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Abstract— Image set compression has recently emerged as an
active research topic due to the rapidly increasing demand in
cloud storage. In this paper, we propose a novel framework for
image set compression based on the rate-distortion optimized
sparse coding. Specifically, given a set of similar images, one
representative image is first identified according to the similarity
among these images, and a dictionary can be learned subse-
quently in wavelet domain from the training samples collected
from the representative image. In order to improve coding
efficiency, the dictionary atoms are reordered according to their
use frequencies when representing the representative image.
As such, the remaining images can be efficiently compressed
with sparse coding based on the reordered dictionary that is
highly adaptive to the content of the image set. To further
improve the efficiency of sparse coding, the number of dictionary
atoms for image patches is further optimized in a rate-distortion
sense. Experimental results show that the proposed method can
significantly improve the image compression performance com-
pared with JPEG, JPEG2000, and the state-of-the-art dictionary
learning-based methods.

Index Terms— Image set compression, sparse coding, dictio-
nary learning, rate-distortion optimization.

I. INTRODUCTION

THE exponentially increasing demand of digital image
and video services has been creating an ever stronger

demand for image compression techniques, which target to
achieve highly compact representation for images and videos
by exploiting various types of redundancies [1]–[6]. Typical
image coding methods usually compress images individu-
ally by reducing three types of redundancies within images,
i.e., spatial redundancy, visual redundancy and statistical
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redundancy, such as JPEG [7], [8] and JPEG-2000 [9]. These
redundancies can be referred as to intra-image redundancy.
With the development of cloud storage [10]–[12], a huge
amount of images are upload and stored in servers, and
many of them are classified into different categories based
on their content similarity by different image management
applications, e.g., Google Photos and iCloud Photo Library.
Besides intra-image redundancy, set redundancy [13] or inter-
image redundancy exists among images in image set as well.
Since the traditional compression methods only focus on
achieving compact representation for each image individually
by reducing intra-image redundancy, the inter-image redun-
dancy has been largely ignored, which leads to a waste of
storage space obviously.

Considering the cloud storage of images and videos, numer-
ous cloud-based image and video processing and compression
methods are proposed. Wang et al. [14] inferred the best
contrast level by taking advantage of the retrieved images
from cloud to guide image contrast enhancement process.
Liu et al. [15] made full use of the similarity in both the
low-resolution image itself and the cloud images to facilitate
image super-resolution. Yue et al. [16] propose to describe
an input image based on its down-sampled version and local
feature descriptors, and the high resolution image can be
reconstructed via retrieved similar image patches from cloud.
This method can effectively reduce the bandwidth for image
transmission.

In order to reduce set redundancy, various image set com-
pression techniques also have been proposed in the litera-
tures [13], [17]–[27], which have attracted more and more
attentions recently. According to the prediction structures,
these methods can be roughly classified into two categories,
i.e., central prediction and sequential prediction methods.
Given a group of similar images, the methods with central
prediction structure first select or construct one or more repre-
sentative image(s) from them, and compress the representative
image(s) independently with traditional image compression
methods. In this manner, the remaining images can be com-
pressed by referring to the decoded representative images and
only the prediction residuals are entropy coded. By contrast,
the sequential prediction structure methods take advantage of
the video coding framework by reorganizing similar images
into a sequence according to the prediction costs, such that
each image should be decoded sequentially.

Karadimitriou proposed two construction methods for repre-
sentative image, i.e., max-min differential (MMD) method [17]
and centroid method [18], to reduce the set redundancy.
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The MMD method constructs two representative images, ‘min’
image and ‘max’ image, which are generated by choosing the
minimum and maximum pixel values for every pixel position
from all the similar images. For each image, the original
pixel values are replaced by the difference from either the
‘min’ image or the ‘max’ image, and then the difference
values are compressed with entropy coding. However, this
method needs to compress extra two representative images.
The centroid method constructs only one representative image
by averaging the pixel values in the same position among
all the images, and the difference images between the rep-
resentative image and other similar images are compressed
individually. Yeung et al. [19] created a new low frequency
template as the representative image by averaging the low
frequency components of all images to capture most of the
common patterns among similar images while discarding vari-
ation content. Li et al. [21] further extended the low frequency
template method by decomposing original images and the low
frequency template into different resolutions and predict the
images at certain resolution. However, these methods cannot
handle images with large scale geometric deformations, and
also need to compress extra representative image(s). Therefore,
the above methods are mainly limited to compress medical
images, which are well aligned.

To deal with motion among similar images, sequential
prediction structure for image set compression is proposed in
the literatures [22], [24]–[27]. Nielsen and Li [22] utilized the
root mean square error as the inter-image redundancy measure
to construct a minimum spanning tree (MST) [23], and derived
the image coding order by traversing the MST. Subsequently,
these images are compressed sequentially by coding the dif-
ference between images and their previously encoded images
using JPEG2000. Zou et al. [24] further improved the inter-
image redundancy measure by performing motion estimation
among images and used HEVC codec to compress image
sequence. Considering that irregular and large scale motions
among similar images make traditional local motion estimation
inefficient, Shi et al. [25]–[27] utilized the distance of matched
local feature descriptors between any two images to measure
the inter-image redundancy, and introduced the geometric and
photometric transform to improve inter-prediction efficiency.
Though significant improvement has been achieved compared
to individually coding methods, these approaches still aim at
finding similar content directly from reference images in the
same set by brute force searching, which may be inefficient.
When multiple objects with different large scale motions,
they are difficult to find the redundancy parts from other
images efficiently [28]. Especially, the luminance changes and
resolution diversity make the similar content retrieval more
difficult.

Recently, image sparse coding with learned overcomplete
dictionaries shows promising results on image compres-
sion [29]–[32] by representing images with dictionary atoms
compactly. In this novel compression framework, a general
dictionary is firstly learned from a lot of images, and an image
can be compressed by representing its non-overlapping image
patches as linear combination of very few dictionary atoms,
which is called sparse coding. Since the atoms in dictionaries

are learned from training samples by approximating them with
coefficients as few as possible, the similar content with that in
training images can be compressed more efficiently. Therefore,
sparse coding with dictionary learning provides a promising
solution to image set compression by learning specific dic-
tionaries for different image sets. Bryt and Elad [33] took
advantage of K-SVD method [34] to training a dictionary off-
line from image patches in pixel domain, and applied it to
compress facial images, which significantly improves the com-
pression performance compared with JPEG and JPEG2000.
Skretting and Engan [35] compared the compression efficiency
of pixel domain dictionary and wavelet domain dictionary, and
showed that the wavelet domain dictionary achieved better
compression performance.

In this paper, we propose a novel framework with dictionary
learning based sparse coding to tackle the image set compres-
sion problem. In the proposed framework, a specific dictionary
is learned from a representative image for every image set, and
the other images are compressed by sparse coding with the
corresponding dictionary. In order to improve the compression
performance, there are two main contributions in this paper.
Firstly, considering the similarity among images in the same
set, we reorder the dictionary atoms according to their use
frequencies in sparse coding for the representative image by
making the frequently used atoms centralized to the front.
With the reordered dictionary, the run-level coding can be
more efficient for compressing the sparse coefficients. Second,
considering different image patches with different sparsity,
we propose a rate-distortion based orthogonal matching pur-
suit (RD-OMP) method to assign different numbers of atoms
to different image patches according to their rate-distortion
costs. The basic idea of this paper has been introduced in our
conference version [36], and the motivation and rationality
of these contributions are analyzed detailedly in this paper,
and more analysis and experiments are provided in this paper
to show the philosophy and the efficiency of the proposed
method.

The remainder of this paper is organized as follows.
In Section II, we briefly review the background of image
compression with dictionary learning, and then introduce the
proposed framework for image set compression. Section III
gives the detailed introduction for the proposed dictionary
reordering, rate-distortion based orthogonal matching pursuit
method and the corresponding entropy coding method, respec-
tively. Experimental results are reported in Section IV and
Section V concludes the paper.

II. THE PROPOSED FRAMEWORK FOR

IMAGE SET COMPRESSION

A. Image Compression With Dictionary Learning

Image compression with a learned overcomplete dictionary
utilizes sparse coding to approximate every image patch with
linear combinations of few dictionary atoms. Considering
the good adaptability of learned overcomplete dictionaries,
many related image compression methods have been proposed
in the literatures, e.g., [33], [37]. In traditional methods,
the overcomplete dictionary is learned from a collection of
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Fig. 1. The proposed framework for image set compression with adaptive dictionary learning.

image patches, {x1, x2, . . . , xL}, by solving the following
optimization problem [38],

f (D,α) = min
D,α

L∑

i=1

‖xi − D�αi‖2
2 + λ‖�αi‖0,

s.t . ‖di‖2 ≤ 1. (1)

Here xi ∈ RM is the vectorization of the i th image patch
and D = [d1, d2, · · · , dN ] ∈ RM×N (M < N) is the learned
dictionary with N atoms. �αi ∈ RN is the coefficient vector
corresponding to image patch xi , and it has very few non-
zero values, and α = [�α1, �α2, · · · , �αL ]. λ is the regularization
parameter to trade off the data fitting term and the regularized
sparsity term corresponding to the first and the second term
respectively.

The joint optimization problem in Eqn.(1) can be solved
by iteratively optimizing the sparse coding coefficient
matrix α and dictionary D, respectively, i.e., solving the sub-
optimization problems in Eqn.(2) and Eqn.(3),

α(k) = min
α

L∑

i=1

‖xi − D(k−1) �αi‖2
2 + λ‖�αi ‖0, (2)

D(k) = min
D

L∑

i=1

‖xi − D�α(k)
i ‖2

2, s.t . ‖di‖2 ≤ 1, (3)

where α(k) and D(k) represent the kth iteration results. Many
optimization algorithms have been proposed to solve the
above problems in Eqn.(2) and Eqn.(3), e.g., orthogonal
matching pursuit (OMP) [39] for the sparse coding problem
in Eqn.(2), and RLS-DLA [40] for the dictionary update
problem in Eqn.(3).

A typical image compression method with learned dictio-
nary in wavelet domain is proposed in [35]. The dictionary
is learned from the image patches {xi}, which are transformed
into wavelet domain and subtracted their DC components.
For an image I, it is firstly divided into non-overlapping
patches, {xi}, which are also transformed into wavelet domain.
The DC components of image patches are compressed
with DPCM method, while the AC components are rep-
resented by sparse approximation with the learned dictio-
nary, and the non-zero coefficients are further quantized and
entropy coded to reduce the psychovisual redundancy and

statistical redundancy, respectively. A given error threshold, ε,
is usually utilized as stopping criterion for the sparse coding
of every image patch independently,

min ‖αi‖0, s.t . ‖xi − Dαi‖2 ≤ ε, i = 1, 2, . . . , L, (4)

where L is the number of image patches. Due to the sparsity
of the coefficients, {αi } are usually coded with the run-level
method.

B. The Proposed Framework for Image Set Compression
With Dictionary Learning

In this paper, we proposed a new framework for image
set compression utilizing specific dictionaries learned from
image sets, as illustrated in Fig.1. For an image set, one
representative image is firstly selected from them according to
its similarity with others, and it should share similar content
with others as much as possible. The representative image
is compressed with traditional image compression methods,
e.g., JPEG or JPEG2000. Then, a specific dictionary for the
given image set is learned from the image patches extracted
from the decoded representative image. In this paper, we com-
press the representative images with JPEG2000 at high bitrate,
about 0.8 bpp. Considering the better performance of wavelet
domain dictionary [35], the image patches extracted from the
representative image are first transformed into 9/7 wavelet
domain and subtracted their DC components. Then, the dic-
tionary can be learned for the AC components by solving
the optimization problem in Eqn.(1) with the method in [40].
Finally, the dictionary atoms are further reordered according
to the number of times they are used in sparse coding for the
representative image.

Except for the representative image, the other images
are compressed based on the reordered dictionary. Firstly,
an image is divided into non-overlapping patches, which are
further transformed into wavelet domain. The DC components
of image patches are compressed by simple intra-prediction,
while the AC components of image patches are compressed
by sparse coding with the reordered dictionary. During the
sparse coding, the proposed rate-distortion based orthogonal
matching pursuit (RD-OMP) method is utilized to adaptively
assign different number of atoms to image patches. At the
decoder side, the representative image should be first decoded,



3390 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 12, DECEMBER 2018

and the dictionary is retrained from it. Then, the other images
can be decoded with the learned dictionary. This method
can avoid compressing dictionary for every image set, but it
also incurs extra computational burden for dictionary learning.
Fortunately, most of the images in cloud are rarely accessed,
even never accessed, but they must be preserved, e.g., medical
images. Therefore, the storage efficiency is more important for
them than computational complexity.

In order to improve the efficiency of the dictionary in repre-
senting other images, the representative image should share the
common content or structures among other images as much as
possible. There are numerous methods proposed to determine
or construct a representative image [22], [24], [26], [41].
In this paper, we take the distance of matched Scale-Invariant
Feature Transform (SIFT) [42] features to measure image sim-
ilarity considering its good performance in visual description
for images, even though other visual descriptors, e.g., low
complexity descriptor CDVS [43], [44], are also applicable.
The image with the minimum distance to all the other
images is selected as the representative one of the image
set. In [42], Lowe utilized the scale-space extremum in
the difference of Gaussian filter convolved with images as
the key points, and calculated SIFT descriptor to describe
image local characteristic with a 128-dimensional (128-D)
vector, which is composed of the histogram of gradient direc-
tions in the 16 × 16 area around the key point. Therefore,
the kth SIFT descriptor in one image can be formulated as
f (k) = {x(k), y(k), s(k), o(k), u(k)}, where x(k) and y(k)
are the horizontal and vertical coordinates of the SIFT point,
s(k) and o(k) are the scale and dominant direction of the local
region around SIFT point, and u(k) is the 128-D SIFT descrip-
tor vector. For an image set, G = {I1,I2, · · · ,In}, we extract
the SIFT features for every image, F = { f1, f2, · · · , fn}. The
similar content between any two images can be retrieved by
identifying the corresponding SIFT points. Specially, for two
images, Ii and I j , when we match one SIFT descriptor fi (kt )
in image Ii to SIFT descriptors in image I j , the nearest neigh-
bor and the second-closest neighbor for fi (kt ) in image I j

are denoted as f j (km) and f j (kn). If fi (kt ) and f j (km) is a
pair of matched SIFT descriptors, they should conform to the
following requirement,

d
(

fi (kt), f j (km)
) ≤ βd

(
fi (kt ), f j (kn)

)
, (5)

where β is a constant and d(·) is the Euclidean distance of
two SIFT descriptors. The dissimilarity of two images can be
measured by the average of all the matched SIFT descriptors,

d̄
(Ii ,I j

) =
∑

(kt ,km )∈�i, j

d
(

fi (kt ), f j (km)
)
. (6)

where �i, j is the set of matched SIFT points between image
Ii and I j . The image in one set has the minimum distance to
all the other images are selected as representative image. In the
following section, we will introduce the dictionary learning
based compression method for non-representative images.

Fig. 2. Atoms in different transform matrix, (a) DCT, (b) learned dictionary.

III. DICTIONARY LEARNING BASED

IMAGE SET COMPRESSION

A. Dictionary Reordering

The atoms in traditional orthogonal transformation are usu-
ally arranged according to the frequency variation, e.g., atoms
in DCT matrix illustrated in Fig.2(a). The non-zero coefficients
of the transformed images with DCT are concentrated at the
low frequency bands, which makes the coefficients can be
coded efficiently with run-level method. However, such neat
property does not hold for the atoms in an adaptively learned
dictionaries. Since the dictionary atoms do not have obvious
regular variations in frequency bands, especially for the dic-
tionary learned from AC components of wavelet transform,
e.g., Fig.2(b) illustrating the atoms learned from 16 × 16
patches only with AC components. Although the learned dic-
tionaries are more powerful than DCT in representing image
with sparse coefficients, the irregularly distributed non-zero
coefficients are more difficult to compress compared with DCT
coefficients, which can be efficient compressed by scanning
them into 1-D array according to Zig-Zag order.

The main difference between our proposed framework and
traditional dictionary learning based image compression is that
the images to be coded share similar content or structures with
the representative image, which has been compressed with
traditional image compression method. Although the atoms are
irregularly distributed, they still preserve different utilization
frequencies in sparse representation for a special kind of
images. Fig.3(a) illustrates the histogram of the atoms used
in representing an image in image set MailRoom, where some
atoms utilized more frequently than others obviously. Based
on the assumption that images with similar contents usually
share similar atom distribution in sparse coding, we propose
to reorder the atoms in the learned dictionary according to the
number of times they are used in sparse coding of the represen-
tative image to improve the coding efficiency for the non-zero
coefficients. The atoms with more use times utilized in sparse
coding of the representative image are arranged at the front of
the dictionary, while the ones with fewer use times are placed
at the back of the dictionary. Furthermore, we directly remove
the atoms when its use time is smaller than a threshold, τ ,
in sparse coding of the representative image to shorten the
length of the coefficient vectors. Fig.3(a) and Fig.3(b) show
the atom use times for sparse coding the same image with
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Fig. 3. (a) The histogram of the atoms used in sparse coding image,
MailRoom, with unordered dictionary, the variance of the run in run-level
coding of non-zero coefficients, 1.13 × 104, (b) the histogram of the atoms
used in sparse coding with reordered dictionary, the variance of the run of
non-zero coefficients, 0.92 × 104.

unordered dictionary and reordered dictionary respectively.
We can see that when applying the reordered dictionary to
other images, the non-zero coefficients are centralized to the
front atoms of the dictionary, which can benefit the run-level
coding. To verify this conclusion, we calculate the variance
of the variable, run, in run-level coding. The variance of run
with the reordered dictionary significantly decreases compared
with that generated from unordered dictionary, which implies
improvement of the coding efficiency.

B. Rate-Distortion Based Orthogonal Matching
for Image Sparse Coding

In existing sparse coding methods, e.g., OMP [39] and least
angle regression [45], they solve the optimization problem in
Eqn.(4), by minimizing the number of non-zero coefficients
with the same distortion threshold for every image patch,
without considering rate-distortion costs for different patches.
Since the same dictionary has different efficiencies in rep-
resenting image patches, it will lead to different amount of
distortion reduction when assigning the same amount atoms
to different image patches [46]. Therefore, a global parameter
to control the distortion or number of non-zero coefficients
for all the image patches equally is not optimal to image
compression. Fig.4 shows the relationship between distortions

Fig. 4. The relationship between distortion reduction and the number of
atoms used in sparse coding.

of reconstructed image patches and the amount atoms used
in sparse coding. Although the distortion of image patches
decreases along with the number of atoms increasing, the dis-
tortion reduction rate is different for image patches, which
makes it possible to improve the compression performance
by assigning different number of dictionary atoms for image
patches adaptively.

In order to achieve better compression performance, we pro-
pose a rate-distortion optimized OMP method to assign dif-
ferent number of non-zero coefficients to different patches
according to the rate-distortion costs of image compression.
The objective function of the proposed sparse coding method
is given by

min R, s.t .
L∑

i=1

‖xi − D�αi‖2
2 ≤ ϒ, (7)

where R is the bits used in coding all the non-zero coefficients,
L is the amount of image patches to code, and xi is the
transformed image patch without DC component. ϒ is the
given distortion for the whole image. The proposed objective
function is different from the traditional one in Eqn.(4) by
constraining the whole distortion of image instead of the equal
distortion for every patch in sparse coding.

The exact number of bits utilized to code non-zeros coef-
ficients in entropy coding can only be obtained after the
coding process, which is impossible for solving the problem
in Eqn.(7). Fortunately, the coding rate can be well estimated
based on coefficient statistic characteristics [47]. Therefore,
we first formulate a rate model based on the L0 norm of non-
zero coefficients to predict the amount of coding bits. In this
paper, we take the run-level coding to organize the non-zero
coefficients, and utilize the improved Huffman coding with
recursive splitting method [48] to compress the (run, level)
pairs. Fig.5 illustrates the relationship between the L0 norm of
non-zero coefficients and the corresponding bits consumed in
real entropy coding process for test images. We can see that
there are almost linear correlation between non-zero coeffi-
cients and consumed bits image compression, which indicates
that the number of non-zero coefficients can well predict
the coding bits. With the L0 norm instead of coding bits,
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Fig. 5. The relationship between the amounts of atoms used in sparse coding
and the compression bits for the image MailRoom.

the objective function can be rewritten as,

min
L∑

i=1

|�αi |0, s.t .
L∑

i=1

‖xi − D�αi‖2
2 ≤ ϒ. (8)

Traditional OMP algorithm is widely used to solve the
sparse coding problem in Eqn.(4). It first selects the atom with
the highest correlation to the input signal, then the signal is
orthogonally projected to the atom to calculate the residual.
At each step after that, a new atom with the highest correlation
to the current residual is selected, and the input signal is also
orthogonally projected to the spanned space of all the selected
atoms. The residual is recomputed, and the process repeats
until achieving the given threshold for distortion or number of
atoms for an image patch.

In this paper, we propose a greedy algorithm based on
OMP method to solve the optimization problem in Eqn.(8).
The algorithm can be divided into three stages sequentially,
i.e., initialization, OMP sparse coding and heap update. At the
first stage, we find the highest correlated atom, dxi,0, for
every image patch, xi , and calculate the corresponding resid-
ual r(0)

i as follows,

r(0)
i = xi − �α(0)

i dxi,0. (9)

The amount of distortion reduction, Dist Reduction[i ], for the
i th image patch is calculated and organized into a maximum
heap structure. At each step after that, we only process the
image patch corresponding to the first element of the heap
with OMP sparse coding by increasing one atom each time,
and update the maximum heap. In the OMP sparse coding
stage, we select the highest correlated atom with current
signal at the top of the heap, r(k)

i , and calculate the corre-
sponding coefficient vector with all the selected atoms, �α(k)

i .
In the heap update stage, the image patch signal at the top
of heap is first projected to the space spanned by all the
selected atoms at present to calculate the new residual. Then,
we update the distortion reduction for the first element of
the heap, and adjust the heap to a maximum heap again.
The two stages, OMP sparse coding and heap update, can
be performed iteratively until achieving the given amount
of distortions or number of non-zero coefficients for the

whole image. The proposed rate-distortion optimized sparse
coding algorithm is formulated in Algorithm 1.

Algorithm 1 Rate-Distortion Optimized Orthogonal
Matching Pursuit

Input:
Dictionary D={di};
Image patches: {xi};
Distortion threshold: ϒ;
Variable: Dist Reduction[i ], representing the distortion
reduction of image patches, xi , when increasing one
atom.
Initialization:

1. Select one highest correlated atom for every image
patch and calculate the coefficients;

2. Calculate the residual of every image patch with the
selected atom, r (0)

i ;
3. Calculate the distortion reduction for every image

patch with the selected atom, Dist Reduction[i ];
4. Build a maximum heap for the image patches

according to Dist Reduction[i ], H ;
while (

∑L
i=1 ‖xi − D�αi‖2

2 ≤ ϒ) do
OMP sparse coding:

1. Select the highest correlated atom, dxi,k , for
residual signal, r(k)

i , which is at the top of heap, H ;
2. Calculate the corresponding coefficient vector,

�α(k)
i ;

Heap Update:
1. Project the image patch signal corresponding to

the top element of heap to the space spanned by all
selected the atoms orthogonally, update the residual
signal, r(k+1)

i ;
2. Update the distortion reduction when increasing

the new atom, Dist Reduction[i ];
3. Adjust the heap H into maximum heap with the

updated Dist Reduction[i ], and k = k + 1;
end
Output: Sparse coefficient matrix of image patches, α

Compared with the traditional OMP method, we only
increase a heap building and adjust procedure, the complexity
of which is O(LlogL) on average. Specifically, the extra
computation is a heapsort operation with about logL compar-
ison operations for each heap adjustment process on average.
An extra buffer with size of L is needed to store the val-
ues of distortion reduction for L image patches. Therefore,
the proposed RD-OMP method only entails very few extra
computation complexity and limited buffers, which is similar
with that of OMP in computation complexity and buffer
consumption.

C. Quantization and Entropy Coding for Sparse Coefficients

To efficiently compress the signals in DC and AC compo-
nents, the uniform quantization is applied to them to further
improve the compression ratio. For a given quality level,
we determine the quantization step for DC and AC components
respectively to achieve the given quality for them respectively.
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Fig. 6. The syntax construction in entropy coding for sparse coefficients.

Since the signals in DC and AC have different distribution
characteristics, the quantization steps in DC and AC are
usually different. In the proposed method, for an 8 bit image,
it is first subtracted 128 for each pixel, and then transformed
with 9/7 wavelet into 3 layers. Therefore, the signal range
of DC component is [−1024, 1016], and the range for AC
component is [−510, 510]. The maximum bits for symbols
are 11 and 10 for DC and AC components respectively, but
most of the signals are concentrated around zero, which only
need very short code words to be represented.

Since image patches are approximated by very few atoms,
the run-level coding method is suitable to compress these
sparse coefficients, which codes a run-length of zeros followed
by a nonzero level. In this paper, we also utilize run-level
coding to organize sparse coefficients into two 1-D arrays with
Run and Level, respectively. Since the non-zero coefficients
are few and different in image patches based on the proposed
RD-OMP method, there may be too many consecutive zeros
in some neighboring image patches, leading to very large
value in run-length. Therefore, we introduce a new syntax
element, NumNonzeroCoef[i ], to indicate the number of non-
zero coefficients for image patch, xi . The (runi , leveli ) pair
for the i th image patch is compressed only when the value of
NumNonzeroCoef[i ] is not equal to 0.

Fig.6 shows the basic flow chart for the syntax construc-
tion in entropy coding for sparse coefficients. For quan-
tized sparse coefficient vector �αi , if there are not non-zero
coefficients, we only need to store 0 in the corresponding
variable NumNonzeroCoef[i ], which indicates that there is no
coefficient to encode. If there are Ni non-zero coefficients
in the coefficient vector, we first store the number of non-
zero coefficients in the variable NumNonzeroCoef[i ], and then
store the run and level in Run{i} and Level{i} respectively.
After all the image patches are processed, we construct three
Huffman tables for NumNonzeroCoef, Run and Level

TABLE I

INFORMATION OF IMAGE SETS USED IN EXPERIMENTS

Fig. 7. Example images in each image set, CastleEntry, MallRoom, Rock-
Boat, WadhamCollege, Fountain, Herzjesu, StudentHousing, Lakes, CoralReef,
from left-top to right-down, respectively.

respectively according to the symbol frequencies, and then
compress them using Huffman coding method [48].

IV. EXPERIMENTAL RESULTS

In order to verify the performance of the proposed method,
we collect some different types of image sets, including build-
ings, indoor scene, mountains, lakes and grass, which have
been used in other image set compression works [26], [27].
The detailed information about these test images are listed
in TABEL I. Fig.7 shows one representative image for every
image set. These images are transformed into gray ones, and
compressed by popular image compression methods and the
proposed method.

We compare our method with the most popular image
compression methods, JPEG1 and JPEG20002 and the repre-
sentative dictionary learning based image compression method
RLS-DLA [35], which is the most similar with our method
utilizing wavelet domain dictionary. In order to verify the effi-
ciency of our contributions, RLS-DLA utilize two kinds of dic-
tionaries. One dictionary is offline learned from 8 × 8 image
patches in wavelet domain by removing DC components,
which are extracted from 50 different kinds of images.
We denote this compression method as RLS-DLA-D1. The
other kind of dictionaries is learned from the representative
image for each image set. We denote this compression method

1JPEG codec, http://www.ijg.org
2JPEG2000 codec, http://www.openjpeg.org
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Fig. 8. Performance comparison on different image sets, (a) CastleEntry, (b) MallRoom, (c) RockBoat, (d) WadhamCollege, (e) Fountain, (f) Herzjesu,
(g) StudentHousing, (h) Lakes, (i) CoralReef.

as RLS-DLA-D2. Here, D1 and D2 represent different dic-
tionaries. All the dictionaries used in different methods have
512 atoms, i.e., 64 × 512.

Fig.8 shows the curve of the average PSNR and bit-rate
for all the images in every image set. Our proposed method
achieves up to 4 dB and 1 dB improvement at the same bit-rate
compared with JPEG and JPEG2000, which are the popular
image compression standards. From the comparison with
RLS-DLA-D1 and RLS-DLA-D2, we can see that the compres-
sion performance with dictionary learned from representative
image is much better than that learned from some general
images. This verifies that the dictionary from representative
image can efficiently reduce the inter-image redundancy and
improve the compression performance of traditional dictio-
nary learning based image compression methods. The pro-
posed method with dictionary reordering and RD-OMP further
outperforms RLS-DLA-D2 at relative large bit-rate range,

which directly verifies that the proposed dictionary reordering
and RD-OMP sparse coding are useful in improving coding
efficiency. The results also show that the learnt dictionary
based image compression methods achieve significant bitrate
saving at middle and high bitrate compared with JPEG2000,
while at low bitrate case, the improvement is not so significant
as that at middle and high bitrate cases. This is mainly
because that at low bitrate, most of the image patches are
with very few non-zero coefficients, even only with the DC
components. Therefore, the high efficiency dictionary cannot
show its performance, and the proposed method dictionary
reordering and RD-OMP also play less effect. In addition,
the EBCOT in JPEG2000 is a more efficient entropy coding
method than Huffman for wavelet coefficients, especially at
low bit-rate case [49].

In Table II, we show a more detailed numerical comparison
results for different methods, and also compare the proposed
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TABLE II

PERFORMANCE COMPARISON FOR DIFFERENT IMAGE COMPRESSION METHODS COMPARED WITH JPEG

TABLE III

PERFORMANCE COMPARISON BETWEEN HEVC AND THE PROPOSED

METHOD (THE ANCHOR IS THE PROPOSED METHOD)

dictionary reordering and RD-OMP sparse coding respectively
based on the BD-PSNR and BD-Rate [50], which compute the
average distance in PSNR and bitrate between two RD-curves
respectively. The proposed image set compression method
only with dictionary reordering is denoted as RLS-DLA-D3.
We can see that the proposed dictionary reordering achieves
bit-rate reduction compared with that using unordered dictio-
nary at the same quality level, about 1% bitrate saving on
average compared with the method with unordered dictionary
RLS-DLA-D2. The RD-OMP achieves much obvious bit-rate
reduction further on the basis of reordered dictionary, more
than 7% bitrate saving compared with RLS-DLA-D2. Further-
more, the proposed RD-OMP is not only suitable for image set
compression problem, but also can be applicable to common
dictionary learning based image compression frameworks.

In Table III, we further compare the state-of-the-art video
coding standard, HEVC, with the proposed method. Two cod-
ing configurations, all intra coding (AI) and low delay P cod-
ing (LDP), are utilized, and they achieves 27.21% and 31.22%
bitrate saving on average compared with the proposed method.
Since the significant changes between images, e.g., scale
changes and illuminance changes, the traditional motion com-
pensation using local translation model is not as efficient as
that for natural videos, which makes the HEVC inter coding
improvement against intra coding is not so significant as that

for natural videos. HEVC is a well-designed image/video
compression system with many elaborately tuned coding tools,
e.g., rate-distortion based coding unit decision, 35 intra predic-
tion modes, multiple inter-prediction unit partitions, sup-pixel
motion compensation, different transforms, context-adaptive
binary arithmetic coding, in-loop filters and so on. These
modules jointly achieve significant compression performance
improvements. However, the proposed method is based on the
sparse coding framework, which is different from HEVC and is
still in the exploratory phase. Although the proposed method
is inferior to the HEVC coding, it is a completely different
framework compared with HEVC, and it may be a potential
solution to improve the image/video coding performance by
improving the different modules of sparse coding.

V. CONCLUSION

In this paper, we have proposed a new image set compres-
sion framework based on over-complete dictionary, which is
learned from one representative image of the target image
set. Since the dictionary is learned from the image that
shares the most common similar content with other images,
it can represent images in set more efficiently with fewer
coefficients. Another two contributions, dictionary reordering
and RD-OMP sparse coding algorithm, further improve the
compression performance. The dictionary reordering is a spe-
cial design for the image set compression problem, which
adjusts the order of dictionary atoms according to their use
frequency in representing representative images. It makes non-
zero coefficients concentrate at the front of coefficient vector
with higher probabilities. The proposed RD-OMP algorithm
can efficiently optimize the atom distribution among image
patches according to the rate-distortion costs. It can be also
apply to the common over-complete dictionary based image
compression problem. Experimental results show that our
proposed method can efficiently reduce storage space and
performs significantly better compared with popular image
compression methods.
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