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a b s t r a c t

In this paper, we propose a novel 3D object retrieval with features collaboration and bipartite graph
matching strategies. We explored the essential characters of 3D object in a view-based retrieval fra-
mework, which extracts complement descriptors from both the contour and the interior region of 3D
object effectively. Specifically, a greedy bipartite graph matching algorithm is employed. With the
bipartite graph matching and feature concatenation, significant performance improvement is achieved in
the 3D object retrieval task. The proposed method is evaluated by the third party on the data set
comprising more than 500 3D objects and achieves the best performance for SHREC’15 challenge.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of 3D technologies, computer
graphics hardware and networks, 3D objects have been widely
explored in plenty of applications [23,24], especially in archi-
tecture design [1], movie production, 3-D graphics, and the
medical industry, which leads to the eager requirement of effective
and efficient 3D object retrieval. Based on different data type
adopted, 3D object retrieval methods can be roughly categorized
into two groups [8,13]: 3D models based [2,3] and multiple views
based [4,5].

In 3D model-based methods, each 3D object is represented by a
virtual 3D model with geometry-based methods. To describe the
information of 3D models, 3D objects are described with model-
based features, such as low-level feature (e.g. the volumetric
descriptor [25], the surface distribution [26] and surface geometry
[27–29]). With the 3D model data, 3D model-based methods can
preserve the global spatial information of 3D objects; while in
some cases when we want to search the objects in the world, 3D
model information is not available. For example, when the tourist
finds some interesting things and wants to find similar ones in the
dataset, it is hard to obtain the model information but just take
several pictures. Some method [17] employs a set of 2D images to
constructs 3D model, but it is both time consuming and fine
jiang@hit.edu.cn (F. Jiang),
. Liu),
sampling. Due to the expensive computational costs and the lim-
itation of obtaining explicit 3D information, the poor performance
of reconstructions methods often results in low-quality 3D models,
which restricts the development of model-based 3D parsing
methods in some practical applications.

Different from the 3D model-based methods, the view-based
3D object retrieval methods use a group of images from different
directions for 3D object representation [30,31] and the matching
between two 3D objects is accomplished via multiple-view
matching. These views may be captured with a static camera
array or without such camera array constraint. Such view-based
methods release the restriction of 3D model, and the ubiquity of
mobile devices with cameras makes it convenient to capture real
objects images. Besides, online multiview data of 3D objects have
become increasingly available on websites, which facilitates the
practical application for view-based method. Due to convenient
obtainment and bargain price of equipment, plenty of researchers
pitch into multi-view based 3D object retrieval methods [6–8],
recently. On the one hand, View-based retrieval may learn nutri-
tion from large quantity studies of visual parsing techniques, like
search [9,10], segmentation [11] and tracking [12] etc. On the other
hand, it’s greatly flexible to represent a 3D object by a set of 2D
views. For location-based mobile applications, view based meth-
ods also provide new search opportunities with the help of cam-
eras. Compared with model-based methods, view-based methods
is more discriminative for 3D objects, which can lead to better
object retrieval performance[32,33].

Here, we focus on the recent progress in view-based 3D object
retrieval, which has been widely used in CAD applications. For
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example, We first survey the key technologies and challenges in
view-based 3D object retrieval and then discuss the state-of-the-
art methods and future research directions in the field. Different
from general classifier [38], an ideal view-based 3D object retrieval
should has the abilities of exploring effective strategy to conduct
multi-view matching and estimate the relevance among different
3D objects. Aiming at utilizing the collaborated features for mul-
tiple views and conducting multi-view matching and estimating
the relevance among different 3D objects, this paper proposes a
novel 3D object retrieval with features collaboration and bipartite
graph matching strategies, and the main contributions of this
paper are summarized as follows:

� Inspired by the essential characters of 3D object, a view-based
retrieval framework with multi-feature collaboration and bipar-
tite graph matching is proposed, which extracts complement
descriptors from both the contour and the interior region of 3D
object effectively.

� A Greedy Search (GS) algorithm is proposed to calculate the
similarity of query object and object, and three bipartite graphs
are employed to obtain the optimal match of each bipartite
graph pair.

Our proposed method participated the SHREC’15 challenge and
achieved the state-of-the-art performance in 0.6174 (top 10 pre-
cision). The SHREC’15 challenge is designed for 3D object retrieval
which is modeled by multi-view to simulate the true environment.

The remainder of this paper is organized as follows. Related
work is reviewed in Section 2. The detail descriptions of the pro-
posed method are presented in Section 3. Extensive experimental
results are reported in Section 4. Section 5 concludes the paper.
2. Related work

Due to convenient obtainment and bargain price of equipment,
plenty of researchers pitch into multi-view based 3D object
retrieval methods [6,7], recently. On the one hand, View-based
retrieval may learn nutrition from large quantity studies of visual
parsing techniques, like search [9,10], segmentation [11] and
tracking [12] etc. On the other hand, it is greatly flexible to
represent a 3D object by a set of 2D views. And abundant infor-
mation can be fetched by multi-view object representation.
Meanwhile it is a big challenge to compare two groups of views
[36,37]. In [34], Firstly, the views of the query object are grouped
into clusters where query models are trained by the hierarchical
agglomerative clustering method [14]. And a positive matching
model and a negative matching model are trained according to
positive matched samples and negative matched samples. Then,
the generated query model is learned for 3-D object retrieval. To
calculate the distance between Query object Q and Dataset object
M, similarity is defined as following:

S Q ;Mð Þ ¼ p MjQ ;Δ¼ 1
� ��p M jQ ;Δ¼ 0

� � ð2:1Þ
where p MjQ ;Δ¼ 1

� �
denotes that the probability of M given Q,

when M is relevant to Q and p MjQ ;Δ¼ 0
� �

denotes the probability
of M given Q, when M is not relevant to Q . For Positive Matching
Model, the similarity of two object will be calculated by the
similarity of feature vector, which conditional density is defined as
p ϕ
� ��φ;Δ¼ 1Þ ¼N ϕ

� ��φ;σ2
posÞ, Where σ2

pos is the positive variance
when ϕ and φ are relevant. The conditional density of which
object Q and M are relevant becomes

p MjQ ;Δ¼ 1
� �¼ p ϕM

1 ;ϕ
M
2 ;…;ϕM

τ

n o
φQ

1 ;φ
Q
2 ;…;φQ

m

n o
;Δ¼ 1

��� ��
ð2:2Þ
And for negative matching model, the equation above becomes

p ϕ
� ��φ;Δ¼ 0 Þ ¼N ϕ

� ��φ;σ2
negÞ

p MjQ ;Δ¼ 0
� �¼ p ϕM

1 ;ϕ
M
2 ;…;ϕM

τ

n o
φQ

1 ;φ
Q
2 ;…;φQ

m

n o
;Δ¼ 0

��� ��
ð2:3Þ

And the optimal retrieval result should satisfy

argmaxS Q ;Mð Þ ¼ argmaxp MjQ ;Δ¼ 1
� ��p MjQ ;Δ¼ 0

� � ð2:4Þ

Because precise distance between two objects is hard to esti-
mate, hypergraph analysis approach is employed in [35], in which
distance calculating is avoidance. In hypergraph G¼ V ; E;ωð Þ the
vertices V represent the objects from database , edges E denote
clusters which gathering the view of all objects into, And the
weight ω of an edge describes the similarity of two views. The
degree of vertex and edge is defined as following respectively

d vð Þ ¼ P
eAE

ω eð Þh v; eð Þ

d eð Þ ¼
X
vAV

h v; eð Þ

h v; eð Þ ¼
1; vAe

0; v=2e

(
ð2:5Þ

Suppose there are n hypergraphs G1 ¼ V1; E1;ω1ð Þ,G2 ¼
V2; E2;ω2ð Þ,...,Gn ¼ Vn; En;ωnð Þ and H1;H2;…;Hnf g, Dv1;Dv2;…;Dvnf g,
De1;De2;…;Denf g denote the incidence matrices, vertex degree
matrices, and hyperedge degree matrices, correspondingly. And αi

Z0ð Þ represents the weight of ith hypergraph where
Pn

i ¼ 1 αi ¼ 1.
Then The retrieval object function becomes

argmin
f

f ΤΔf þλ‖f �y‖2 ð2:6Þ

where y is the label vector, λ is the weighting parameter and Δ is
the (positive semidefinite) hypergraph Laplacian.

To our best knowledge, there is no work in the literature
modeling the complementation of region shape description and
contour context of 3D object, especially for view based 3D object
retrieval. It should be noted that these two characters demonstrate
the essences of 3D object form distinctive and complementary
aspects.

Most recently, due to the appealing performance, bipartite
graph matching draw lots of attentions. For instance, bipartite
graph optimal matching (OM) [15] and WBGM [16]. In WBGM,
there are two sub-sets which are composed of weighted bipartite
graph, and comparing two 3D objects is to calculate the max-
weighted bipartite matching. Other relative method of BoVF
methods like bag-of-region-words (BoRW) consider region infor-
mation in BoVF.

Inspired by the methods above, a Greedy Search (GS) algorithm
is proposed. To calculate the similarity of query object and object
from database, three bipartite graphs are employed. To give a mark
of similarity of two objects, we calculating the optimal match of
each bipartite graph pair greedily, which show a great performance.
3. Multi-feature collaboration and bipartite graph matching
based 3D retrieval

In this section, the proposed view-based 3D object retrieval
method is introduced. Firstly three descriptors are extracted.
Secondly three bipartite graph are constructed on each descriptor
between two objects. At last, combine the three bipartite graphs to
one descriptor which is used to calculate the similarity of the two
objects.
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3.1. 3D objects descriptor extraction

To improve the retrieval performance a combination of differ-
ent shape descriptors has been proposed lately. In this paper, we
employ two region shape descriptors (Zernike moments [18]
descriptor and BoVW descriptor), one contour shape descriptor
(Fourier descriptor). For each 3D object, firstly we extract each
descriptor, secondly the similarity matrix is constructed, then we
sort the objects by calculate the score with the similarity matrix.
The detailed procedure of computing the weight vector are sum-
marized in Algorithm 1.

Algorithm 1. Proposed multi-feature collaboration and bipartite
graph matching.
Input: 3D objects Data set D1;D2;…;Dn½ �, query object Q

Output: Data set objects in new order ~D1; ~D2;…; ~Dn

h i
For i¼1:n //processing on each object in data set

Extract Zernike Moment feature matrix DZernike
i from Di

Extract Bag-of-Visual-Words feature matrix DBoW
i from Di

Extract Fourier Descriptor features matrix DFD
i from Di

end

Extract features QZernike,QBoW ,QFD of Q with the same way
mentioned above

For i¼1:n //construct similarity matrix
For j¼[Zernike Moment, Fourier, Bag-of-Visual-Words]

Construct similarity matrix Mi
j ¼ Qj
� �T

� D j
i

end
end
For i¼1:n //Score each object

Mi
mix ¼ λ1Mi

BoW þλ2Mi
FDþλ3Mi

Zernike

Scorei ¼
P

Mi
mix i; jð Þ

End
Order the object D1;D2;…;Dn½ � by Scorei i¼ 1⋯nð Þ

Note that each (d¼Zernike, BoVW, FD) is normalized, which
means , (p is one of the view to represent an object).

3.1.1. Zernike moments (ZM)
ZM is composed of a set of complex polynomials which

describe the interior of unit circle (i.e., x2þy2¼1) by a complete
orthogonal set:

Vnm x; yð Þ ¼ Vnm ρ;θ
� �¼ Rnm ρ

� �
exp jmθ

� � ð3:1Þ

n and m must be integers . Besides n� |m| must be even and |m|
rn. To make m meaningful n must be positive or zero. ρ is the
polar radius and θ is the polar angle. The radial polynomial Rnm ρ

� �
is defined below:

Rnm ρ
� �¼ Xn� mj jð Þ=2

s ¼ 0

�1ð Þs n�sð Þ!
s! nþ mj j

2 �s
� �

! n� mj j
2 �s

� �
!
ρn�2s ð3:2Þ

It is easy to see that Rn;m ρ
� �¼ Rn;�m ρ

� �
. These orthogonal

polynomials satisfy

∬
x2 þy2 r1

Vnm x; yð Þ½ ��Vpq x; yð Þdxdy¼ π
nþ1

δnpδmq ð3:3Þ

where δab ¼ 1, if a¼b, otherwise δab ¼ 0. Zernike moments
decompose the image function by basic orthogonal functions. For a
continuous image function f(x,y), Zernike moment with the order
n with repetition m should vanish outside the unit circle:

Anm ¼ nþ1
n
∬

x2 þy2 r1
f x; yð ÞV�

nm ρ;θ
� �

dxdy ð3:4Þ

For a discrete image this function should be re-write as

Anm ¼ nþ1
n

X
x

X
y

f x; yð ÞV�
nm ρ;θ
� �

; x2þy2r1 ð3:5Þ

For a given image, the center is the origin and pixel coordinate
projects to the range of unit circle (x2þy2¼1), and pixel which
outside the unit circle would be ignored.

3.1.2. BoVW/SIFT descriptor
Inspired by the BoVW and SIFT descriptor [19], a BoVW/SIFT

representation is proposed in this section retrieval of 3D objects,
which comprise of SIFT descriptor extraction, Dictionary building,
Bag-of-Visual-Words descriptor construction.

� SIFT Descriptor Extraction in Each Object
On account of no label for objects, we consider each object as a
category. And each view in the object is parsed into SIFT
descriptors.

� Dictionary Building
Due to some SIFT descriptors are too common to distinguish
one object from another, excluding those should be time and
memory saving. Using large vocabularies causes the number of
parameters to grow too large. Hence, we propose to identify
groups of visual words and share weights among visual words
within each group. Similar to previous works that relate visual
word frequency with visual word importance (e.g., using idf),
we also decide to associate similar frequencies with similar
weights. In practice, the k-means clustering is adopted on the
remaining descriptors.

� Bag-of-Visual-Words Descriptor Construction.

We use BoVW representation for retrieval of word images. This
is motivated by multiple factors (i) Bag of visual Words (BoVW)
representation has been the most popular representation and
perform excellently for recognition and retrieval tasks in images
and videos. (ii) Being a loose representation, BoVW representation
can retrieve sub words, which is difficult with the popular vector
space models. After quantifying the set of SIFT descriptors of the
object by the dictionary, we can get the Bag-of-Visual-Words
descriptor of each object.

Accordingly, the multiview of a 3D object can be represented by
an unordered set of no distinctive discrete visual words. In
retrieval phase, a 3D object is retrieved by computing the histo-
gram of visual word frequencies, and returning the word image,
with the closest histogram. This can also be used to rank the
returned3D objects. A benefit of this approach is that, matches can
be effectively computed without delay. Besides, the discriminative
ability of the descriptor facilitates the accuracy and robustness of
3D object retrieval.

3.1.3. Fourier descriptor (FD)
As a frequently-used descriptor, Fourier descriptor [20,21]

represents the object shape by boundary chain code and can be
calculate effectively and efficiently. Firstly, compute the time
consumption on traversing a particular link ai, on the assumption
of constant speed.

Δti ¼ 1þ
ffiffiffi
2

p
�1
2

 !
1� �1ð Þai� � ð3:6Þ
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And it is to tp traverse the first p links of the chain

tp ¼
Xp
i ¼ 1

Δti ð3:7Þ

The variations projecting to the coordinate axis can be calcu-
lated as

Δxi ¼ sgn 6�aið Þsgn 2�aið Þ

Δyi ¼ sgn 4�aið Þsgn aið Þ ð3:8Þ
where sgn(∙) is an indicative function,

sgn Zð Þ ¼
1 Z40
0 Z¼ 0
�1 Zo0

8><
>: ð3:9Þ

Selecting continuous p links on the chain at well, the projec-
tions on coordinate axis are:

xp ¼
Xp
i ¼ 1

Δxi

yp ¼
Xp
i ¼ 1

Δyi ð3:10Þ
Fig. 1. Bipartite graph a graph which divides the whole space in

Fig. 2. Bipartite gr
Then the Fourier series expansion of the whole chain code on
the x projection can be obtained:

x tð Þ ¼ A0þ
X1
n ¼ 1

an cos
2nπt
T

þbn sin
2nπt
T

where

A0 ¼
1
T

Z T

0
x tð Þdt

an ¼
2
T

Z T

0
x tð Þ cos 2nπt

T
dt

bn ¼ 2
T

Z T

0
x tð Þ sin 2nπt

T
dt ð3:11Þ

The time derivative x̂ tð Þ can be expressed as follow:

x̂ tð Þ ¼
X1
n ¼ 1

�2nπ
T

an sin
2nπt
T

þ2nπ
T

bn cos
2nπt
T

where

an ¼ T
2n2π2

Xk
p ¼ 1

Δxp
Δtp

cos
2nπtp

T
� cos

2nπtp�1

T

� 	
to 2 parts and each end of edges belongs to different part.

aph matching.



Fig. 3. SHREC’15 dataset.
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bn ¼ T
2n2π2

Xk
p ¼ 1

Δxp
Δtp

sin
2nπtp

T
� sin

2nπtp�1

T

� 	
ð3:12Þ

Equivalently the following formulation can be obtained

y tð Þ ¼ C0þ
X1
n ¼ 1

cn cos
2nπt
T

þdn sin
2nπt
T

ŷ tð Þ ¼
X1
n ¼ 1

�2nπ
T

cn sin
2nπt
T

þ2nπ
T

dn cos
2nπt
T

where

cn ¼
T

2n2π2

Xk
p ¼ 1

Δyp
Δtp

cos
2nπtp

T
� cos

2nπtp�1

T

� 	

dn ¼
T

2n2π2

Xk
p ¼ 1

Δyp
Δtp

sin
2nπtp

T
� sin

2nπtp�1

T

� 	
ð3:13Þ
And

A0 ¼
1
T

Xk
p ¼ 1

Δxp
2Δtp

t2p�t2p�1

� �
þξp tp�tp�1

� �� 	

C0 ¼
1
T

Xk
p ¼ 1

Δyp
2Δtp

t2p�t2p�1

� �
þδp tp�tp�1

� �� 	

where

ξp ¼
Xp�1

j ¼ 1

Δxj�
Δxp
Δtp

Xp�1

j ¼ 1

Δtj

δp ¼
Xp�1

j ¼ 1

Δyj�
Δyp
Δtp

Xp�1

j ¼ 1

Δtj ð3:14Þ

3.2. Bipartite graphs construction

Bipartite graphs for each descriptor of two object are con-
structed to measure the similarity in the matching procedure. For



Fig. 4. PR-curve of BoVW/SIFT, Zernike moment, and Fourier descriptor.

Fig. 5. PR-curve of collaboration of Zernike moment and BoVW/SIFT.
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Fourier descriptor, assuming two objects O1 and O2, whose feature

matrixes are F1 ¼ d11; d
1
2;⋯; d1n1

n o
and F2 ¼ d21; d

2
2;⋯; d2n2

n o
(d j

i

means the ith view and jth object), the Euclidean distance MT
pq is

employed to compute the similarity of d2q and d1p , stored in matrix

MT ANn1�n2. The optimal match of bipartite graphs is calculated
with following optimization process

X� ¼ argmax
X

X � MΤ

s:t: X ¼ 0;1f gn1�n2 ð3:15Þ

We greedily acquire the optimal match of the bipartite graphs,
and ensure that each view will not be selected more than twice,
which facilitates making each bipartite graph sparse.
3.3. Bipartite graphs combination

For each bipartite graph of the same objects, Eq. (3.15) has been
done to get the incidence matrix (X�

BoVW ;X�
FD;X

�
Zernike) and the

similarity matching score (M�
BoVW ;M�

FD;M
�
Zernike), respectively.

M�
BoVW ¼ X�

BoVW � MΤ
BoVW

M�
FD ¼ X�

FD � MΤ
FD

M�
Zernike ¼ X�

Zernike � MΤ
Zernike ð3:16Þ

Having obtained the similarity matching score for each
descriptor, these three bipartite graphs are combined into a new
one by following procedure, then the final matching score of two
objects can be calculated as

Score¼ P
Mmix



Fig. 6. PR-curve of collaboration of Fourier descriptor and BoVW/SIFT.

Fig. 7. PR-curve of collaboration of Zernike moment and Fourier descriptor.
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Mmix ¼ λ1M�
BoVW þλ2M�

FDþλ3M�
Zernike ð3:17Þ

For a certain query, higher the score is, more similar they are.
Sorting the score in descending order would be the final ranking.
4. Experimental results

In this section, extensive experiment results are presented to
evaluate the proposed multi-feature collaboration and bipartite
graph matching based 3D retrieval.

4.1. SHREC data set

SHREC’15 challenge data set is aimed at exploring the optimal
retrieval algorithm of view-based 3D model. There are two tasks in
this competition. Both of them contain 505 3D objects of the data
set in which each object is explained by RGB images and depth
images correspondingly with frame size 640�480. There are 311
objects being chosen as query to inspect the performance of
methods submitted. Six groups were attracted to this competition,
and 26 methods were committed.

Three Kinect sensors were used to collect the information in two
different ways. To simulate the real world environment, there are 202
object collected in one way, and 303 in the other. The different
between these two settings are the quantity of information, and one
is few, the other is plenty. To evaluate the performance seven criteria
are employed, such as PR curve, FT, ST etc. These evaluation results
may guide the researchers improving their methods in some way.

4.2. Performance of different 3D objection features

We evaluate the performance of the proposed method on
SHREC’15 dataset with different 3D objection features and the
results are reported in Fig. 1. If only the Zernike Moments is used
for retrieval, the average 0.4434 (top 10 precision). If only the
BoVW/SIFT feature is adopted, the average 0.3958 (top 10 preci-
sion). If only FD is used, the 0.4785 (top 10 precision) per sample/
object (Figs. 2 and 4).

To obtain the optimal performance, a variety of configurations
of parameters was evaluated. We can see that Fourier descriptor



Fig. 9. PR-curve of CCFV, hypergraph method (MHGL), and ours.

Table 1
The parameters used in the proposed method.

Parameters and description Mmix ¼ λ1M
�
BoW þλ2M

�
FDþλ3M

�
Zernike

λ1 0.006
λ2 0.980
λ3 0.014

Fig. 8. PR-curve of collaboration of 3 descriptors.
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(FD) is the best and Zernike moment (ZM) is better. We decide to
combine each two of them to find the optimal combination.

From the Figs. 5–7, we can see that when combination each
two of the three descriptors, the FD should get the largest per-
centage and ZM should get the larger one. Also we set the com-
bination of ZM and BoVW by 7:3, then we test them with FD
as follow
Then we get the optimal combination which is FD 98%, ZM 1.4%,
BoVW 0.6%. From these comparison results, we can see that the
proposed method achieves high recognition accuracy while having
low computational complexity. The reason is that with the pro-
posed collaboration strategy, these complement features can fix
shortcoming with each other which can express the object in all
directions (Fig. 8).

4.3. Comparison with recent representative methods

We compare the proposed method with other recent repre-
sentative methods on SHREC’15 dataset (Fig. 3) and the para-
meters used in the proposed method are listed in Table 1.

From Fig. 9 we can see that our method get a better perfor-
mance than CCFV [34] and Hypergraph [35]. Also our method
won one of the optimal results in the compact of SHREC’15
Track [22].
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5. Conclusion

In this paper, we present a view-based 3D model retrieval
algorithm on multi-feature by bipartite graph matching. The
proposed method extracts three descriptors and combine
them through bipartite graph. The user feedback information
is effectively explored to achieve better performance. We
compare our method on the SHREC’15 data set with other
methods. Experimental results and comparison show that the
proposed method outperforms the other methods for 3D
model retrieval.
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