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Abstract—Hyper-spectral imaging has great potential for un-
derstanding the characteristics of different materials in many
applications ranging from remote sensing to medical imaging.
However, due to various hardware limitations, only low-resolution
hyper-spectral and high-resolution multi-spectral or RGB images
can be captured at video rate. This study aims to generate a
hyper-spectral image via enhancing spectral resolution of an
RGB image, which might be easily obtained by a commodity
camera. Motivated by the success of deep convolutional neural
network (DCNN) for spatial resolution enhancement of natural
images, we explore a spectral reconstruction CNN for spectral
super-resolution with an available RGB image, which predicts
the high-frequency content of the fine spectral wavelength in
narrow band interval. Since the lost high-frequency content can
not be perfectly recovered, by leveraging on the baseline CNN,
we further propose a novel residual hyper-spectral reconstruction
CNN framework to estimate the non-recovered high-frequency
content (Residual) from the output of the baseline CNN. Ex-
periments on benchmark hyper-spectral datasets validate that
the proposed method achieves promising performances compared
with the existing state-of-the-art methods.

I. INTRODUCTION

Hyper-spectral imaging is an emerging technique for simul-

taneously obtaining a set of images of the same scene at a

large number of narrow band wavelengths. The rich spectra

significantly benefit the characterization of the imaged scene

and greatly enhance performance in different compute vision

tasks, including object recognition, classification, tracking and

segmentation [15], [27], [32], [33], [39]. Furthermore, the

characterization of hyper-spectral images has contributed to

disease diagnosis in medical imaging [40] and land resource

management/planning in remote sensing [7], [3]. Although

hyper-spectral imaging can offer high spectral resolution, it

imposes a severe limitation on the temporal resolution com-

pared with RGB or multispectral images from commodity

cameras, since a longer exposure time is usually necessary

to simultaneously collect the large number bands of spectra

within a narrow wavelength window, such that the signal-

to-noise ratio is sufficient. This drawback can be partially

resolved via collecting photons in a much larger spatial region

than the visible spectrum cameras, resulting in much lower

spatial resolution. Despite of the potential benefits of the

hyper-spectral images in different vision tasks, the limited

spatial resolution due to the spatial and temporal tradeoff

restricts its performances for scene analysis and understanding,

where spectral mixture of different materials happens. The

intuitive way to obtain a high-resolution hyper-spectral (HR-

HS) image is to enhance the spatial resolution from the

available low-resolution hyper-spectral (LR-HS) image, where

the enhanced spatial factor is limited.

On the other hand, the increasing variety of visual sensors

enables to collect immense amount of information from the

environment. Most common visual sensors can only record

a limited bands of wavelength, often containing the standard

red, green, and blue, from the visible spectrum to match the

trichromatic perception of the human visual system. Yet, they

usually achieve higher spatial resolution in contrast to the

hyper-spectral cameras. With the large amount of available

RGB images, one research line is to learn the spectral structure

of the visual world, and use it as a prior to predict hyper-

spectral images with finer spectral resolution from a standard

RGB image, which is called spectral reconstruction for HSI

super-resolution (SR).

There is a large body of literature on single natural image

super-resolution for spatial resolution enhancement, which

have also been applied for HSI SR with an expanding factor

from 2 to 4 [10], [37], [12]. Since the spatial resolution of

the available HS image is considerably low compared with

the commonly observed RGB image, the expanding factor

of spatial resolution in hyper-spectral image is required to

be large enough, for example, more than 10 in horizontal

and vertical directions, respectively. Thus the enhanced spatial

resolution with acceptable quality of the recovered HR image

usually can not reach the required resolution for different

applications.

With the benefit of the simultaneous availability of the

LR-HS and HR-RGB images in some specific tasks, some

work focused on generating HR-HS images via fusion of

the available LR-HS and HR-RGB images [17], [19]. In this

scenario, both spatial down-sampling operator to generate the

LR-HS image from the HR-HS and spectral response function

to generate the HR-RGB for the HR-HS image are assumed

to be known, and the observed LR-HS and HR-RGB image

are also needed to be precisely aligned, to obtain the accurate

estimation of HR-HS images. With the above assumed known

factors and some designed prior knowledge (constraints) about
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the required HR-HS image, the fusion methods usually give

impressive recovery performance [17], [19], [11], [18]. How-

ever, in most real applications, both spatial down-sampling

operator and spectral response function are unknown, and it is

difficult to accurately align the observed LR-HS and HR-RGB

images.

As a complementary problem, some researchers have tried

to increase the spectral resolution of the input image beyond

the coarse RGB channels, and demonstrated the feasibility of

learning hyper-spectral structure of the visual world from the

observed RGB image only [28], [6], [16], [1].

Recently deep convolutional neural network (DCNN) has

been applied for spatial resolution enhancement of natural

images, and manifested promising performance [12], [13],

[23]. The intuitive way to apply DCNN for HSI SR is to

enhance the spatial resolution from a LR-HS image. This

study proposes a CNN-based spectral resolution enhancement

method from a RGB image for HSI SR, and learns the hyper-

spectral structure of different materials in visual world, which

is called hyper-spectral reconstruction CNN (HSRCNN). The

estimated HR-HS image with the HSRCNN only is perfectly

recovered as the ground truth HR-HS image even in training

procedure, which results in a non-recovered residual image

(high-frequency content). We overwrite the same CNN ar-

chitecture on the baseline CNN to further estimate the non-

recovered residual image from the output of the baseline CNN,

and propose a novel residual hyper-spectral reconstruction

CNN framework (Residual HSRCNN). Experiments on bench-

mark hyper-spectral datasets validate that the proposed method

achieves promising performances compared with the existing

state-of-the-art methods.

II. RELATED WORK

High-resolution HS images are useful in various application

fields ranging from remote sensing to medical imaging, but it

is difficult to simultaneously achieve high-resolution in both

spatial and spectral domains due to technique and budget

constraints [19]. Thus it has attracted much research attention

to generate high resolution HS images via image processing

and machine learning techniques based on the available LR-HS

and HR-HS images. In remote sensing field, a high resolution

panchromatic image is usually available accompanying with

the low resolution multi-spectral or HS image and the fusion

of these two images is generally known as the pansharp-

ening operation [11], [18], [2], [26], [41]. In this scenario,

most popular approaches concentrated on reliable illumination

restoration by means of intensity substitution and projection

with the explored sue saturation and principle component

analysis [11], [18], which generally cause spectral distortion

in the recovered image [8]. Recently, the HS image super-

resolution is mainly based on the fusion method of the ob-

served LR-HS and HR-RGB images, and it estimates the HR-

HS image as an optimization problem with prior knowledge,

such as sparsity representation and spectral physical properties

as constraints [8], which have limited applicability.

Inspired by the success of the deep convolutional neural

networks for different image processing and computer vision

applications, such as object detection and segmentation [31],

face recognition [30], image denoising [24], CNN has also

been applied to natural image superresolution and achieved

promising performance. Dong et al. [12] proposed a 3-layer

CNN architecture (SRCNN), which manifests about better

improvement and lower computational cost compared with

the popularly used sparse-based methods, and extended the

CNN architecture to deal with the available LR image without

upsampling as input (Fast SRCNN) [13]. Kim et al. [22]

exploited a very deep CNN architecture based on VGG-

network [29], and only learned the lost high-frequency image

(residual image) to speed up the training procedure. Ledig

et al. [23] combined GAN network for estimating much

sharper HR image, and sometime led to unreliable detailed

structure. On the other hand, Li et al. [25] applied the

CNN architecture of SRCNN for HS image superresolution

from the LR-HS image and achieved acceptable performance.

All the above CNN architectures for image superresolution

(SR) aim to enhance spatial resolution with the low spatial

resolution image as input, and the expanding factor of spatial

resolution enhancement is usually limited to be lower than 4

in horizontal and vertical directions, respectively. On the other

hand, several work explored CNN-based methods with variant

backbone architectures to expand the spectral resolution with

the available HR-RGB image, and manifested promising per-

formance [16], [1], [5], [36]. The topic of this study is to learn

spectral structure based on CNN, and propose a residual hyper-

spectral reconstruction CNN to estimate the non-recovered

high-frequency spectral content.

III. RESIDUAL HYPER-SPECTRAL RECONSTRUCTION

CNN

The intuitive way to apply CNN for image super-resolution

is to learn the HR-HS image directly from the available LR-

HS images, and the expanding factor of spatial resolution is

limited to be lower than 8 in horizontal and vertical direc-

tions, respectively. We call the spatial resolution enhancement

CNN as Spatial-CNN. In the scenario of the HSI SR, the

complementary problem to the spatial resolution enhancement

is to expand the spectral resolution for recovering the finer

spectra of narrow band from a HR-RGB image. The goal

of this study is to estimate a high resolution hyper-spectral

image Z ∈ R
W×H×L, where W and H denote the spatial

dimensions and L is the spectral band number, from a HR-

MS (RGB) image Y ∈ RW×H×l (l � L). In our experiments,

the available HR-MS image is an RGB image with spectral

band number l = 3. An image observation model for depicting

the relationship between the desired HR-HS and the input HR-

RGB images can be formulated as

Y = Z ∗Spec R ↓ +n (1)

where R represents the spectral transformation matrix (a

one-dimensional spectral-directional filter) decided by camera

design, which maps the HR-HS image Z to the HR-RGB
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Figure 1. The schematic concept of the HSRCNN and residual HSRCNN.

image Y, ∗Spec denotes the convolutional operation in spectral

domain and ↓ is the down-sampling operation. This study

constructs an end-to-end CNN architecture to estimate the

HR-HS image Z from the observed HR-RGB image Y,

named as HSRCNN. Furthermore, in order to obtain the non-

recovered high-frequency spectral content (Residual) with the

HSRCNN, we overwrite the baseline CNN architecture (Three

convolutional layers as shown in the ‘Upsampling CNN’ part

of Fig. 1), to update the residual component.

A. Hyper-Spectral Reconstruction CNN: HSRCNN

Motivated by its success for image superresolution and

its compact structure, we follow the SRCNN as in [12],

[25], which mainly consists of three convolutional layers that

conduct three operations in the mapping process from LR

images to HR images following the schematic concept in

sparse coding-based SR: patch extraction and representation,

non-linear mapping, and reconstruction. Instead of only the

illumination (Y component in YCbCr color space) component

as input and output in the conventional SRCNN framework,

the input in our HSRCNN is the high spatial resolution RGB

image, and the output is the high resolution image in both

spatial and spectral domain (HR-HS) image. Patch extraction

and representation extracts some overlapping patches from the

input color image, and explains each color patch as a high

dimensional vector. The convolution and RELU layers in CNN

acts as a non-linear function which maps a high-dimensional

vector (conceptually, the representation of the patches in the

input) to another high-dimensional vector (the feature map in

the middle-layer of CNN). Reconstruction process combines

the mapped CNN features into the final multiple-bands of HR

image.

Due to the increasing band number in the input and output

images in our HSRCNN, we adjust the spatial filter size in

three convolutional layers as 3 ∗ 3, 3 ∗ 3, 5 ∗ 5 with full

connection in spectral domain instead of the used sizes 9 ∗ 9,

1 ∗ 1, 5 ∗ 5 in the conventional spatial SRCNN. The baseline

CNN architecture for HSRCNN and Residual HSRCNN is

shown in the ‘Upsampling CNN’ part of Fig. 1, and the

schematic concept of HSRCNN is the part of the red rectangle

frame in Fig. 1. With the proposed HSRCNN, we want to

estimate a HR-HS image Z from the observed RGB image

Y, and the objective function is formulated as the following

Ẑ = arg min
θ

‖Z− fHSRCNN (Y, θ)‖2, (2)

where fHSRCNN (·) denotes the transformation function from

the input RGB image Y to the HR-HS image Z with the

filter parameters θ of three convolutional layers, and Ẑ is the

estimated HR-HS image via the HSRCNN network.

B. Residual HSRCNN

Since the original HSRCNN needs to not only recon-

struct low-frequency content but also estimate high-frequency

spectral content lost in the input HR-RGB image, it is un-

avoidable that some high-frequency spectral content can not

be recovered, and thus produce the non-recovered residual

image: ZRes = Z − Ẑ = Z − fHSRCNN (Y, θ). In order

to further learn ZRes, this study overwrites the baseline CNN

architecture of HSRCNN to construct a residual HSRCNN for

estimating the non-recovered high-frequency spectral content

from the Ẑ. We combine the original HR-HS image: Z and

the residual component: ZRes learning procedure to construct

an end-to-end residual component estimation network, and the

objective function of the residual HSRCNN is formulated as:
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{Ẑ, ẐRes} =arg min
θ,θRes

ω1‖Z− fHSRCNN (Y, θ)‖2+

ω2‖ZRes − fRes(fHSRCNN (Y, θ), θRes)‖2,
(3)

where fRes(·) denotes the transformation function from the

estimated HR-HS image fHSRCNN (Y, θ) to the residual

component ẐRes with the filter parameters θRes of three

convolutional layers, and ẐRes is the estimated residual com-

ponent via the Residual HSRCNN network. ω1 and ω2 are the

weights of the reconstruction errors on the first estimation of

Z and the residual component estimation of ZRes. The final

estimation of the HR-HS image is the element-wise summation

of Ẑ and ẐRes: ẐFinal = Ẑ + ẐRes. The schematic concept

of the proposed Residual HSRCNN is shown in Fig. 1.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed approach using two publicly

available hyper-spectral imaging database: the CAVE dataset

[38] with 32 indoor images including paintings, toys, food, and

so on, captured under controlled illumination, and the Harvard

dataset [9] with 50 indoor and outdoor images recorded under

daylight illumination. The dimensions of the images from the

CAVE dataset are 512× 512 pixels, with 31 spectral bands of

10 nm wide, covering the visible spectrum from 400 to 700

nm; the images from the Harvard dataset have the dimensions

of 1392×1040 pixels with 31 spectral bands of width 10 nm,

ranging from 420 to 720 nm, from which we extract the top

left 1024× 1024 pixels in our experiments.

We treat the original images in the databases as ground

truth Z, and simulate to produce the observed HR-RGB

images Y by integrating the ground truth over the spectral

channels using the spectral response R of a Nikon D7006

camera. In the HSI SR scenario using CAVE and Harvard

datasets, most work attempted to recover the HR-HS image

from observed LR-HS and HR-RGB images, and the used

expanding factor of spatial resolution is generally set as 32

for horizontal and vertical directions, respectively. In order to

validate the recovery performance of the HR-HS image from

LR-HS image with the usually used spatial expanding factors,

we also conducted the experiments using spatial-CNN with

the same umsampling network structure as shown in Fig. 1.

The input LR-HS images in the Spatial-CNN are generated

via down-sampling the groundtruth with a factor of 32 to

create 16 × 16 images, which is implemented by averaging

over 32× 32 pixel blocks as done in [21], [4].

For preparing samples for CNN training, we extract 15×15
overlapped patches as input data from the input HR-RGB, and

the corresponding center patches with size 11×11×L as output

from the ground-truth HR-HS images of training dataset. The

simple Euclidean distance between the estimated output and

the ground-truth patches is minimized to learn the HSRCNN

and Residual HSRCNN network parameters. Our network,

implemented with Caffe [20], is trained from scratch, using

the SGD optimizer. We use a minibatch size of 128 in training

Table I
THE AVERAGED RMSE, PSNR, SAM AND ERGAS OF SPATIAL-CNN

AND SPECTRAL-CNNS: HSRCNN, RESIDUAL HSRCNN ON CAVE
DATASET.

RMSE PSNR SAM ERGAS
Spatial-CNN 28.41 19.66 19.77 2.98
HSRCNN 5.27 34.31 7.81 0.53
Residual HSRCNN 4.78 35.07 7.37 0.49

Table II
THE AVERAGED RMSE, PSNR, SAM AND ERGAS OF HSRCNN,

RESIDUAL HSRCNN ON HARVARD DATASET.

RMSE PSNR SAM ERGAS
HSRCNN 3.48 38.72 5.37 0.49
Residual HSRCNN 3.33 38.93 5.31 0.35

procedure, and train the network for 3000000 iterations with

the fixed learning rate 0.0001. Our model parameters are

initialized according to Gaussian distribution with standard

deviation 0.001.

We have randomly selected 20 HSIs from CAVE database

to train HSRCNN and Residual HSRCNN models, and the

remainder are used for validation of the performance of

the proposed HSRCNN method. For Harvard database, 10

HSIs have been randomly selected for CNN model training,

and the remainder 40 HSIs are as test for validation. To

evaluate the quantitative accuracy of the estimated HS im-

ages, four objective error metrics including root-mean-square

error (RMSE), peak-signal-to-noise ratio (PSNR), relative

dimensionless global error in synthesis (ERGAS) [34], and

spectral angle mapper (SAM) [35] are used. The metrics:

(ERGAS) [34] calculates the average amount of specific

spectral distortion normalized by intensity mean in each band

as defined below:

ERGAS = 100× N

M

√√√√ 1

L

L∑
l=1

RMSE(i)

μi

(4)

where N
M is the ratio between the pixel sizes of the available

HR-RGB and LR-HS images, μi is the intensity mean of the

i−th band of the LR-HS image, and L is the number of LR-HS

bands. The smaller ERGAS, the smaller the spectral distortion.

The SAM [35] measures the spectral distortion between the

ground-truth and estimated HR-HS images, and the distortion

of two spectral vectors zn and ẑn is defined as following:

SAM(zn, ẑn) = arccos

(
< zn, ẑn >

‖ zn ‖2 · ‖ ẑn ‖2

)
(5)

The overall SAM is finally obtained by averaging the SAMs

computed from all image pixels. Note that the value of SAM

is expressed in degrees and thus belongs to (-90, 90]. The

smaller the absolute value of SAM, the less important the

spectral distortion.
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Input LR-HS Image Spatial-CNN(diff.)         HSRCNN(diff.) Residual HSRCNN(diff.) 

Figure 2. The ‘pompoms’ image example from the CAVE database. The
first row shows the ground-truth HR image and the recovered images by
Spatial-CNN, HSRCNN and the proposed Residual HSRCNN, respectively.
The second row gives the corresponding input band image in the LR-HS
image for Spatial-CNN, the absolute difference images between the ground-
truth image and the recovered HR-HS images in the first row.

GT HR image HSRCNN                     Residual HSRCNN

HSRCNN(diff.) Residual HSRCNN(diff.) 

255

0

20

0

Figure 3. The ‘imgb6’ image example from the CAVE database. The first
row shows the ground-truth HR image and the recovered images by HSRCN
and the proposed Residual HSRCNN, respectively. The second row gives the
absolute difference images between the ground-truth image and the recovered
HR-HS images in the first row.

a) Comparison of CNN resolution enhancement models
in different domains: As we introduced in section III, the

CNN based method can be used for recovering the HR-

HS image from either of the available LR-HS, HR-RGB

images, which are named as Spatial-CNN, Spectral-CNN

(HSRCNN) and an extended residual estimation version of

HSRCNN: Residual HSRCNN. We conducted experiments

using the Spatial-CNN for spatial resolution enhancement with

32 expanding factor for horizontal and vertical directions,

HSRCNN and the proposed Residual HSRCNN for spectral

resolution enhancement with about 10 expanding factor (from

RGB: 3 to 31-bands spectra), and calculate the average values

of the evaluation metrics; RMSE, PSNR, SAM and ERGAS of

the 12 test images in CAVE database. The compared results

are shown in Table I, which manifests much better results

of the Spectral-CNN than Spatial-CNN due to the smaller

Table III
THE COMPARED PERFORMANCE OF OUR PROPOSED RESIDUAL HSRCNN

AND THE STATE-OF-THE-ART METHOD ON CAVE DATASET.

SP-based Shallow A+ VDCNN Our
RMSE 5.4 6.70 4.76 4.78
SAM N.A. N.A. 12.10 7.37

expanding factor in spectral-domain (about 10 from 3 to

31) than spatial domain (32 from 16 to 512 for horizontal

and vertical directions, respectively), and further performance

improvement using the proposed Residual HSRCNN model.

One recovered HS image example and the corresponding

residual images with the ground-truth HR images from CAVE

database is visualized in Fig. 2 using different CNN models.

Since the HS image recovery performance with Spectral-

CNN (HSRCNN and the Residual HSRCNN) can be signif-

icantly improved compared Spatial-CNN model, for Harvard

dataset we only provide the compared results with the CNN

model for spectral enhancement in Table II. From Table II,

it can be seen that the proposed Residual HSRCNN provides

better performances than the conventional spectral-resolution

enhancement method: HSRCNN for all four evaluation met-

rics. One recovered HS image example and the corresponding

residual images with the ground-truth HR image from Harvard

database is visualized in Fig. 3 using HSRCNN and Residual

HSRCNN models.

b) Comparison with the state-of-the-art spectral-
resolution enhancement methods: This section provides the

compared results with the recent state-of-the-art HSI SR

methods for spectral resolution enhancement. Several work

for spectral resolution enhancement from an RGB image have

been explored and mainly include the spare-promoting method

(SP-based) [6], the shallow A+ method [1] and the very-deep

CNN-based model (VDCNN) [16]. The state-of-the-art studies

have usually evaluated the HS recovery performance with

the RMSE metric and VDCNN [14] also provided the SAM

results on CAVE dataset. Table III manifests the compared

results using our methods and the recently published work

on CAVE dataset. Our proposed Residual HSRCNN model

can over-perform the other methods and give the comparable

RMSE value with VDCNN [16], but can greatly reduce the

spectral distortion comparedwith VDCNN method [16]. In

addition, the residual component estimation strategy can also

be applied to more deep CNN architecture, and is prospected

to further improve HS recovery performance.

V. CONCLUSION

This study proposed to estimate a hyper-spectral image via

enhancing spectral resolution from an RGB image obtained

using a commodity camera. Motivated by the success of deep

convolutional neural network for spatial resolution enhance-

ment of natural images, we explored a spectral reconstruction

CNN for spectral super-resolution with an available RGB

image, which predicts the high-frequency content of the fine
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spectral wavelength in narrow band interval via learning the

hyper-spectral structure of different materials in visual world,

called as hyper-spectral reconstruction CNN. Since the lost

high-frequency content with the HSRCNN can not be perfectly

recovered, we overwrite the same CNN architecture on the

baseline CNN to further estimate the non-recovered high-

frequency content (residual) from the output of the baseline

CNN, and thus produce a non-recovered residual image (high-

frequency content). This leads to a novel residual hyper-

spectral reconstruction CNN framework to recover more accu-

rate HS images, which is called Residual HSRCNN. Experi-

ments on benchmark hyper-spectral datasets validated that the

proposed method achieved promising performances compared

with the existing state-of-the-art methods.
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