: CM C: BAC
Combinational logic Storage

Figure 2. Proposed arithmetic encoder architecture.

First LPS Second LPS

Range

Low

MPS 1 MPS 2 MPS 3 MPS 4

Calculation of first bin

Calculation of third bin

Calculation of second bin

Calculation of fourth bin

Range

Cal (rLPS)

Cal
(Low_int)

Cal (rMPS)Cal (rMPS)Cal (rMPS)Cal (rMPS)

LOD
(rLPS)

LZD
(Low_int)

Cal (rMPS)

Cal
(Low_int)

LOD
(rLPS)

LZD
(Low_int)

Figure 3. Timing diagram of the worst case for two LPS bins.

consecutive LPS bins. By further observation we found two
useful characteristics that can be used for speeding up the
worst-case processing. One is that the calculation of Range
only depends on itself in the iteration and the operating time is
much shorter than Low. In this situation, some operation of
Low (calculation of rMPS and rLPS as shown in Fig. 3, rMPS
and rLPS indicates the widths of interval for MPS and LPS,
seperately), can be pre-calculated in the first iteration after the
calculation of Range is done, which significantly reduces the
operating time of Low in the second iteration. The other one,
e.g. in CBAC, is the initialization of Range when LPS
happens. In logarithm domain, the Range is represented by
two parameters which are its integral part and its decimal part.
The integral part will be initialized when LPS happens, which
can make calculation of Low in the second iteration much
easier. By applying this strategy (i.e. time borrowing), we can
achieve a joint algorithm-architecture optimization that makes
it possible a constant throughput of 2bins/cycle and a latency
33% lower than in the case of an architecture with a
performance of 1bin/cycle.

Moreover, we adopt the multi-bin processing to further
increase the throughput. For coefficient coding, with the
quantization parameter (QP) getting smaller, the number of
bins increases dramatically when the bit rate rises. Taking
AVS as an example, which is also applicable for H.264/AVC,
the coefficients are coded by Level (absLevel and Sign) and
Run pairs and the type of binarization is unary as shown in Fig.
4. For the context model selection, the bins whose indexes are
equal or larger than 2 for absLevel and 1 for value of Run use
the same contexts, which are called same-context (SC) bins.

0
Bin

index

0 0 0 0 0 1 0 0 0
0 1 2 3 4 5 6

Bin 0 0 0 1 0
0 1 2 3 4 5

Ctx
index 0 1 2 0 1Bypass

absLevel = 6 Sign Run = 5

Normal two bins coding Four or three MPS coding
Figure 4. Speed up using multi-bin processing for coefficients.

Bin0 Bin1 Bin2 ... BinN

Bin0 Bin1 Bin2 ... BinN

...

Bin0 Bin1 Bin2 ... BinN

SE1

SE2

...
SEn

Ctx1 Ctx2 CtxN...

SEn

...

SE3
SE2

Dual-port RAM

Register Group
SE1

Ctx1 Ctx2 ... CtxNWeighting

CtxN

...
...

Ctx2
Ctx1

Single-port RAM
52bits x 3713bits x 128

13bits x 48

Figure 5. Hybrid memory scheme.

The SC bins consists of several consecutive ‘0’s and a ‘1’ at
the end. It is obvious that the MPS of the context for SC bins
is ‘0’ in most cases. Since the calculation of MPS is much
simpler than LPS, we can process multi consecutive ‘0’s in
one cycle. Considering the matching of circuit delay with
processing two LPS bins, we adopt 4-bin MPS processing
circuit which can encode four or three MPS bins in one cycle
(shown in Fig. 3). This multi-bin processing technique further
increases the throughput by 15% than the throughput of
2bins/cycle in average.

C. Hybrid Memory Scheme
In the AE architecture, we adopt a two-level memory

architecture, consists of context RAM and local context buffer,
to speed up the memory access [7]. However, in our constant
2bins/cycle scheme, the consecutive two bins may belong to
different SEs, which is a bit difficult for context RAM
mapping. For example, in AVS, if the first bin is the last bin of
SE mb_type, the second bin may be part of the SE
mb_part_type or reference index. We call this type of SE the
Collision SE (CSE), which must be located in different RAMs.
To fulfill all these CSEs, 4 ~ 5 dual-port RAMs and the
corresponding local buffers are needed at least. After further
careful observation, we found that in all bin pairs associated to
the CSEs, the bin index of the second bin in bin pair is always
0 (means the first bin of SE). According to this observation we
propose a hybrid memory scheme as shown in Fig. 5. All
context models used by the first bin of CSEs are stored in
register groups for fast access and the other context models are
stored in a dual-port RAM for high storage density. For the
context weighting technology adopted in AVS [4], two
context models may be used for coding one bin (WBin). In our
constant 2bins/cycle scheme, the WBins cannot be
consecutive and we use a single-port RAM to store the
associated context models. Finally, totally 324 context models
are stored which is only one more than the 323 context models
required to support AVS standard. This memory scheme can
also be applied to H.264/AVC due to the same concept.

1000

TABLE II. SIMULATION RESULT WITH 1080P SEQUENCES (GOP IS IBBP)

Sequence QP Bit rate
(Mbps)

Throu. needed
(Bins/cycle)

Throu. actually
(Bins/cycle)

bluesky 14 114.3 2.05 2.34
sunflower 12 121.6 1.97 2.36

mobcal_ter 21 99.4 2.19 2.41
fireworks 40 106.3 1.46 2.17

pedestrian_area 20 103.7 1.59 2.39
BasketballDrive 16 113.5 1.63 2.35

Average 109.8 1.82 2.34

Figure 6. Actual performance of different frame types for 1080p.

IV. IMPLEMENTATION RESULT
Table II shows the performance of our architecture in

encoding HD (1080p@60fps, bit rate up to 100Mbps)
sequences. The actual throughputs of these sequences, under
the given buffer size for storing the data for a MB line, are all
higher than the requirement. The simulation results for
different bit rates and frame types are shown in Fig. 6. The
throughputs needed for I frame per MB line increases from
0.66bins/cycle to 2.50bins/cycle when bit rate is from 20Mbps
to 130Mbps, while the actual performance of our AE (from
2.31bins/cycle to 2.60bins/cycle) can follow this trend to meet
the throughput requirement. Because the coefficients take the
most calculations when bit rate is rising, in this situation, our
multi-bin processing for coefficients becomes more and more
effective. P and B frames have much less bins than I frame,
and the actual throughputs are also lower but still sufficient.
Thus the real-time coding for AVS level 6.0.3 can be achieved
with low delay.

Our design is synthesized using the TSMC 0.13μm process.
The detailed result is shown in Table III. The gate count
includes all functional blocks in CBAC and memories for
contexts. The comparison with previous works is shown in
Table IV. Our design is the best on the throughput per cycle
and also has an additional advantage of low system delay, i.e.
less than a MB line for 1080p video coding. The gate area of
computational logic of CBAC in AVS costs less than the
CABAC in H.264/AVC. However, the memory cost of CBAC
(13bits x 323) is much more than CABAC (7bits x 400).
Hence the total gate count of our design is more than other
works targeting H.264/AVC. The functions are also different
between these designs as shown is Table IV. In addition, our
design has been successfully verified in an AVS HD encoder
on a Xilinx Virtex-6 FPGA prototype board operating at
130MHz for 1080p at 30 fps.

TABLE III. SUMMARY OF THE IMPLEMENTED RESULT

Process technology TSMC 0.13 μm CMOS
Max frequency 200MHz

Memory count
Single-port RAM: 208bytes
Dual-port RAM: 241bytes

Register group: 78bytes
Total gate count 47.3K

Processing ability 1080p at 60fps with bit rate up to 100Mbps
System latency Less than a MB line for 1080p

TABLE IV. COMPARISON WITH PREVIOUS WORKS

 Osorio [5] Tian [7] Chen [8] Ours
Standard H.264/AVC H.264/AVC H.264/AVC AVS

Technology (μm) 0.35 0.13 0.13 0.13
Max frequency 186 578 222 200

Throu. (bins/cycle) 1.9~2.3 1 1.42 2.34
Gate count 19.4K 44.6K 46.0K 47.3K

Function BAC + part
of BI Full Full Full

V. CONCLUSION

In this paper, a high-throughput AE architecture for HD
real-time video coding is proposed, with the minimized
latency of a MB line. We establish a buffer model about the
relationship between buffer size and throughput requirement.
A novel BAC architecture with throughput of 2~4 bins per
cycle and the corresponding hybrid context memory scheme
are proposed. Simulation results show that our design is far
more superior than the ones in the literature and can support
1080p at 60 fps for AVS HDTV real-time coding, bin rate up
to 107K for a MB line. Synthesized with the TSMC 0.13μm
technology, the proposed AE can run at 200MHz and costs
47.3K gates. We have successfully implemented this AE in an
AVS HD encoder on a Xilinx Virtex-6 FPGA prototype board
operating at 130MHz for 1080p at 30 fps.

REFERENCES
[1] Joint Video Team, “Draft ITU-T Recommendation and Final Draft

International Standard of Joint Video Specification,” ITU-T Rec. H.264
and ISO/IEC 14496-10 AVC, Mar. 2003.

[2] Chinese GB/T20090.2 Information Technology—Advanced Audio
Video Coding Standard Part2: Video, 2006.

[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp.
620-636, July 2003.

[4] L. Zhang, X. Wu, N. Zhang, W. Gao, Q. Wang, and D. Zhao, “Context-
based arithmetic coding reexamined for DCT video compression,” in
Proc. IEEE ISCAS, May. 2007, pp. 3147-3150.

[5] R. R. Osorio and J. D. Bruguera, “High-throughput architecture for
H.264/AVC CABAC compression system,” IEEE Trans. Circuits Syst.
Video Technol., vol. 16, no. 11, pp. 1376-1384, Nov. 2006.

[6] P. S. Liu, J. W. Chen, and Y. L. Lin, “A hardwired context-based
adaptive binary arithmetic encoder for H.264 advanced video coding,”
in Proc. VLSI-DAT, Apr. 2007, pp. 1-4.

[7] X. H. Tian, T. M. Le, X. Jiang, and Y. Lian, “Full RDO-support power-
aware CABAC encoder with efficient context access,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 9, pp. 1262-1273, Sept. 2009.

[8] J. W. Chen, L. C. Wu, P. S. Liu, and Y. L. Lin, “A high-throughput
fully hardwired CABAC encoder for QFHD H.264/AVC main profile
video,” IEEE Trans. Consumer Electron., vol. 55, no. 4, pp. 2529-2536,
Nov.2010.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

15 45 75 105 135

B
in

s/
cy

cl
e

Bit rate (Mbps)

Performance for 1080p (bluesky)

I_need
I_act
P_need
P_act
B_need
B_act

1001

