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Abstract— An uncoded transmission scheme called SoftCast
has recently shown great potential for wireless video transmis-
sion. Unlike conventional approaches, SoftCast processes input
images only by a series of transformations and modulates the
coefficients directly to a dense constellation for transmission. The
transmission is uncoded and lossy in nature, with its noise level
commensurate with the channel condition. This paper presents a
theoretical analysis for an uncoded visual communication, focus-
ing on developing a quantitative measurements for the efficiency
of decorrelation transform in a generalized uncoded transmission
framework. Our analysis reveals that the energy distribution
among signal elements is critical for the efficiency of uncoded
transmission. A decorrelation transform can potentially bring
a significant performance gain by boosting the energy diversity
in signal representation. Numerical results on Markov random
process and real image and video signals are reported to evaluate
the performance gain of using different transforms in uncoded
transmission. The analysis presented in this paper is verified
by simulated SoftCast transmissions. This provide guidelines for
designing efficient uncoded video transmission schemes.

Index Terms—Uncoded visual communication, image
representation, decorrelation transform, power allocation,
energy diversity, transform gain.

I. INTRODUCTION

ISUAL communication systems nowadays are mostly

built upon the Shannon’s separation theorem [1]-[3],
which suggests that source coding and channel coding can be
designed and optimized independently without sacrificing the
optimality in terms of rate-distortion performance. A general
framework of this kind is illustrated by Fig. 1. Input image
is compressed into a binary stream of much smaller size,
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using source coding to remove the statistical and perceptual
redundancy in signal. The coded bits are protected by channel
codes and then modulated and transmitted over wired or
wireless channels.

In the past decades, the source coding camp has made huge
efforts in developing all kinds of efficient coding tools, includ-
ing intra- and inter-frame prediction, transform, quantization,
and entropy coding, etc [4]-[8]. As a result, coded transmis-
sion achieved great success for digital video communications.
However, with the prevalence of wireless networks and mobile
devices in recent years, the weakness of this framework also
becomes evident.

Firstly, the framework is sensitive to bit errors. As a result
of extreme source coding, every bit is exploited to the greatest
extent to convey information. Nevertheless, it also makes the
stream extremely vulnerable to transmission errors — even a
single flip of bit may turn the stream of a whole slice into
useless bits. Secondly, the framework lacks the flexibility to
handle channel variation. Once the compression is done, the
system works optimally only for a specific channel capacity
presumed by the source coder — if the actual channel quality
falls below a threshold, the decoder tends to break down com-
pletely; if the channel quality increases beyond that threshold,
the system cannot provide better performance.

To deal with transmission errors, channel codes are
widely adopted to protect coded streams [9]-[11].
To maintain efficient channel utilization, unequal error
protection (UEP) [12]-[21] can be used to handle bit streams
of different importance. In scenarios where feedback is
available and delay is allowed, hybrid FEC and retrans-
mission [22]-[24] may be employed to trade off between
delay and bandwidth efficiency. These techniques usually
require instantaneous channel estimation and intelligent
transmission scheduling, all of which make the system design
complicated. Even so, error-free transmission cannot be
guaranteed, especially for dynamic channels with burst errors.

To handle diversity in channel bandwidth, people inves-
tigated various scalable coding schemes, e.g. EZW [25],
SPIHT [26] and JPEG2000 [27] for images, and MPEG-4
FGS [28], PFGS [29], 3D-SPIHT [30], MCTF [31]-[35] and
H.264 SVC [36] for videos. Such schemes encode images
into embedded streams that can be truncated on the fly at the
time of transmission. However, it has not been widely adopted
in practical systems due to non-negligible performance loss
compared with its non-scalable counterpart.

Visual communication in wireless scenarios is particularly
challenging, because the error rate of wireless link is relatively

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XIONG et al.: ANALYSIS OF DECORRELATION TRANSFORM GAIN

{011011010001101*-}

1821

Receiver

Sender {011011010001101*+}
A A
Quantization & Channel | ! . .| 1| Channel Dequantization & Inverse
Transf . . » Modul > »D I d . . \
,\‘ 4 b{ ransform Entropy Coding Coding Cdulaiion Smedulauey Decoding Entropy Decoding Transform 1 M‘
+ N J
v
transmission of 0/1 bits
Fig. 1. The coded transmission framework for visual communication.
Sender {16.1,-5.3,2.7,1.3,0.7,..} {16.3,5.2,2.6,1.4,08,...} -
A A
. ] . . g . . Inverse
\ Transform Power Allocation Modulation > Demodulation LLSE Estimation » \
\ 4 Transform \ %
b 1\

[§

)

transmission of real-number coefficients

Fig. 2.

high due to mobility and interference, and the channel condi-
tion may fluctuate drastically and unpredictably. To make the
things worse, in wireless video broadcast, users at different
locations have diversified channel conditions. The conven-
tional framework cannot serve all the client with satisfaction —
it has to utilize the channel conservatively by choosing a low
video bit rate that can work in the worst cases.

Recently, a novel approach called SoftCast [37]-[39] was
proposed for wireless video transmission. It has attracted much
attention [40]-[65] since it not only provides an elegant way
to deal with transmission errors and channel quality variations,
but also achieves competitive performance compared with the
state-of-the-art coding scheme at the threshold channel quality,
resulting in a superb overall performance for a wide channel
SNR range [37], [38], [47], [54], [55].

SoftCast essentially adopts an uncoded transmission frame-
work, as illustrated in Fig. 2. Compared with conventional
approaches, the framework has several distinctive features.
Firstly, instead of coding the images into a stream of bits,
SoftCast applies solely a linear transform to decorrelate the
signals, producing a stream of coefficient numbers, and leav-
ing out the conventional quantization and entropy coding.
Secondly, instead of struggling for “intact” delivery of dis-
crete information bits, the transmission module in SoftCast
only strives to make the numbers get through channel with
minimum distortion. SoftCast no longer uses channel cod-
ing. Instead, it scales each coefficient individually, applies a
Walsh-Hadamard Transform (WHT) to whiten the whole
stream, and modulates the resulted numbers directly to a dense
constellation for transmission. As illustrated by Fig. 3, a pair of
real numbers from the coefficient stream are mapped to a point
in the constellation, using the two numbers as the I- and the
Q- components, respectively. The transmission is “analog-like”
and lossy in nature, with its noise level commensurate with
the channel condition (see [37]-[39] for more details). At the
receiver side, SoftCast first recovers the coefficient numbers
by some linear estimator and then reconstructs the images via
inverse transform.

Although the uncoded transmission framework is simple
and surely has much lower complexity, it has demonstrated
very promising performance. This motivates us to investigate
its mechanism with in-depth analysis. Uncoded transmission
is not unprocessed transmission. In fact, signal decorrelation
and transmission power optimization are two key modules

The uncoded transmission framework for visual communication.

L
Real

(a)

Fig. 3. The modulation for “analog-like” lossy transmission in SoftCast. (a)
the sent signal; (b) the received signal.

that determine the efficiency of uncoded transmission. Both
coded and uncoded transmission employ transform for signal
decorrelation. The most fundamental difference between coded
and uncoded transmission is that coded transmission turns
the coefficients into equally important bits and then allocates
the communication resources (bandwidth and transmission
power) to each coded bit, while uncoded transmission allo-
cates the bandwidth and transmission power directly to the
coefficients.

This paper presents a theoretical analysis for the transform
gain in uncoded transmission. Our analysis reveals that the
energy distribution among signal elements is critical for the
efficiency of uncoded transmission. A decorrelation trans-
form can potentially bring significant performance gain by
boosting the energy diversity in signal representation. That is
why SoftCast can achieve very promising performance. More
importantly, we demonstrate that the transform gain can be
realized only when both the sender and the receiver have
good knowledge on the energy diversity in signal elements and
fully exploit this diversity for optimal protection. Therefore,
the efficiency in describing and sharing the knowledge of
energy diversity in signal elements is an important problem
for uncoded transmission.

The contributions of the paper are three-fold. Firstly, a
formulation for the overall performance of optimized uncoded
transmission has been derived, in which the relationship
between the reconstruction distortion and the image data com-
plexity is established. Secondly, a quantitative measurement
has been developed to measure the efficiency of a decorrelation
transform in the context of uncoded transmission. It can be
used as a criterion to evaluate different configurations in
practical system designs. Thirdly, we revealed the relationship
between the energy diversity in signal representation and the
transform gain.
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Fig. 4. The general uncoded transmission framework.

The paper is organized as follows. Section II presents a
theoretical analysis for uncoded transmission with unequal
protection. Section III investigated the relationship between
decorrelation and energy diversity. A measurement has been
developed for decorrelation transform gain in uncoded trans-
mission. Section IV discusses a few practical issues in power
optimization. Experimental results are reported in Section V
and Section VI concludes the paper.

II. UNCODED TRANSMISSION WITH
UNEQUAL PROTECTION

In this section, we present a general uncoded transmission
framework and develop a theoretical analysis for its perfor-
mance under power-distortion optimization. Although part of
the discussion appears in the SoftCast papers [37]-[39], the
analysis presented here is more comprehensive and we aim to
inspire deeper insights.

A. Uncoded Transmission

We consider a general uncoded transmission framework as
depicted in Fig. 4. Suppose x = (x1,x2,...,Xy) € RY is
a random signal to transmit over a noisy channel. In visual
communication scenarios, each data element x; here may
typically represent a single pixel in the spatial domain, or a
single coefficient in the transform domain. The N elements,
{x;},i =1,2,..., N, may have similar or different statistics.
The goal is to process and send out X in a proper manner so
that the signal can be recovered at the receivers with maximum
fidelity, subject to the constraints of channel resources and
channel conditions.

The channel we consider in this paper is that of AWGN
channels, in which the transmitted signal is contaminated
by additive white Gaussian noise. It is known that, for a
fixed channel noise level, the signal quality perceived by
the receiver can be regulated by controlling the transmission
power. In order to utilize the total transmission power effi-
ciently, the encoder scales each element x; individually by
a separate scalar g; € RT (as depicted by the “S” module
in Fig. 4), and sends out

Yi = & " Xi, (1)

directly (via raw OFDM, see [37]-[39] for details) without
using any quantization, entropy coding or channel coding
techniques. Note that the scaling factor g; can take different
values for different elements.

We temporarily bypass the “WHT” module in Fig. 4 so
that the signal y is directly send to the channel. The signal
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that arrives at the receiver is y =y + n, i.e.,
Yi=yi+ni =g xi+ni, (2)

where n is the channel noise. The decoder inverses the scaling
operation (1) and gets an estimation of x; by!:

Xi =i/ 3

B. Power-Distortion Function

In the above transmission process, we have X; = x; +n;/g;
so that the expected distortion in %; is

D; = E[(% —x))*1 = E[n*1/g? = 67 /&?. 4)

Here anz is the power of channel noise. The expected trans-
mission power for sending x; is

P = E[y}1=g? - Elx}1. 5)

Combining (4) and (5), we get the power-distortion function
of uncoded transmission:
D;-Pi=0c? E[x}] or D;(P)= %-E[xiz
L
Note that (6) holds irrespective of the g; value we choose.

It is interesting to note that the scaling operation (1) in
uncoded transmission is somehow analogous to the channel
coding in conventional communication, in the sense that they
both protect the signals against channel noises. In both cases,
the error resilience capability is obtained by increasing the
distance between source signals before transmission. In the
above framework, g; controls both the transmission power P;
and the distortion D;. The more power we allocate to one
element, the less distortion the channel noise will cause in
that element.

1. ()

C. Power-Distortion Optimization

In current communication systems, a piece of bitstream with
higher importance will most likely be assigned a stronger
channel code so that it can recover from transmission errors
with higher probability [12]-[16], [20]-[24]. One may conjec-
ture that unequal protection is also beneficial for the uncoded
transmission of signals with different statistics. Intuitively,
more power should be allocated to the elements with larger
variance (higher uncertainty, more information).

To achieve optimal performance, the transmission power
should be allocated among all the elements {x;} by

(P1): min D D;, s.t. > Pi < Pl )
i i

Here we assumed the distortion contributed by each element to
the ultimate reconstruction is additive with equal importance.
This is valid when each x; represents a pixel or a coefficient
of an orthonormal transform.

1 decoder knows the power of the signal x; and the channel noise n;,
linear least square estimator (LLSE) may be used [37]. However, this makes
remarkable difference only when channel SNR is very low. Furthermore, the
channel noise condition is generally unknown by the sender, especially for
the wireless broadcasting scenarios. Therefore, we do not consider the effect
of LLSE here.
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Recall the distortion-power function (6). Since D;(:) is
strictly decreasing and convex w.r.t. P;, the optimization
problem (P1) can be easily solved by setting the distortion-
power slopes of all elements to be equal, i.e.,

oD; _ —o, - E[x}]
or,  P?

= const. (8)

This determines the optimal power for sending x;:

Pi = Coyy/ E[x?]. ©)

Here C is a normalization factor to meet the constraint on
total transmission power. The formulation (9) confirms our
conjecture that a signal element with higher variance (or uncer-
tainty) should be transmitted using more power. Substituting
(9) into (5), the optimal scaling factor for sending x; is

g =vCao(E2D " or g o (B2 (10)

D. Overall Performance

Now we can formulate the overall performance for opti-
mized uncoded transmission. Recall the equations (6) and (9),

we easily get
1
D; = Ean,/E[xiz].

The normalization factor C is determined by >, P; = Potal

so that C = Piotal/ (00 D ;\/ E [xl.z]). Therefore, the expected
total distortion under optimal power allocation is

2 2
Dioat = > Di = -1 (Z,/E[x,?]) (12)

Protal ;
Based on the following definition of CSNR (channel signal-
to-noise ratio) and PSNR (peak signal-to-noise ratio),

Y

CSNRgp = 10logyy(P/a,), P = Pow/N,  (13)
PSNRgp = 10log,((255°/D), D = Diotal/N, (14)
we have
1
PSNRgp = ¢ + CSNRgp — 20log;o (ﬁ > E[xiz]).
i
(15)

Here ¢ = 20log;((255).

We have a few remarks for (15). 1) The reconstruc-
tion PSNR increases linearly with the channel SNR, with
a 1:1 ratio. 2) Roughly speaking, a signal x with higher
energy (or higher uncertainty) means it’s more difficult to
reproduce (to a certain fidelity) at receiver, under a certain
channel condition. To make our discussion precise, we define

H(x) = %Z,/E[xiz]

to measure the data “activity” of a random source x. This is
analogous to the concept of “entropy”, in that it measures
the difficulty in transmitting the signal. Given a channel
SNR, higher activity H(x) in X means lower quality in
reconstruction X.

(16)
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E. Effect of Signal Whitening

In practical implementation of uncoded transmission
(see [37]), a Walsh-Hadamard Transform (WHT) may be
applied on y, as formulated by z = Wy. The purpose of
is to whiten the signal y so that the transformed signal z
has a significantly lower peak-to-average ratio (PAR). As a
result, the power of transformed signal is much more stable,
which is strongly desired for the implementation of PHY layer.
Another advantage is that it scrambles the signal so that each
element of z becomes almost equally important. This makes
the framework robust to data losses due to packet drops.

Although the WHT module is very helpful in practice, it can
be safely ignored in our analysis, because it does not change
the transmission power and channel noise characteristics of
the uncoded transmission framework.

1) Transmission Power: WHT is an orthonormal transform,
so we have Power(z) = z'z = (Wy)T(Wy) = yTWTwy =
y'y = Power(y). Therefore, WHT does not change the total
transmission power of the signal.

2) Channel Noise: If the transmission of z is formu-
lated by Z = z + n, the effect of noise can be equiv-
alently formulated by § = y + n/, where ' = W~ 'n.
When n is white Gaussian noise, n’ is also white Gaussian
noise with the same statistics. To see this, just check
Cov(W~In) = anzl when Cov(n) = anzl . Therefore, we can
regard the signal path from y to ¥ in Fig. 4 as a virtual AWGN
channel, which is statistically identical with the underlying
actual AWGN channel.

III. DECORRELATION, ENERGY DIVERSITY AND
TRANSFORM GAIN FOR UNCODED TRANSMISSION

As mentioned earlier, uncoded transmission does not
mean that the signal is unprocessed before transmission.
In SoftCast [37], the image signal is transformed from spatial
domain to frequency domain before being sent out using the
framework in Fig. 4. In fact, utilizing a proper transform
turns out to be very critical for the efficiency of SoftCast.
In this section, we reveal the advantage of employing a
decorrelation transform in uncoded visual communication, and
introduce a quantitative measurement for it. We show that a
decorrelation transform can bring significant performance gain
in uncoded transmission, by boosting the energy diversity in
signal representation.

A. Energy Diversity in Signal Representation

To see how the data activity H(x) of an image can be
reduced by a transform, we first study the mathematical
property of the definition (16). Obviously, f(x) = 4/x is a
strictly upper convex function. For upper convex functions in
general, we have the following remarks:

Remark 1: For any 11 < A2, f(A)+ f(A2) > f(A1—€)+
f (A2 + €) holds for any € > 0.

Remark 2: If 1| + A, is constant, f(A;) + f(42) achieves
its maximum value only when A1 = 4;.

Remark 3: 1If A1 + A2 is constant, f(11) 4+ f(42) strictly
decreases with #(11, 12) = |10g(%)|.
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Fig. 6.  H(x) of three-variable random source x = (x1,xp,x3) with
E[xiz] = A, subject to 4; > 0 and A1 + Ay + A3 = 4. Hx) = /1/3 is
reached when A1 = Ay = 3. H(x) = ﬁ/S is reached when A1 = 4 or
Ay = A or 23 = A. In this figure A = 1.

Remark 1 can be easily proved by considering the fact that
f/(x) is strictly decreasing. Remark 2 and Remark 3 can be
derived from Remark 1. These remarks mean that, when the
sum of A; and A, is constant, the more diversified 1; and 1,
are, the smaller f(41)+ f(42) is. Now we define A; = E[xl.z]
and study how H (x) varies with different energy distribution
specified by {4;}. Fig. 5 illustrates the H (x) of two-variable
random source X = (x, xp). It is clear in Fig. 5 that higher
diversity in signal energy distribution corresponds to a lower
value in H (x).

These conclusions can be extended to the general case of
N-variable random source. If va Ai = A is constant,
va f(4;) achieves its maximum value only when all 4; are
equal. The more diversified these A; values are, the smaller
va f(4;) is. Fig. 6 illustrates the H (x) value of three-variable
random source with different energy distribution.

Furthermore, the achievable range of H (x) can be derived,
as in Remark 4. This determines the theoretical upper bound of
performance improvement one may achieve by transforming
the signal from one representation to another, as we shall
discuss in the next subsection.

Remark 4: Subject to lev Ai = A, it holds that ~/1/N <
H(x) < +/Z/N. The lower bound H(x) = +/A/N is
reached when all energy falls into a single element xy,
ie., i4x = A, iz = 0. The upper bound H(x) = /A/N
is reached when the source has uniform energy distribution
among elements, i.e., ,; = A/N,i =1,2,..., N.
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B. Transform Gain for Uncoded Transmission

Natural image signals typically exhibit very strong correla-
tion among the neighboring pixels. Such statistical redundancy
is commonly exploited in image/video coding by decomposing
the signal using decorrelation transform. When the signal is
stationary and its covariance matrix is known, Karhunen-Loéve
Transform (KLT) is the optimal transform to use. In practical
schemes, DCT is widely used instead as a good approximation
of KLT [66].

The typical image decorrelation transforms, including KLT,
DCT and DWT, etc., are orthogonal or approximately orthog-
onal. Therefore, they do not change the total energy of a
signal. What they change, however, is the distribution of
energy among the signal elements. It is well recognized that,
after decorrelation, the signal energy would be compacted to a
small part of coefficients — i.e., a small number of coefficients
become large while most other coefficients become extremely
close to zero.

Based on the discussions in Section III-A, we infer that
a decorrelation transform can reduce the data “activity” of
a signal, which subsequently leads to higher efficiency in
uncoded transmission and better quality in reconstruction.

For an orthonormal transform 7 : X (i) — F(u) , we define
the transform gain (in the context of uncoded transmission)
of 7 by

G(X|T) = 201og10( (17)

To be concrete,

H(X)
H(F))'

(18)

G(X|T) = 20log, (721' VAx(D) )

2N Ar ()

where Ax(i) = E[X(i)?] and Ar(u) = E[F(u)?] represent
the energy of signal elements in the spatial domain and the
transform domain, respectively.

Based on the Remark 4 in Section III-A, we have.

Remark 5: For N-element random signals, the upper bound
of transform gain is 2010g10(\/ﬁ ) dB in uncoded transmission.
This bound can be reached only if the signal has extremely
strong correlation.

C. Some Numerical Results

In this section, we evaluate the transform gain in uncoded
transmission and show some numerical results. We first
consider first-order Markov (Markov-1) process, a simple
but widely used model for natural images. For a stationary
Markov-1 process {X;} of length N with correlation coeffi-
cient p, the covariance matrix is given by

1 p p? prl
p2 1 p px}
Cx=o3-| P p L ptn (19)
pN=1  pN=2 ,N=3 1

The KLT transform result of X, i.e. F = KLT(X), has a
covariance matrix

Cr =03 - diag{1, 12, ..., An}. (20)
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The diagonal entries {4;} correspond to the eigenvalues of the
Toeplitz matrix in (19). They can be determined by (see [67]):

1 —p?

Ai = , i=1,2,...,N, 21
"7 1—2pcosw; + p? @D
where {w;} are the positive roots of
1 — p?)si
an(No) = —— L —p)sne 22)

cosw —2p + pZcosw’
In this case, Ax(i) = 0)2(, Ar(i) = 0)2(/1,- so that the transform
gain is

G(X|KLT) = ZOlogm( (23)

)
XLVi )

Fig. 7 illustrates the transform gain of KLT on Markov-1
process. We note that the transform gain (or reduction in data
activity) depends on the correlation inside the signal. When
the signal has strong correlation (i.e. as p — 1), the benefit
of transform becomes significant. As p — 0, the benefit of
transform diminish to 0. We also note that the transform gain
depends on the transform size N. In general, a KLT transform
with larger size provides higher transform gain, when the
signal is highly correlated. When p — 1, the transform gain
increases by 3.01dB (= 20log;o+/2 dB) when N is doubled.
This is because a transform of larger size can exploit the signal
correlation at a larger scale. But for p — 0, larger transform
size N does not bring larger transform gain.

The above observations can be extended to signals of higher
dimension. For example, we consider a two-dimensional
Markov process, in which the correlation coefficient for any
two pixels of distance d is p“. Fig. 8 illustrates the transform
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gain of N x N KLT for such 2D Markov process. We can
see, when p — 1, the transform gain increases by about
6.02dB when N is doubled. When the correlation coefficient p
is smaller, the transform gain becomes smaller.

We also investigated the transform gain on natural images
and real video sequences. In particular, we investigated the
influence of different transform sizes. The experimental details
and results will be presented in Section V.

IV. DISCUSSIONS ON RELATED ISSUES

The analysis of transform gain presented in Section III
depends on an assumption that the signal energy distribution
is known. Ideally, the sender choose the scaling factor g; for
each element individually according to E [xl.z] — recall (10).
However, the receiver also needs the scaling factors, for the
purpose of correct decoding — recall (3). Therefore, the {g;}
(or the {E [xiz]}) values must be shared between the sender
and the receiver.

Of course, sending one g; (or E [xiz]) for each element is
impractical since the communication overhead is overwhelm-
ing. As the simplest solution, SoftCast groups the coefficients
in the same transform band as a data chunk and perform
scaling at chunk level. The coefficients in each chunk choose
the same g; value, based on the mean energy of that chunk.
This will more or less reduce the transform gain, depending
on the size of chunks and the data energy diversity within each
chunk. This aspect was firstly discussed in [68].

To fully utilize the benefit of transform but avoid sig-
nificant overhead at the same time, we need a way to
compactly describe the energy distribution in the trans-
form domain. Two energy modeling solutions were proposed
in [45] and [50]. In fact, these preliminary works indicate that
the actual energy distribution of transform coefficients can be
well approximated by certain models using a very small set of
meta data. As a result, the theoretical transform gain can be
mostly achieved at a low cost of meta data. This aspect has
been further studied in our another work (see [69] for more
information).

V. EXPERIMENTAL RESULTS

This section reports experimental results. We first show
some numerical results based on the theoretical analysis pre-
sented in Section III. Then we simulate the uncoded trans-
mission scheme using various transform options, and verify
the theoretical results. Both natural images and videos will be
considered in our experiments.

A. Results on Natural Images

This section investigates the uncoded transmission of nat-
ural images. We first evaluate the transform gain based on
formulation (18). In particular, we investigate the influences
of using different transform sizes. DCT is used as the decor-
relation transform in this paper. The 512 x 512 images, Lena,
Peppers, Elaine, Fishingboat, Barbara, etc., and the Kodak
768 x 512 images, Airplane, Cap, Parrot, Girl, Sailboats2,
Window, etc., and the 1280 x 1600 images2 from the JPEG

2Cropped to 1280 x 1536 in our experiments.
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TABLE I
THE TRANSFORM GAIN (dB) OF 2D-DCT IN UNCODED TRANSMISSION OF NATURAL IMAGES (IDEAL CASE)

Test Image Transform Size of 2D-DCT Max
Size Name Ix1 [ 2x2 [ 4x4 | 8x8 [ 2Tx2% [ 22x2% | 2620 [ 27x27 | 28x2
Lena 0.00 | 5.59 | 10.82 | 15.40 18.94 21.28 22.39 22.63 22.72 22.72
Barbara 0.00 | 5.14 9.94 | 14.16 17.30 19.21 19.94 19.81 19.36 19.94
512x512 Peppers 0.00 5.53 10.67 | 15.05 18.30 20.22 20.97 21.24 21.38 21.38
Elaine 0.00 | 5.53 | 10.74 | 15.30 18.93 21.47 23.05 23.95 24.17 24.17
Fishingboat 0.00 | 544 | 10.44 | 14.65 17.81 19.84 20.89 21.35 21.10 21.35
Airplane 0.00 | 574 | 11.23 | 16.22 20.36 23.26 24.86 25.33 25.27 25.33
Cap 0.00 5.64 10.96 | 15.67 19.42 21.87 23.04 23.28 23.22 23.28
768x512 Par.rot 0.00 | 5.69 | 11.09 | 15.97 19.98 22.72 24.11 24.39 23.15 24.39
Girl 0.00 | 549 | 10.56 | 14.92 18.31 20.50 21.52 21.68 21.47 21.68
Sailboats2 0.00 5.60 10.84 | 15.44 19.06 21.46 22.70 23.07 23.09 23.09
Window 0.00 | 5.56 | 10.69 | 15.05 18.38 20.41 21.49 21.88 21.47 21.88
Bike 0.00 | 550 | 10.52 | 14.77 17.92 19.88 20.90 21.23 21.08 21.23
1280x1536 Woman 0.00 | 5.20 9.83 13.73 16.65 18.47 19.32 19.38 18.96 19.38
Building 0.00 | 5.53 | 10.60 | 14.87 17.91 19.90 21.52 22.75 23.27 23.27
Flower 0.00 | 5.68 | 11.05 | 15.81 19.60 22.12 23.44 23.94 24.19 24.19
Average 0.00 | 552 | 10.66 | 15.14 18.59 20.84 22.01 22.39 22.26 22.39
TABLE 11

THE TRANSFORM GAIN (dB) OF 2D-DCT IN UNCODED TRANSMISSION OF NATURAL IMAGES (PRACTICAL CASE)

Test Image Transform Size of 2D-DCT Max
Size Name Ix1 [ 2x2 [ 4x4 | 8x8 [ 2¥x2% | 22x2% [ 26x20 [ 2727 | 28 %28
Lena 0.00 | 534 | 10.12 | 14.06 16.99 18.96 20.17 20.94 21.74 21.74
Barbara 0.00 4.69 8.80 12.12 14.44 15.97 16.97 17.64 18.29 18.29
512x512 Peppers 0.00 | 5.18 9.84 | 13.62 16.35 18.16 19.23 19.99 20.75 20.75
Elaine 0.00 | 537 | 10.27 | 14.39 17.56 19.80 21.30 22.35 23.24 23.24
Fishingboat 0.00 | 5.12 9.61 13.21 15.83 17.57 18.65 19.38 20.09 20.09
Airplane 0.00 | 537 | 10.30 | 14.53 17.82 20.11 21.61 22.57 23.46 23.46
Cap 0.00 | 529 | 10.02 | 13.93 16.89 18.86 20.07 20.86 21.60 21.60
768x512 Parrot 0.00 | 529 | 10.06 | 14.10 17.16 19.24 20.50 21.40 21.94 21.94
Girl 0.00 | 5.13 9.65 13.31 16.02 17.81 18.93 19.67 20.28 20.28
Sailboats2 0.00 | 5.19 9.75 13.57 16.45 18.36 19.61 20.45 21.22 21.22
Window 0.00 5.12 9.59 13.16 15.81 17.54 18.63 19.36 19.99 19.99
Bike 0.00 5.00 9.26 12.60 14.99 16.55 17.50 18.10 18.53 18.53
1280x1536 W(_)mfm 0.00 | 4.80 8.88 12.17 14.51 15.97 16.81 17.29 17.60 17.60
Building 0.00 | 5.15 9.67 13.36 16.12 17.96 19.15 19.98 20.61 20.61
Flower 0.00 5.50 10.52 | 14.78 18.04 20.25 21.61 22.40 2291 2291
Average 0.00 5.17 9.76 13.53 16.33 18.21 19.38 20.16 20.82 20.82

XR evaluation dataset [70], [71], Bike, Woman, Building(p10)
and Flower(p30), are used as test images.

We first consider the ideal case that the energy statistic
of every transform coefficient is perfectly known. The results
are presented in Table I. We can see that, for typical natural
images, the 2 x 2, 4 x 4, 8§ x 8, 16 x 16 and 32 x 32 DCT
transforms can provide about 5.5dB, 10.7dB, 15.2dB, 18.8dB
and 21.1dB gain, respectively. Obviously, the transform gain
usually increases with the transform size. In fact, DCT of
large size can provide up to 19.9 ~ 25.3 dB gain. We note
that 27 x 27 or 28 x 2% may be the best transform size for
most natural images. Frame-size DCT also produces similar
results.

We then consider the more practical case that the energy
statistics of transform coefficients are only known at band
level, as discussed in Section IV. The transform gain results
in this setting are presented in Table II. As in the above
ideal case, we can get similar conclusion that DCT transform
can provide significant gain and the gain typically increases
with the transform size. Comparing Table I and Table II,

we note that the transform gain in this setting is relatively
lower (e.g. by 1.26dB in average for the case of 28 x 28 DCT)
than that in the ideal case. This loss is due to the limited
accuracy of transform coefficient statistics. But the trans-
form gain in this setting is still up to more than 20dB in
average.

Now we simulate the actual transmission procedure and ver-
ify the above theoretical results. In the transmission scheme,
the sender performs DCT transform, scaling and WHT trans-
form, and the receiver performs inverse WHT transform, LLSE
decoding and inverse DCT transform. Several transform size
options are considered, including 2 x 2, 4 x 4, 8§ x §,...,
and 128 x 128. For these cases, the power optimization is
performed at band level, i.e., each band chooses the same
scaling factor g;. We also considered a special case (noted by
“DirectTx”) that no DCT transform is applied. The channel
is an AWGN channel and the SNR range considered in
this experiment is O ~ 20dB. For each of the scheme and
channel configuration, we simulate the transmission process
for 20 times and measure the average performance.
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Fig. 9.

The PSNR results of the simulated transmissions are shown
in Fig. 9. These results confirm the linear relationship between
PSNR and CSNR, as expressed in Eqn. (15), at least for middle
and high CSNR region. The non-linearity at low CSNR region
is due to the clipping of decoded pixel values to [0, 255].
The results in Fig. 9 also verify the theoretical analysis results
presented in Table II. By comparing the 2™ x 2™ DCT
scheme with the DirectTx scheme, we see that the performance
gap is highly consistent with the transform gain reported
in Table II.

Now we evaluate the subjective performance of the scheme.
To clearly show the characteristics of artifacts in reconstructed
images, a low channel SNR of 4dB is considered. The recon-
struction results for Lena are illustrated in Fig. 10. It’s clear
that the transmission scheme using larger DCT size produces
better reconstruction quality, due to the higher transform
gain. From the reconstructed images, we notice the different
reconstruction error patterns caused by different transform
configurations. The DirectTx scheme leaves the white channel

0 4 1 2 16 20
Chdnu(‘l SNR (dB)

The PSNR results of simulated uncoded transmission for natural images.

noises untouched in spatial domain. The block-DCT based
schemes, however, introduce blocking artifacts in the decoded
images, since the channel noise is imposed on the transform
coefficients instead of on the image pixels. The blocking
artifacts are more noticeable when small blocks are used for
DCT. When larger block sizes are used, the blocking effect
become almost invisible. More results of reconstructed images
are shown in Fig. 11 and Fig. 12.

B. Results on Video Sequences

Now we consider uncoded transmission of video sequences.
Compared with images, video sequences not only have spa-
tial correlation within each frame, but also have tempo-
ral correlation among adjacent frames. For spatial-temporal
decorrelation, 3D-DCT is used in SoftCast [37]-[39]. Motion
compensated temporal filtering (MCTF) [31]-[35] is later
adopted in WaveCast [43] to improve the efficiency of tem-
poral transform based on the motion information. In this part,
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Fig. 10. The reconstructed images (of Lena) in uncoded image transmission (with CSNR=4dB). From left (lLh row) to right (2nd row): Original, DirectTx,
Block-DCT with size 2! x 21, 22 x 22,23 x 23, ..., 28 x 28, The PSNR goes from 11.09dB, 15.35dB to 31.45dB. Please enlarge the figure to observe details.

Fig. 11.

The reconstructed images (of Peppers and Elaine) in uncoded image transmission (with CSNR=4dB). From left to right: DirectTx, Block-DCT

with size 23 x 23, 2% x 24, 25 x 25 and 28 x 28. Please enlarge the figure to observe details.

we focus on 3D-DCT and evaluate the performance of dif-
ferent spatial- and temporal-transform sizes. But just keep in
mind that the same thing can actually also be done for the
case of MCTF to analyze its performance. The only difference
is that the transform gain of MCTF might be much larger
than that of 3D-DCT, since its temporal transform is motion
aligned.

In this experiment, we use the CIF videos, Akiyo, Coast-
guard, Container, Foreman, Mobile, Mother, News and Silent
as the test sequences. The videos are divided into GOPs (group
of pictures) and processed in a GOP-by-GOP manner. The
frames in each GOP as a whole are first transformed by DCT in
the temporal direction, and then each of the resulting frames is
processed by spatial DCT transform. Only the first 128 frames
of each video sequence are used in our experiments.

As have done for natural images, we first evaluate the
transform gain based on formulation (18), and we assume that
the energy statistic of every coefficient is perfectly known.
We consider several different spatial transform sizes (2 x 2,
4 x4, 8 x8,16 x 16, 32 x 32, and frame-size 352 x 288,
but show only three of them in Table III due to limited
space) and six different temporal transform sizes (i.e. GOP size
L=1,2,4,8,16,32). We see from Table III that, compared
with 2D-DCT (i.e. the case that L = 1), 3D-DCT provides
additional gain by exploiting the inter-frame correlation using
DCT in the temporal direction. We note that the transform
gain usually increases with the GOP size. We also notice an
interesting point — a large spatial transform size is usually
desirable when the GOP size is small (e.g. when L = 1);
however, it is no longer preferred when L is large
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Fig. 12. The reconstructed images (of Cap) in uncoded image transmission (with CSNR= 4dB). From left to right: DirectTx, Block-DCT with size 22 x 22,
23 % 23, 24 « 24, 25 % 25 and 28 x 28. Please enlarge the figure to observe details.
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Fig. 13.

(e.g. when L = 32). To see this, just note that the transform
gain of 3D-DCT (32 x 32, L = 32) is 26.49dB but that of
3D-DCT (352 x 288, L = 32) is only 23.10dB, for the News
sequence.

It is natural to conjecture that the different frames produced
by the temporal DCT may require different spatial transform
size to obtain optimal performance. To clarify this issue, for

4
Channel SNR (dB)

The PSNR results of simulated uncoded transmission for video sequences.

each frame after temporal transform, we evaluate the spatial
transform gain for every possible spatial transform size. The
results are reported in Table IV. It is clear that, a large spatial
DCT is preferred for the temporal-DC frame (with frame
index O in a GOP), but a DCT of size 8 x 8 or 16 x 16
is enough for temporal-highpass frames (e.g., with frame
index 1 — 31 in a GOP).
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Fig. 14.

The reconstructed frames (of Akiyo) in uncoded video transmission (with CSNR=0dB). From left to right: GOP=1(4 x 4), GOP=1(8 x 8),

GOP=1(16 x 16), GOP=1(Adaptive), GOP=2(Adaptive), GOP=32(Adaptive). Please enlarge the figure to observe details.

TABLE III

THE TRANSFORM GAIN (dB) OF 3D-DCT FOR UNCODED TRANSMISSION
OF CIF VIDEO SEQUENCES (FS: FRAME SIZE)

Video Spatial Temporal DCT Size (GOP Size L)
Sequence DCT Size | L=1 L[=2 L=4 [=8 L=16 L=32
Akiyo 8x8 1573 18.59 21.38 24.02 2649 28.63
352 x 288 32 x32 | 2145 2411 26.63 28.87 30.80 3223
FS 21.73 24.01 26.01 27.53 28.69 29.31
Coastguard 8 x8 13.81 1585 17.55 1890 19.81 20.42
352 x 288 32 x 32 | 18.64 20.10 21.23 22.06 2249 22.70
FS 19.88 20.87 21.61 22.10 2235 2244
Foreman 8x8 15.64 18.12 2033 2221 23.64 24.69
352 x 288 32 x 32 |21.75 23.69 2528 2649 2726 27.75
FS 2370 25.01 2597 26.64 27.01 27.25
Mobile 8 x8 11.65 13.50 15.11 1637 17.18 17.51
352 x 288 32 x32 | 1429 1568 1691 1795 18.69 19.00
FS 15.07 16.08 16.86 17.44 17.81 17.98
Mother 8x8 16.13 18.85 21.45 23.86 2599 27.84
352 x 288 32 x 32 [2289 2526 2740 29.24 30.69 31.80
FS 2537 2723 2876 29.92 30.73 31.30
Silent 8x8 15.01 17.72 20.31 22.67 2477 2647
352 x 288 32 x 32 [2048 2290 25.10 27.00 28.55 29.67
FS 2229 2410 25.61 2680 27.72 28.36
PeopleOnStreet 8x8 1527 17.40 19.14 2038 21.15 21.60
2560 x 1600 32 x 32 2043 2193 23.13 2395 2438 2452
FS 22.08 2277 2327 23.64 23.88 24.05
Traffic 8x8 1525 17.70 1991 21.82 2331 24.34
9560 x 1600 32 x 32 |20.85 2281 24.50 2590 2692 2751
FS 2225 2329 24.04 2461 2503 2531
BQTerrace 8x8 1513 17.49 19.64 21.53 23.07 24.08
1920 % 1080 32 x 32 [20.57 2242 2399 2530 2628 26.71
FS 21.32 2274 23.84 2472 2535 2544
Cactus 8x8 1535 17.65 19.71 21.47 2291 23.95
1920 x 1080 32 x 32 [21.23 2293 2440 2556 2646 26.99
FS 22.63 2333 23.84 2421 2451 24.69

This motivates us to employ a kind of adaptive 3D-DCT in
practical schemes. In Table V, we evaluate the transform gain
of 3D-DCT using adaptive spatial transform size. Comparing

TABLE IV

THE TRANSFORM GAIN (dB) OF SPATIAL DCT ON THE GOP FRAMES
TRANSFORMED BY TEMPORAL DCT (GOP SIZE L = 32,
FS: FRAME S1ZE)

Video | Frame Spatial DCT Transform Size
Sequence | Index [1x1]2x2[4x4][8x8[2% x2%[2°x2°[2°x2°[ FS
0 0.00 |5.72|11.16[16.04| 19.85 | 22.26 | 22.09 [20.30
1 0.00[1.9212.93 1320 247 | 1.46 | -027 [-3.34
Akiyo 2~3 [0.00[1.84]2.80 [ 3.10 | 2.38 1.43 [ -0.16 [-2.75
4~7 10.00[ 127195211 1.42 | 0.51 | -0.96 [-3.61
8~15[0.00[083[ 135 1.51 [ 097 | 0.6 | -1.IT [-3.75
16~31[0.00[0.45[0.77 [ 0.87 | 0.5T | -0.10 | -1.05 [-3.41
0 0.00 | 5.68 [11.07[15.89| 19.78 | 22.38 | 22.85 [21.09
1 0.00[3.33]5.66 | 700 | 7.52 | 7.51 | 6.85 |[4.54
8 CIF 2~3 [0.00[2.68] 451559 6.01 599 | 544 |3.17
Sequences| 4~7 [0.00[1.92[325[4.12[ 446 | 443 | 397 | 1.67
8~15[0.00[1.19[2.16 [2.85 | 3.15 | 3.13 | 2.83 [0.52
16~31[0.00[0.82|1.49 [ 1.99 | 220 | 2.12 1.98 1-0.40

Table III and Table V, we can see that the adaptive 3D-DCT
performs better than the simple 3D-DCT. The transform gain
can be up to 32dB for slow motion sequences such as Akiyo,
and the average gain is 27.8dB for the eight tested sequences.
Note that the performance for Mobile and Coastguard is
remarkably lower than that for other sequences since the two
videos have relatively higher motion and rich textures.

Now we simulate the actual video transmission procedure
and verify the above theoretical results. The scheme for video
is similar to that for image, except that 3D-DCT is used
instead of 2D-DCT. The PSNR results are shown in Fig. 13.
We can clearly see the performance improvement as the spatial
transform size increases (for GOP size L = 1) and as the GOP
size increases (adaptive spatial transform size is used in this
case). The subjective performance is illustrated in Fig. 14. The
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TABLE V

THE TRANSFORM GAIN (dB) OF 3D-DCT FOR UNCODED TRANSMISSION
OF CIF VIDEO SEQUENCES, USING ADAPTIVE SPATIAL TRANSFORM
SIZE (64 x 64 FOR THE TEMPORAL-DCT DC FRAME AND
16 x 16 FOR ALL TEMPORAL-DCT HIGHPASS FRAMES)

Video Spatial Temporal DCT Size (GOP Size L)
Sequence DCT Size | L=1 L[=2 L=4 L[=8 L=16 L=32
Akiyo adaptive | 21.22 2393 26.51 28.85 3090 32.50
Coastguard adaptive | 18.94 20.41 21.51 22.25 22.56 22.66
Foreman adaptive | 22.38 2429 2584 2698 27.61 27.95
Mobile adaptive | 1443 1588 17.18 1821 18.86 19.02
Mother adaptive | 23.04 2541 27.58 29.46 3093 32.07
Silent adaptive | 21.06 23.48 25.70 27.59 29.10 30.15
PeopleOnStreet | adaptive | 21.35 22.83 23.86 24.39 24.50 24.34
Traffic adaptive | 22.01 23.93 2552 26.71 27.43 27.69
BQTerrace adaptive | 22.09 23.48 24.59 2538 25.78 25.72
Cactus adaptive | 22.67 2423 2551 2647 27.12 2747
Average adaptive | 20.92 22.79 24.38 25.63 26.48 26.96

performance gain in PSNR is confirmed by the improvement
in visual quality of the reconstructed video frames.

VI. CONCLUSION AND DISCUSSIONS

Uncoded transmission is a promising way to provide robust
and elegant visual communication in wireless and mobile sce-
narios, especially for wireless video broadcast. It skips entropy
coding in source coding and all the subsequent discrete-state
operations in channel coding and modulation. However, it can
still achieve competitive performance and meanwhile provide
graceful quality degradation for a wide channel SNR range.

Uncoded transmission is not unprocessed transmission.
In fact, signal decorrelation and transmission power optimiza-
tion are two key modules that determine the efficiency of
uncoded transmission. Both coded and uncoded transmission
employ transform for signal decorrelation. The most funda-
mental difference between coded and uncoded transmission
is that coded transmission turns the coefficients into equally
important bits and then allocates the communication resources
(bandwidth and transmission power) to each coded bit, while
uncoded transmission allocates the bandwidth and transmis-
sion power directly to the coefficients.

This paper presents a theoretical analysis for the transform
gain in uncoded transmission. Our analysis reveals that the
energy distribution among signal elements is critical for the
efficiency of uncoded transmission. A decorrelation transform
can potentially bring significant performance gain by boosting
the energy diversity in signal representation. More importantly,
we found that the transform gain can be realized only when
both the sender and the receiver have good knowledge on
the energy diversity in signal elements and fully exploit this
diversity for optimal protection [69]. Therefore, the efficiency
in describing and sharing the knowledge of energy diversity
in signal elements is an important problem for uncoded
transmission.

Due to the lossy nature of uncoded transmission, noises
always appear in the received signals. Besides using proper
transmission power to control the noise level in the received
signals, employing appropriate signal estimation (e.g. denois-
ing) approaches [72]-[77] is also an important aspect.
This paper only considered a simple linear estimator,
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since advanced nonlinear estimators may make the power-
distortion analysis of reconstruction process too complicated
or even infeasible. The optimized reconstruction for uncoded
image/video transmission is an interesting topic to study in
future works [62].

This paper only considered AWGN channel in order to
simplify the analysis. In more realistic settings, in addition
to channel noise, channel fading also causes transmission
errors. How the fading effect influences the transform gain
and changes the optimal power allocation strategy is also
an interesting problem that needs further study in future
works [49], [54].
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