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ABSTRACT

In this paper, we present a novel framework to detect abnor-
mal behaviors in surveillance videos by using fuzzy clustering
and multiple Auto-Encoders (FMAE). As detecting abnormal
behaviors is often treated as an unsupervised task, how to de-
scribe normal patterns becomes the key point. Considering
there are many types of normal behaviors in the daily life, we
use the fuzzy clustering technique to roughly divide the train-
ing samples into several clusters so that each cluster stands for
a normal pattern. Then we deploy multiple Auto-Encoders
to estimate these different types of normal behaviors from
weighted samples. When testing on an unknown video, our
framework can predict whether it contains abnormal behav-
iors or not by summarizing the reconstruction cost through
each Auto-Encoder. Since there are always lots of redundan-
cies in the surveillance video, Auto-Encoder is a pretty good
tool to capture common structures of normal video sequences
automatically as well as estimate normal patterns. The ex-
perimental results show that our approach achieves good per-
formance on three public video analysis datasets and statisti-
cally outperforms the state-of-the-art approaches under some
scenes.

Index Terms— abnormal behaviors, video anomaly de-
tection, fuzzy cluster, Auto-Encoder

1. INTRODUCTION

As security gains more and more importance in the modern
daily life, surveillance cameras are broadly deployed. In this
case, surveillance video analysis becomes a crucial task. De-
tecting abnormal actions or events in surveillance video is one
of the most challenging analysis tasks, because the abnormal
samples are usually quite rare and the concept of abnormalty
is not well-defined on many occasions. Since it is difficult to
list all the anomaly types as well as to obtain enough abnor-
mal samples for building models, the anomaly detection task
is usually regarded as an unsupervised problem. In this case,
how to estimate normal patterns sufficiently becomes the key
point.
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When facing daily life videos, it is inevitable that there are
a large variety of normal behaviors, so using a single model
is not enough to estimate the whole normal patterns. In this
case, we propose a novel framework FMAE (Fuzzy cluster-
ing and Multiple Auto-Encoders) to estimate different types
of normal patterns. Here, the Auto-Encoder is a special neural
network whose input and output are the same, so that it can
first encode the input through hidden layers and then decode
it as the output. On one hand, common structures of the nor-
mal samples can be automatically learned by Auto-Encoders
during the training phase. On the other hand, we can predict
whether an unknown sample is abnormal or not according to
its reconstruction cost through each Auto-Encoder and even
indicate which normal type it may belong to.

Considering a sample may have features of different nor-
mal types, simply dividing the normal samples into several
parts and building models for each part may not work well.
To address this problem, our framework uses fuzzy cluster-
ing to measure the belonging degree of each sample towards
each normal type. Thus, all the Auto-Encoders can be trained
on the same set of samples with different sample weights.
The sample’s weight indicates the relevancy to a certain Auto-
Encoder, and will affect the reconstruction cost as well. The
larger the weight is, the more effect it will make to the recon-
struction cost. In this way, all the Auto-Encoders share the
whole normal samples, which takes full advantages of train-
ing information.

Our approach is inspired by the recent popular sparsity-
based methods as well as the boosting algorithm. However,
rather than building a codebook so as to describe all the nor-
mal patterns, we choose to use multiple weak learners to cap-
ture different normal structures so as to describe the normal
behaviors more explicitly. We test the FMAE framework on
the popular anomaly detection datasets, and the experimen-
tal results demonstrate that our approach yields good perfor-
mances.

The rest of this paper is organized as follows. Section 2
reviews previous work on video anomaly detection. Section
3 describes the FMAE framework and the experimental re-
sults are shown in Section 4. Finally, Section 5 makes a brief
conclusion.



2. RELATED WORK

Basically, there are two kinds of video anomaly detection
tasks. One targets at pre-defined types of anomalies and can
be regarded as a special action or event classification task.
The other aims to detect un-defined anomalies and usually
only has normal videos for training. Since we can neither list
all types of anomalies nor get enough training samples for
each type on most daily life occasions, we focus on the latter
type of task in this paper.

Generally speaking, most of the existing unsupervised
video anomaly detection approaches use the following
pipeline: 1) Extract low-level visual features or get higher
level descriptors with semantic meaning so as to represent
the video content; 2) Estimate a normalcy model according
to normal samples; 3) Apply anomaly detection by checking
whether the testing data can fit the normalcy model or not.

While some approaches focus on combining spatial and
temporal information into novel descriptors, others concen-
trate more on building different models to describe normal
patterns.

2.1. Representations

In existing anomaly detection approaches, descriptors based
on optical flow field seem to be the most popular features.
Apart from some approaches using the optical flow directly or
aggregating the statistical information like HOF [1, 2, 3, 4],
there are also some approaches combining optical flow with
other models. Shandong Wu et.al. [5] proposed the feature
that uses chaotic invariants of Lagrangian particle trajectories,
which can represent the trajectories in the crowded scenes
well. Ramin Mehran et.al. [6] used the social force model
to describe the motions, which takes the people’s social inter-
action into consideration.

Features representing visual appearance information like
corners, edges or gradients[7, 8] are also employed in some
approaches. There are also some approaches tried to combine
spatial and temporal features into a whole descriptor, so that
abnormal motions as well as textures can both be detected.
Vijay Mahadevan et.al. [9, 10] proposed the Mixture Dy-
namic Texture (MDT) model to represent the video content,
which works well under crowded scenes.

However, all these descriptors need authors’ strong back-
ground or priors in related fields, which limits their gener-
alization in different anomaly detection tasks where back-
ground or priors are not always known. Instead, FMAE tries
to reveal hidden patterns automatically by Auto-Encoders and
yields good performance.

2.2. Models

In general, there are many models and their derivations
which can be used to describe the normal behaviors, such as
Gaussian mixture model (GMM)[5], Hidden Markov Model

(HMM)[7], etc. Some approaches also apply the models in
Natural Language Process (NLP) field to solve video anomaly
detection tasks, such as topic models[11], Latent Dirichlet
Allocation (LDA)[6], etc. Considering that videos contain
both spatial and temporal information, there are also some
approaches applying spatial-temporal models like Spatial-
Temporal Markov Random Field (ST-MRF)[4, 12]. However,
training these complicated models needs a large number of
samples and is usually very time consuming.

Background subtraction algorithms and video parsing
techniques can also be deployed to detect the anomalies[13,
14], for the abnormal behaviors always happen in the fore-
ground field. Venkateshi Saligrama et.al. [3] proposed an
approach based on local statistical aggregates, which relies
on the assumption that the abnormal area is different from its
neighboring fields.

In recent years, with the development of sparse coding
theories, some approaches[1, 2, 8, 14] use a trained codebook
to describe the normal behaviors and predict the anomaly ac-
cording to the reconstruction cost. FMAE follows this idea,
but relies on many simple Auto-Encoders rather than a huge
codebook. This boosting-like approach is proven to make
sense according to the good experimental results.

3. THE PROPOSED APPROACH

3.1. Framework

The framework of FMAE consists of a training phase and a
testing phase.

In the training phase, we use multiple Auto-Encoders to
estimate normal patterns and the work flow is illustrated in
Figure 1(a). Firstly, we extract the dense trajectories[15] of
the training videos to obtain a trajectory pool. Then we dis-
tribute these trajectories into several clusters by fuzzy cluster-
ing techniques so that each cluster stands for a normal pattern.
For each cluster, we use an Auto-Encoder to capture the com-
mon structure as well as to build a normalcy model.

During the testing phase, we predict an unknown patch’s
abnormal score by the trained Auto-Encoders and Figure 1(b)
shows the work flow. When an unknown patch sequence
comes, we extract its dense trajectories and calculate the
reconstruction cost of each trajectory through each Auto-
Encoder. The anomaly detection result can be inferred by
summarizing these reconstruction costs.

3.2. Estimate Normalcy Model

The first step of the training phase is to extract the dense
trajectories[15] of training videos. Here we use a fixed length
of trajectories and note it as L. The extracted trajectories are
noted as X ∈ Rn×p, where n is the number of trajectories
and p is the dimension of the trajectory.

Then we do fuzzy clustering on X by Fuzzy c-means
algorithm to get K clusters. The clustering procedure is



(a) The training phase of FMAE.

(b) The testing phase of FMAE.

Fig. 1. The framework of FMAE, including a training phase and a testing phase.

‘fuzzy’, indicating that each sample may belong to any cluster
rather than a specific one. The probability is represented as a
belongingness matrix U ∈ Rn×K , where n is the number of
trajectories, and K is the number of clusters. Ui,j indicates
the probability that the ith trajectory belongs to the jth clus-
ter.

For each cluster, we train an Auto-Encoder to model the
normal pattern it stands for. An Auto-Encoder is a special
neural network whose input and output are the same[16].
Thus, the Auto-Encoder can be used as an unsupervised
model, for it doesn’t need any labels. The loss function of
the jth Auto-Encoder is defined as below:

Lj =
1

2

n∑
i=1

ci,j · ‖X∗
i,j −Xi‖22 (1)

where n is the number of trajectories, ci,j is the ith tra-
jectory’s weight for the jth cluster, Xi is the ith trajectory,
and X∗

i,j is the reconstructed one according to the jth Auto-
Encoder.

The weight of trajectory ci,j can be obtained accord-
ing to the belongingness matrix U as below, and satisfies∑n

k=1 ck,j = n.

ci,j = Ui,j · n/
n∑

k=1

Uk,j (2)

After adding the regularization penalty to avoid over-

fitting, we can get the cost function as follows.

Jj,k = Lj +
λ

2

pk∑
s=1

‖wj,k‖22 (3)

where Jj,k is the cost function of the kth layer in the jth Auto-
Encoder, wj,k is the model parameter, and pk is the number of
parameters. The model parameter wj,k can be simply trained
through the Back Propagation algorithm.

3.3. Anomaly Detection

When an unknown patch sequence comes, we extract its
dense trajectories and calculate the reconstruction cost of each
trajectory through each Auto-Encoder.

To evaluate a trajectory’s abnormal score, we use the fol-
lowing criterion:

RCi = min{‖Y ∗
i,j − Yi‖22} (4)

where RCi is the abnormal score of the ith trajectory, Y ∗
i,j is

the reconstructed result of this trajectory according to the jth

Auto-Encoder, and Yi is the ith original trajectory.
As for a patch, its abnormal score is the average recon-

struction cost of all the trajectories in it:

scoreP =
1

Nk

∑
k

RCk,∀k ∈ P (5)



where scoreP is the abnormal score of a patch P , and Nk

is the number of trajectories in this patch. When a trajectory
goes through this patch, we regard it as in this patch.

If the abnormal score is higher than a threshold th, then
we consider this patch contains abnormal behaviors. The pa-
rameter th can be trained through a validation set or be chosen
manually. The patch size indicates the scale of detected be-
haviors, i.e. small patches reflect local behaviors while large
patches even the whole frame indicate global behaviors.

4. EXPERIMENTS

4.1. Protocal

We did experiments on three popular video analysis datasets,
including the UMN dataset1, the subway dataset2 and the
QMUL junction dataset3. The training sequences only con-
tain normal events while the testing ones contain both normal
and abnormal behaviors.

In the experiments, the length of trajectories L was fixed
at 15, and the cluster number K during the fuzzy clustering
phase was fixed at 100. Using multi-scale length of trajecto-
ries or more clusters may help to improve the performance,
but our experimental results demonstrate that the above set-
ting is just good enough considering the time cost.

We deployed three-layer neural networks as the Auto-
Encoder, i.e. the Auto-Encoder only has one hidden layer.
The number of hidden layers in the Auto-Encoder can be ex-
tended so as to construct a deeper structure and capture the
patterns better, but here we choose one-hidden-layer Auto-
Encoders for simplicity.

4.2. Experimental Results

4.2.1. UMN Dataset

The UMN dataset consists of two outdoor scenes and one in-
door scene, and contains several crowd rapid escape behav-
iors under each scene. The total number of frames is 7,739
and the resolution is 320 by 240. For each scene, we use 500
to 1,600 normal frames for training, and the rest frames are
used for testing.

We evaluate the performance of our approach by calculat-
ing the area under the ROC (Reveiver Operating Characteris-
tic) curve. The ROC curve shows the result of true positive
rate(TPR) vs. false positive rate(FTR). TPR is the ratio of
true positive frames to positive frames, and FPR is the ratio
of false positive frames to negative frames. The area under the
ROC curve illustrates the accuracy as well as robustness of an
approach, i.e. the larger the area is, the better the performance
is. The experimental result on the UMN dataset is shown in

1http://mha.cs.umn.edu/proj events.shtml
2From the author of [17]
3http://www.eecs.qmul.ac.uk/ ccloy/downloads qmul junction.html

Approach area under ROC
SRC[1] 0.978

local statistical aggregates[3] 0.985
MDT[9] 0.995

Social Force[6] 0.96
Chaotic Invariants[5] 0.99

FMAE 0.97

Table 1. Experimental results on the UMN dataset.

Fig. 2. UMN dataset: three scenes with crowd rapid escape
behaviors. The frames in the top row show normal crowd
behaviors, and the ones in the bottom row show abnormal
behaviors.

Table 1. Figure 2 gives a snapshot of this dataset, including
both normal and abnormal behaviors under each scene.

Relatively speaking, the UMN dataset is quite simple
compared with other datasets, so most of current anomaly de-
tection approaches perform very well on this dataset. FMAE
reaches a comparable performance with other state-of-the-art
approaches[1, 3, 9, 6, 5].

4.2.2. Subway Dataset

The subway dataset consists of two scenes: entrance and
exit. The entrance video is about 1.5 hours long with 144,249
frames in total, while the exit video is about half an hour long
with 64,901 frames. The resolution of these videos is 512 by
384, and the videos are all in gray scale. We use 3,800 nor-
mal frames for training under the entrance scene and 2,100
frames under the exit scene, which uses much smaller train-
ing set than that in other approaches.

Subway Entrance
The abnormal behaviors under the subway entrance scene

can be approximately divided into four types, including walk-
ing in a wrong direction, entering without payment, loitering
around the gate and irregular interactions like calling subway
customer service.

The statistical results on the subway entrance dataset are
shown in Table 2. Figure 3 shows several detected abnormal
behaviors for a few frames.



Approach WD NP LT II False Alarm
Ground Truth 26 13 14 4 /
Fast SRC[8] 25 9 14 4 5

Dynamic SC[2] 26 7 13 4 4
MPPCA[4] 24 7 14 3 3

FMAE 26 10 13 4 4

Table 2. Experimental results on the subway entrance dataset.
WD: Wrong Direction; NP: No Payment; LT: Loitering; II:
Irregular Interactions.

Fig. 3. Subway entrance dataset: top-left frame shows a man
loitering at the gate; top-right frame shows a man trying to
enter the gate without payment; bottom-left frame shows a
man trying to exit from the entrance gate; bottom-right frame
shows a woman and a service man talking at the gate.

Approach WD LT MISC False Alarm
Ground Truth 9 3 7 /
Fast SRC[8] 9 3 7 2

Dynamic SC[2] 9 3 7 2
MPPCA[4] 9 3 6 0

FMAE 9 3 6 3

Table 3. Experimental results on the subway exit dataset.
WD: Wrong Direction; LT: Loitering; MISC: misc.

Fig. 4. Subway exit dataset: the left frame shows a man walk-
ing from the exit to the platform which is in a wrong direction;
the right frame shows two men loitering on the platform while
a service man standing still and watching them.

FMAE yields a high detection rate as well as a low false
alarm rate on this dataset, and outperforms the state-of-the-
art approaches on detecting wrong direction and no payment
behaviors.

Subway Exit
The subway exit scene is relatively simpler which con-

tains fewer types of abnormal or interesting behaviors, in-
cluding walking in a wrong direction, loitering around the exit
gate, etc.

The statistical results on the subway exit dataset are
shown in Table 3. Figure 4 shows several detected abnormal
behavior results for a few frames.

4.2.3. QMUL junction dataset

We also tested FMAE by detecting non-human behaviors like
traffic events on the QMUL junction dataset. The QMUL
junction dataset features a public road junction controlled by
traffic lights and dominated by four traffic flows[18]. The
video is about 1 hour long with 90,000 frames, and the res-
olution is 360 by 288. There are several types of abnormal
behaviors, including illegal U-turn, improper lane of traffic,
jaywalking, etc.

We choose 1,500 frames to train the model, and Figure 5
gives a snapshot including both normal and abnormal behav-
iors. The detecting results show that our approach can be ap-
plied to detect not only human abnormal behaviors but also
non-human events like traffics.

5. CONCLUSION

In this paper, we present a novel framework to detect abnor-
mal behaviors in surveillance videos by using fuzzy clustering
techniques and multiple Auto-Encoders (FMAE). The Auto-
Encoder is able to capture common structures of normal video
sequences automatically, and multiple Auto-Encoders can ef-
ficiently estimate different types of normal patterns in the
daily life. Fuzzy clustering assures that the Auto-Encoders
take full advantages of training information, so we don’t need
too many samples. The experimental results show that our
approach yields good performance on public video analysis
datasets and outperforms the state-of-the-art approaches un-
der some scenes.
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Fig. 5. QMUL junction dataset: first two rows show normal
traffic flows; bottom-left frame shows a detected illegal U-
turn car; bottom-right frame shows a jaywalking passer-by.
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