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Most model-based rate control schemes use independent rate-distortion (R–D) models at
macroblock (MB) level to represent the relationship among bit rate, distortion and
encoding complexity. However the correlations between frames (INTER-dependency)
are not well considered for distortion, bit allocation and quantization parameter (QP)
decision. In this paper, a novel INTER-dependent R–D model is proposed based on the
theoretical analysis of the relationship between the predicted residual of one frame and
the distortion of its reference frame. To achieve both bit rate accuracy and consistent video
quality, a window-based rate control scheme with two sliding windows is introduced. One
window is to group certain previously encoded frames and current frame to control the bit
rate and buffer delay; the other is to group certain future encoding frames to optimize the
fluctuation of video quality. Furthermore, the optimization of Lagrange multiplier is also
discussed under the INTER-dependent situation. Experimental results demonstrate that
the proposed window-based rate control scheme with INTER-dependent R–D model can
achieve accurate target bit rate and improve PSNR performance, meanwhile the variation
of PSNR is the smallest compared with other three benchmark algorithms. This one-pass
rate control scheme is highly practical for the real-time video coding applications.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Rate control is essential for the real applications of the
modern video coding standards such as MPEG-2 [1], H.264/
AVC [2] and AVS [3]. Various video coding applications int-
roduce strict bit rate constraint to the bit stream due to the
limited transmission bandwidth or storage size. Rate con-
trol scheme is responsible for achieving the bit budget by
adjusting the quantization parameters (QPs) or trading the
compressed video quality in a video encoder. Beside rate,
other optimizations are also needed to be considered such
as system latency, buffer occupation and smoothness in obj-
ective or subjective video quality.

To achieve the bit rate constraint, two essential steps are
adopted in a typical rate control scheme, which are frame bit
allocation and QP decision. The former is used to allocate bit
quota among different video frames, which usually takes the
buffer latency, video quality and coding complexity into con-
sideration. The latter, after allocation of the frame bit budget,
decides the QP of a frame or each MB of the frame to achieve
the bit budget accurately. R–Dmodel is widely applied in this
step to represent the relationship among bit rate, distortion
and QP.

Many rate control schemes towards these two problems
are proposed and developed in the literature. For the frame
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bit allocation, the state-of-the-art works can be classified
into three categories. The first category allocates equal or
nearly equal bits among different video frames. In [4],
Ribas-Corbera and Lei used a nearly constant frame bit tar-
get to ach;ieve the low buffer delay, meanwhile avoiding
the underflow of the buffer. He [5] et al. adopted the similar
near-constant frame bit allocation and smoothed the rate
variation by adjusting the distortion in a small range. These
methods can maintain the small fluctuation of the encoder
buffer. However, the source video complexity is not well
considered in these schemes, which will cause the fluctua-
tion of the video quality especially when high motion occ-
urs or scene changes. The second category assumes that the
video content is stationary among different group of pic-
tures (GOP). Under this assumption, equal bits are allocated
to each GOP. Within a GOP, the frame bit allocation scheme
assigns a fixed weighting factor according to the frame type.
The typical one of this category is TM5 [6] for MPEG-2, it
also considers the fullness of the compressed bit buffer. The
JM [7] for H.264/AVC uses the similar mechanism for frame
bit allocation, meanwhile taking the hypothetical reference
decoder (HRD) [8] buffer into consideration to further reg-
ulate the frame bit budget. Since the assumption of these
methods is not always true, the fluctuation of the video
quality is unavoidable. The third category is aimed to ach-
ieve smooth video quality. The basic idea of these methods
is to allocate more bits to the high-complexity frames and
less bits to the low-complexity frames. In [9], Xie and Zeng
proposed a sequence-based bit allocation scheme by track-
ing the non-stationary characteristics in a video sequence.
Xu [10] et al. proposed a window model about the picture
quality and the buffer occupancy. By applying window-level
bit allocation, the tradeoff between quality smoothness and
buffer smoothness can be achieved. The “forward” rate con-
trol scheme, which means that allocating frame bits based
on the characteristics of the current frame or future frames
via certain pre-analysis, is widely used in these methods.
Our work, towards the one-pass real-time encoding app-
lication with smooth video quality, also belongs to this
category.

For QP decision, various R–D models are proposed in the
literature. Some of these R–D models [4,5,11–14] assume
that the video coding units are independent with each
other. Under this assumption, Chiang and Zhang [11] pro-
posed a quadratic R–D model to calculate the target bit rate
for each frame, which was adopted in both MPEG-4 and
H.264/AVC. In [4], a MB-level R–D model was used to
choose the QP, meanwhile the Lagrange optimization was
introduced to minimize distortion. The rate control scheme
was adopted by H.263. He et al. [5] proposed a linear
ρ-domain R–D model, which used the percentage of zero
coefficients after quantization to approximate the bit rate.
To tackle the inherent dilemma between rate control and
R–D optimization (RDO) in H.264/AVC, Ma et al. [12] used
the true quantization step size to establish the R–D model
and proposed a rate control scheme with partial two-pass
process at MB level [13] proposed an enhanced R–D model,
which modeled the source bits as the function of the qua-
ntization step size and the complexity of coded 4�4 blocks.
In [14], a linear model was formulated to describe the rel-
ationship between the total amount of bits for both texture
and non-texture information and the QP. There are also a
number of investigations for R–D models in the next gen-
eration video coding standard—High Efficiency Video Cod-
ing (HEVC). Based on the quadratic R–D model in [11], Choi
et al. [27] proposed a pixel-based unified rate-quantization
(URQ) model, which employed a mean of absolute differ-
ence (MAD) factor to predict the texture complexity. This
rate control algorithm was adopted in the HEVC test model
reference software version 6.0 (HM6.0) [28]. In [29], a rate
control scheme using a linear R-λ model was proposed,
which showed smaller bit rate errors than the URQ model
and was adopted in HM10.0 [30]. Considering the quadtree
coding structure in HEVC, Seo et al. [31] proposed a rate
control scheme with a new R–D model based on the
Laplacian function to minimize the fluctuation of video
quality. In [32], a frame-level rate control scheme based on
texture and nontexture rate models was proposed, which
considered the different statistical characteristics of trans-
form coefficients depending on the depth levels of coding
units (CUs). A better R–D performance could also be
achieved compared to the previous methods. However, in
the more general case, the coding units may not be coded
independently, especially when the INTER-dependency is
taken into consideration. Here INTER-dependency means
that both distortion and bit rate of the current encoding
inter frame (either P or B frame) are highly correlated with
the distortion of its reference frame, because of the predic-
tion process between the inter frame and its reference
frame. To tackle the rate control problem with INTER-
dependent characteristics, Ramchandran et al. [15] provided
a trellis-based solution for an arbitrary set of QPs for each
coding unit. The computational complexity grew exponen-
tially with the increase of dependent frame numbers. In
[16], Lin and Ortega used interpolation to establish the
approximated R–D curves. The spline interpolation and pie-
cewise linear interpolation were adopted for I frames and
P frames respectively. Liu et al. [17] analyzed the dependent
temporal-spatial bit allocation problem and proposed two
iteration algorithms to reduce the computational complex-
ity. In scalable video coding, Liu and Kuo [18] proposed a
GOP-based distortion model for different temporal layers
according to the dependency between the base layer and
the enhancement layer. The algorithms of [16–18] need to
encode the source video several times, which are not sui-
table for real-time applications.

The above-mentioned R–D models are established by
heuristic analyses and statistical examinations. However,
the theoretical INTER-dependent R–Dmodel among different
coding units needs to be further developed. In this paper, we
first analyze the INTER-dependent problem and establish the
relationship between the residual of one frame and the
distortion of its reference frame. Based on this analysis, we
derive the INTER-dependent distortion-quantization (D–Q)
model and rate-quantization (R–Q) model via the study of
the spatial-domain residual and the transform-domain resi-
dual. Then a window-based rate control scheme is proposed
with the complexity-based frame bit allocation and video
quality optimization. Furthermore, the optimization of Lagr-
ange multiplier is also discussed under the INTER-dependent
situation. Experimental results demonstrate that the pro-
posed window-based rate control scheme with INTER-dep-
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endent R–D model can achieve accurate target bit rate and
improve PSNR performance, meanwhile the variation of
PSNR is the smallest compared with other three benchmark
algorithms. This one-pass rate control scheme is highly prac-
tical for the real-time video coding application.

The rest of this paper is organized as follows. The INTER-
dependency problem is analyzed in Section 2. Based on the
analysis, a novel INTER-dependent R–D model is derived in
Section 3. Section 4 represents the window-based rate con-
trol scheme with complexity-based frame bit allocation and
video quality optimization. The experimental results and
discussions are shown in Section 5 and Section 6 and we
give the conclusion in Section 7.
2. INTER-dependency problem

Inter-frame prediction used in video coding increases
the compression performance dramatically, meanwhile
causing the dependency problem in R–D based rate con-
trol. Both distortion and bit rate of an inter frame (either P
or B frame) will be affected by the QP variation of its
reference frame (either I or P frame). To demonstrate this
dependency problem, we take two frames as an example,
in which the second dependent frame references the first
independent frame. In this situation, the rate control issue
can be formulated as minimizing the total distortion under
the bit rate constraint. With the traditional coding-unit-
independent assumption, the formulation is

min
Q1 ;Q2

ðD1ðQ1ÞþD2ðQ2ÞÞ

such that ðR1ðQ1ÞþR2ðQ2ÞÞrRbudget ð1Þ

where Q1, D1(Q1), R1(Q1) are the QP, distortion and bit rate
of the first frame which is the reference frame, Q2, D2(Q2),
R2(Q2) are the corresponding parameters of the second
frame which is predicted from the first frame. Actually, in
the encoding process, the distortion and bit rate of the
second frame have strong dependency with its reference
frame since adopting different QPs for the first frame will
generate different reconstructed frames, which act as the
references for the second frame. Considering this inter-
frame dependency, the rate control problem becomes
more complicated. The formulation (1) can thus be rewrit-
ten as

min
Q1 ;Q2

ðD1ðQ1ÞþD2ðQ1;Q2ÞÞ

such that ðR1ðQ1ÞþR2ðQ1;Q2ÞÞrRbudget ð2Þ

where D2(Q1,Q2) and R2(Q1,Q2) represent that the distor-
tion and bit rate of the second frame are dependent on
both the QP of the first frame as well as the second frame.

To address this dependency problem, a trellis-based
solution is used in [15]. However, the real bit rate and
distortion need to be obtained first. R–D model based
solutions are proposed in [16,18], which need multi-pass
encoding to derive the R–D models. These solutions are not
suitable for real-time video coding applications since the
“forward” bit allocation is usually needed in rate control
scheme. To further reduce the computational complexity, we
aim to establish the R–D model using the spatial-domain
information which can be easily obtained in the pre-analysis
process before the actual encoding is performed [5,10].

In the inter-frame coding process, the residual pixels of
the second frame, which directly contribute to the bit rate
and the distortion, are generated by the subtraction of the
original pixels of the second frame, represented as org2,(i,j),
and its reference pixels from the first frame. The reference
pixels in the first frame are the reconstructed pixels which
contain the distortion due to the quantization. Since the
motion search is adopted in the inter-frame coding process
which generates the motion vector (MV) for the org2,(i,j),
represented by MV(i,j)¼(xi,yj), the reference pixel in the
first frame corresponding to org2,(i,j) should be represented
as rec1;ðiþxi ;jþyjÞ. We use MAD at frame level to represent
the residual information in spatial domain as

MAD2 ¼
1

M � N
∑

M�1

i ¼ 0
∑

N�1

j ¼ 0
org2;ði;jÞ �rec1;ðiþxi ;jþyjÞ
��� ��� ð3Þ

where MAD2 is the real MAD of the second frame gener-
ated in the encoding process, M, N are the frame width and
height respectively. The rec1,(iþxi,jþyj) can be calculated by
the subtraction of the original pixels and the error which is
the distortion represented by err1;ðiþ xi ;jþyjÞ.

rec1;ðiþ xi ;jþyjÞ ¼ org1;ðiþ xi ;jþyjÞ �err1;ðiþ xi ;jþyjÞ ð4Þ

From (3) and (4), we can get that

MAD2 ¼
1

M � N
∑

M�1

i ¼ 0
∑

N�1

j ¼ 0
org2;ði;jÞ � org1;ðiþxi ;jþyjÞ �err1;ðiþxi ;jþyjÞ

� ���� ���

� 1
M � N

∑
M�1

i ¼ 0
∑

N�1

j ¼ 0
org2;ði;jÞ �org1;ðiþxi ;jþyjÞ
��� ���

 

þ ∑
M�1

i ¼ 0
∑

N�1

j ¼ 0
err1;ðiþxi ;jþyjÞ
��� ����β

!
¼MAD_O2

þ 1
M � N

∑
M�1

i ¼ 0
∑

N�1

j ¼ 0
err1;ðiþxi ;jþyjÞ
��� ����β

 !
ð5Þ

where MAD_O2 represents the MAD between the original
pixels of the second frame and the first frame, which can
be easily obtained by the pre-analysis. According to the
approximation that we used in (5), β is positive and should
be subtracted by the sum of MAD_O2 and err1. The second
term of (5) is related to the distortion which is usually
represented by the mean squared error (MSE) as

MSE1 ¼
1

M � N
∑

M�1

i ¼ 0
∑

N�1

j ¼ 0
ðorg1;ði;jÞ �rec1;ði;jÞÞ2

¼ 1
M � N

∑
M�1

i ¼ 0
∑

N�1

j ¼ 0
err21;ði;jÞ ð6Þ

Since the second item of (5), which only contains the
distortion of the referenced pixels but not the whole frame
(it should be noticed that the sum of err1;ðiþ xi ;jþyjÞ for
iterators i and j could not traverse the pixels of whole
frame because of the impact by the MV(i,j)), is partial to
(6), we can use (6) as the approximation of it. That is

∑
M�1

i ¼ 0
∑

N�1

j ¼ 0
err1;ðiþxi ;jþyjÞ
��� ���� α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � N �MSE1

p
ð7Þ

where α is the parameter that has a direct relationship
with the MAD_ref1/MAD1, MAD_ref1 represents the MAD of
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Fig. 1. Relationship between the distortion of the reference frame and the dependent residual. (a) “Foreman”, CIF format, second frame, QP from 18 to 46;
(b) “News”, CIF format, third frame, QP from 18 to 46; (c) “Mobile”, CIF format, sixth frame, QP from 18 to 46; (d) “Akiyo”, CIF format, fifth frame, QP from 18
to 46; (e) “City”, 720P format, third frame, QP from 18 to 46; and (f) “Crew”, 720P format, second frame, QP from 18 to 46.
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the referenced pixels in the first frame. Then, from (5) and
(7), we can get that

MAD2 ¼MAD_O2þk�
ffiffiffiffiffiffi
D1

p
þt ð8Þ

where k and t are model parameters. We test some video
sequences with variable QPs to verify this relationship. The
experimental results on the CIF and 720P sequences are
shown in Fig. 1. The correlation between the square root of
distortion of the reference frame and the subtraction of
MAD and MAD_O is larger than 0.99, which shows a good
linear relation between the two.

From (8), the relationship between the residual of the
second frame in spatial domain and the distortion of the first
frame is established. We can get the real complexity informa-
tion (MAD2) from the pre-analysis (MAD_O2) plus the distor-
tion of the reference frame (D1) without the actual encoding.
Combining the D–Q model of the complexity and the distor-
tion and the R–Q model of the complexity and the bit rate
which will be described in the following subsection, the
“forward” bit allocation (which means assign target frame bits
for current frame and future frames before encoding) and
video quality optimization can be easily achieved according
only to the spatial-domain residual information.
3. INTER-dependent rate-distortion model

In this section, we establish the so-called INTER-depen-
dent R–D model, which is based on the theoretical analysis
on the relationship between the spatial-domain residual
and the transform-domain residual.



Table 1
Verification of the INTER-dependent D–Q model.

Format Sequence QP Est. D Act. D Accuracy (%)

CIF Foreman 26 8.55 8.48 99.15
34 26.22 24.32 92.22

News 26 6.88 6.54 94.66
34 24.74 22.09 88.04

Mobile 30 32.69 29.68 89.85
38 140.81 126.96 89.09

Akiyo 30 8.52 7.90 92.17
38 27.64 25.98 93.62

720P City 26 8.17 7.06 84.24
34 28.65 26.64 92.44

Crew 26 5.36 6.43 83.38
34 12.63 12.98 97.31

Night 30 16.49 14.61 87.16
38 51.10 48.08 93.71

Harbour 30 18.26 16.33 88.20
38 62.69 58.31 92.48

Average – – 91.11

Est. D: Estimated distortion.
Act. D: Actual distortion.
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3.1. INTER-dependent D–Q model

Setting up the INTER-dependent D–Qmodel contains two
steps: (1) setting up the relationship between the distortion,
quantization step size and the true MAD. (2) combining it
into (8) to get the INTER-dependent D–Q model.

Modern hybrid video coding standards adopt discrete
cosine/sine transform (DCT/DST) to convert the predicted
residual block, represented by S, to a transformed matrix,
represented by X, then use the quantization and entropy
coding to achieve compression. The DCT process can be
expressed as the following [19]:

X ¼ ASAT ð9Þ
where T denotes transposition and for the case of DCT,

Aðk;nÞ ¼
1ffiffiffi
N

p ; k¼ 0; 0rnrN�1ffiffiffi
2
N

q
cos πð2nþ1Þk

2N ; 1rkrN�1; 0rnrN�1

8><
>:

ð10Þ
where N is 4 in H.264/AVC.

Since the pixel values of S which is the input of the DCT
can be approximated by a Laplacian distribution with a
zero mean and a separable covariance r m;nð Þ ¼ σ2

Sρ
jmjρjnj

[20], the variance of the (u,v)th DCT coefficient σ2
Xðu; vÞ can

be represented as [21]

σ2
Xðu; vÞ ¼ σ2

S ½ARAT �u;u½ARAT �v;v ð11Þ
where

R¼

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

2
66664

3
77775 ð12Þ

ρ is the correlation coefficient and [d]u,u denotes the
(u,u)th component of the matrix. With ρ¼0.6 as a typical
value [20], we can get that

σ2
Xðu; vÞ ¼ σ2

SCðu; vÞ ð13Þ
where C(u,v) is a matrix with constants. With the Lapla-
cian distribution and zero mean, the variance of S can be
approximated by σS ¼

ffiffiffi
2

p
MAD [20]. This will lead to

σX u; vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cðu; vÞ

p
MAD. Assuming that (u,v)th trans-

formed coefficient X(u,v) is Laplacian distributed as [22]

f Xðu;vÞðxÞ ¼
λðu; vÞ

2
e�λðu;vÞjxj ð14Þ

where f denotes the probability density function (PDF) and

λðu; vÞ ¼
ffiffiffi
2

p

σXðu;vÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðu; vÞ
p

MAD
ð15Þ

With PDF in (14), we can calculate the distortion by
summing up the distortion at each quantization interval
as [23]

Dðu; vÞ ¼
Z Q �γQ

�ðQ � γQ Þ
x2f Xðu;vÞðxÞdxþ2 ∑

1

n ¼ 1

Z ðnþ1ÞQ � γQ

nQ � γQ

�ðx�nQ Þ2f Xðu;vÞðxÞdx ð16Þ

where Q is the quantization step size, γQ denotes the
rounding offset and γ is between (0,1), which is 1/6 for
H.264/AVC [2]. Substituting (14) into (16), we can get [23]

Dðu; vÞ ¼ λQeγλQ ð2þλQ�2γλQ Þþ2ð1�eλQ Þ
λ2ð1�eλQ Þ

ð17Þ

where λ represents the λ(u,v) in (15).
With (15) and (17), the relationship between distortion,

quantization step size and MAD is established. However,
this model is too complicated. A simpler and approximate
model needs to be developed. Our approximation is based
on two useful observations. First, we focus on the second
item in the numerator of (17) and the denominator of (17),
where (1�eλQ) can be removed and we can get that D(u,v)
has a relationship with 2/λ2. From (15) we already obtain
that λ is inversely proportional to MAD. Thus D has a
directly relationship with MAD2. Second, it has been stated
that the distortion has an approximate exponential rela-
tion with QP [12], which is D¼MSE¼(2552)/10((lQPþb)/10).
With the relationship between quantization step size and
QP in H.264/AVC [2], which is Q¼2(QP-4)/6, it can be deri-
ved that D has a linear relation with Q. Based on these
observations, we propose a simple yet accurate distortion
model as

D¼ αðMAD2þQ Þþβ ð18Þ
where α and β are model parameters. Substituting (8) into
(18), we can further get the INTER-dependent D–Q model.
Here, an approximate formulation which is easy for app-
lying is given as

D2 ¼ aðQ2þMAD_O2
2þk2D1Þþb ð19Þ

where a and b are model parameters, k is the same as in (8).
To verify the accuracy of the INTER-dependent D–Q

model (19), we tested some video sequences with variable
resolutions and QPs. The model accuracy is represented as

Accuracy¼ 1� Estimated value�Actual E
�� ��

Actual E

� �
� 100% ð20Þ



Table 2
Accuracy comparison of different D–Q models.

Format Sequence QP ρ-domain (%) Cauchy-based (%) Proposed (%) (18)

CIF Foreman 26 94.16 97.82 98.43
34 92.84 94.21 93.94

News 26 89.65 92.46 91.63
34 86.47 90.15 87.41

Mobile 30 82.58 85.31 86.46
38 89.67 92.87 94.74

Akiyo 30 88.21 89.64 90.45
38 90.16 92.69 93.86

720P City 26 87.49 88.78 88.85
34 91.63 94.65 95.57

Crew 26 86.79 87.19 89.20
34 92.81 95.87 96.26

Night 30 89.47 96.81 97.36
38 90.59 97.49 98.28

Harbour 30 91.53 96.97 97.23
38 92.74 97.38 98.54

Average 89.80 93.14 93.64
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Table 1 shows the detailed results. The average accu-
racy of the INTER-dependent D–Q model is 91.11%.

We also make the comparison of model accuracy with
other existing D–Q models, which are ρ-domain D–Q
model in [35] as D(ρ)¼σ2e-ω(1-ρ), where ω is parameter
and σ2 is the variance of transformed coefficients, and the
Cauchy-density-based D–Q model in [24] as D(Q)¼mQδ,
where m and δ are model parameters depend on the
picture content. Note that these two D–Q models do not
consider any dependency between inter frames, thus we
use (18) which is also for the independent frames to do the
comparison. The model accuracy is also represented by
(20). The experimental results are shown in Table 2. Both
Cauchy-based D–Q model and our proposed model have
better accuracy than ρ-domain D–Q model. Besides, the
computational complexity of our D–Q model is lower than
Cauchy-based D–Qmodel because of the linear relationship.
3.2. INTER-dependent R–Q model

The relationship between bit rate and quantization step
size under the independent coding assumption has been
studied in the literature. By assuming that the transformed
coefficients are Laplacian [22] or Cauchy [24] distributed,
the bit rate can be derived from calculating the entropy of
the quantized DCT coefficients. However, these R–Q models
are complicated and not suitable for rate control app-
lications. To reduce the computational complexity, many
R–Q models based on the relationship between bit rate and
coding complexities are proposed for rate control scheme
[4,11,12], where the coding complexity is usually repre-
sented by MAD or sum of absolute difference (SAD). For the
low computational complexity purpose, our investigation of
the INTER-dependent R–Q model is based on the linear
relationship between bit rate, SAD and quantization step
size, which is widely used in the state-of-the-art works
[12,14,33,34] as

R¼ a1
SAD
Q

þb1 ð21Þ

where SAD equals to M�N�MAD, a1 and b1 are the model
parameters. The SAD in (21) is obtained in the actual frame
coding process. By substituting (8) into (21), we can get the
INTER-dependent R–Q model directly as

R2 ¼ a1
SAD_O2þk

ffiffiffiffiffiffi
D1

p
þt

Q2
þb1 ð22Þ

where SAD_O is the SAD between original frames similar to
MAD_O. However, the complex term of

ffiffiffiffi
D

p
will also be

introduced. To further simplify the R–Q model, we tested
some sequences to statistically analyze (21) and the foll-
owing R–Q model.

R¼ a2
SAD_O

Q
þb2 ð23Þ

where a2 and b2 are model parameters. Fig. 2. shows the R–
Q curves of (21) and (23) for different test sequences. From
the figure, an approximate linear relationship is observed
between R and SAD_O/Q in (23), similar to that in (21). With
the R–Q model (23), the bit rate can be estimated only by
the SAD_O and quantization step size, while the distortion
effect of the reference frame can be neglected. In other
words, the complex INTER-dependent R–Q issue is con-
verted into a simple independent issue.

The implication contains two aspects. First, in high bit
rate situation (QP is small), the distortion of the reference
frame is negligible so that

ffiffiffiffiffiffi
D1

p
in (22) can be removed.

(22) degenerates to (23) which is still a linear relationship.
Second, in low bit rate situation (QP is large),

ffiffiffiffiffiffi
D1

p
in (22)

cannot be neglected. From (18), D1 has a linear relationship
with Q1 so that

ffiffiffiffiffiffi
Q1

p
is introduced into the numerator

of (22). Assuming Q1EQ2 for consistent video quality, we
can get that the increase speed of numerator in (22) is
slower than that of denominator because of the

ffiffiffiffi
Q

p
in the
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Fig. 2. R–Q curves of (21) and (23) from different sequences. (a) “Foreman”,
CIF format; (b) “Mobile”, CIF format; (c) “Night”, 720P format; and (d)
“Harbour”, 720P format.
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numerator and Q in the denominator. However, in low bit
rate, the header bits occupy a significant portion of the
total bits, and the percentage of header bits increases as
the Q becomes larger [13]. This will compensate for the
slow increase speed of

ffiffiffiffi
Q

p
and the linear relationship will

also be held as in (23).
The accuracy of INTER-dependent R–Q model is also ver-

ified using (20) and the results are listed in Table 3. The ave-
rage accuracy of the INTER-dependent R–Q model is 91.45%.

The comparison of model accuracy between different R–Q
models is also made in our work. The selected anchors include
ρ-domain R–Q model in [5] as R(ρ)¼θ(1�ρ), where θ is a
model parameter and ρ is the percentage of zero coefficients
among quantized transformed residuals, and the quadratic R–
Q model used in H.264/AVC as R(Q)¼c1MAD/Qþc2MAD/Q2,
where c1 and c2 are model parameters. Considering the ind-
ependent assumption used in these anchor R–Q models, we
use (21) to make the comparison. The model accuracy is
calculated by (20). Table 4 shows the experimental results. It
can be observed that the quadratic R–Q model has a better
accuracy than linear R–Q models (both ρ-domain model and
model (21)). However, the quadratic model has higher com-
putational complexity when used for bit allocation. If certain
frames are grouped to allocate bits for each one, solving the
summation of linear model will be much easier than the
summation of quadratic model. Thus, we adopt the linear
R–Q model for the balance of accuracy and computational
complexity.

4. Window-based rate control scheme

In this section, the proposed window-based rate control
with INTER-dependent R–D model is introduced, which con-
tains window-level bit rate constraint, complexity-based
frame bit allocation with video quality optimization and QP
decision.

4.1. Window-level bit rate constraint

In typical constant-bit-rate (CBR) rate control schemes, the
first step is to allocate bits for a group of pictures to satisfy the
bit rate constraint. GOP-based method is widely used which
allocates equal bits for each GOP, such as TM5 for MPEG2 and
JM for H.264/AVC. In Xu's work [10], as an improvement, a
“jumping” window is proposed to allocate bits for a group of
adjacent frames within the window, which means that
adjacent windows are all independent and do not have any
overlap. Both of these methods are under the assumption that
the video content characteristics are stationary in different
GOPs/windows, which is usually untrue in real life. The fluc-
tuation of the video quality will occur when the bit budgets
are not well allocated for difficult scene/frames and easy
scene/frames among different GOPs/windows (in addition,
the two schemes cannot guarantee a CBR when random
access is observed). To avoid this situation, a sliding window,
so called window-R, is proposed to allocate bits for several
adjacent frames. Window-R, with the size of L, consists of the
L�1 previously encoded frames plus the current frame, which
means that the current frame is the last frame in the window.
LetWR be the total bits of window-R, thenWR can be obtained
by (24).

WR ¼ L
RC

F
ð24Þ



Table 3
Verification of the INTER-dependent R–Q model.

Format Sequence QP Frame no. Est. R Act. R Accuracy (%)

CIF Foreman 26 10 18,946 20,352 93.09
34 25 4536 5088 89.15

News 26 34 1779 1568 86.54
34 56 2479 2704 91.68

Mobile 30 17 44,368 42,144 94.72
38 38 9367 8920 94.99

Akiyo 30 47 1364 1536 88.80
38 68 924 768 79.69

720P City 26 5 18,6542 177,120 94.68
34 18 20,875 22,904 91.14

Crew 26 13 227,631 249,304 91.31
34 29 28,974 27,232 93.60

Night 30 22 102,768 105,880 97.06
38 36 31,567 35,280 89.48

Harbour 30 37 161,687 171,080 94.51
38 56 44,585 41,592 92.80

Average – – – 91.45

Est. R: Estimated rate.
Act. R: Actual rate.

Table 4
Accuracy comparison of different R–Q models.

Format Sequence QP ρ-domain (%) Quadratic in JM (%) R–Q model (%) (21)

CIF Foreman 26 90.67 92.14 89.56
34 91.23 91.82 88.11

News 26 89.37 86.35 85.76
34 91.64 88.67 86.32

Mobile 30 85.74 90.68 88.72
38 87.35 91.34 92.48

Akiyo 30 89.36 90.35 89.61
38 88.71 91.17 91.35

720P City 26 89.37 87.02 85.67
34 90.82 95.87 89.73

Crew 26 87.92 92.07 90.64
34 90.87 92.67 92.75

Night 30 89.76 94.43 90.22
38 88.64 93.68 91.36

Harbour 30 92.01 92.64 88.71
38 90.73 91.21 90.65

Average 89.64 91.38 89.48
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where RC denotes the bit rate of CBR and F denotes the frame
rate. The bit budget for the current frame, denoted as RT, is
calculated as follows

RT ¼WR� ∑
L�2

i ¼ 0
Rr;i ð25Þ

where Rr,i represents the real bits for previously encoded ith
frame in window-R. This window is sliding frame by frame to
allocate the bits for each frame with a fixed window size of L.
By this mechanism, the bits for any consecutive L frames are
restricted asWR. It also can be demonstrated that this method
reduces the delay of the buffer, which is between the encoder
and the transmission channel [25]. Window-R itself will not
introduce any extra delay.

4.2. Frame bit allocation

Frame bit allocation needs not only to consider encoding
complexity of each frame, but also to consider the fluctua-
tion of the video quality across the entire encoded stream.
Maintaining the near consistent video quality can be formu-
lated as (26), which aims to minimize the variance of frame
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distortion for the whole sequence.

minðvarðDÞÞ;where varðDÞ ¼ 1
n

∑
n�1

i ¼ 0
ðDi�DÞ2 ð26Þ

where Di is the distortion of ith frame in the sequence and D
denotes the average distortion of the n frames in the
sequence. However, the global video characteristic is not
available in one-pass real-time encoding process. The sub-
optimal solution is adopted which is to minimize the vari-
ance of distortion for all previously encoded frames in respect
of the current frame as shown in (27),

varðDCÞ ¼
1
N

∑
N�2

i ¼ 0
ðDp;i�DN Þ2þðDC�DN Þ

2
 !

ð27Þ

where DC denotes the target distortion of current frame, Dp,i

i¼0,1,…,N�2 denotes the distortion of the previously enc-
oded frames, DN denotes the average distortion including all
encoded frames and the current frame, which can be repre-
sented by (28),

DN ¼ 1
N

∑
N�2

i ¼ 0
Dp;iþDC

 !
ð28Þ

Then substituting (28) into (27), we can get

varðDCÞ ¼
N�1

N2 D2
C�

2DS

N2 DCþ
N2þN�1

N3 DSSþ
1�2N

N3 D2
S ð29Þ

where

DS ¼ ∑
N�2

i ¼ 0
Dp;i; DSS ¼ ∑

N�2

i ¼ 0
D2
p;i ð30Þ

To minimize var(DC), let

∂varðDCÞ
∂DC

¼ 0 ð31Þ

then we get

DC ¼
DS

N�1
¼ 1
N�1

∑
N�2

i ¼ 0
Dp;i ¼DN�1 ð32Þ

From (32), we can conclude that, to minimize the variance
of distortion for all previously encoded frames and the current
encoding frame, the distortion of current frame should be
equal to the average distortion of the previously encoded
frames.

Based on this conclusion about the fluctuation of video
quality reduction, another window, so called window-D,
consisting of consecutive M frames is introduced to allo-
cate the frame bit. The first frame of window-D is the
current frame, while other M�1 frames are future succes-
sive frames to be encoded. Pre-analysis is used to get the
complexity (MAD_O at frame level after prediction) of
each frame in window-D. For INTER frames, only 16�16
motion search is used, while for INTRA frames, only few
types of prediction (such as horizontal, vertical and diag-
onal) are used. The computational complexity of the pre-
analysis is much lower compared to the complete encod-
ing process. Window-D is also sliding frame by frame,
together with window-R.

After the characteristics of theM frames in window-D are
obtained, we can use the INTER-dependent D–Q model to
derive the relationship of quantization step size between
these frames. From (32), it can be further derived that, to
minimize the variance of the distortion including the M
unknown distortions, the M unknown distortions should be
equal to each other, which is

D0 ¼D1 ¼⋯¼DM�1 ð33Þ

where Di denotes the distortion of ith frame in window-D
and D0 is for the current frame. Substituting (33) into the D–
Q model (19), we can get the relationship between the
quantization step size of ith frame Qi and D0 as

Qi ¼
1
a
�k2

� �
D0�MAD_Oi

2�b
a

ð34Þ

It should be noticed that D0 can always be obtained by
(18) in respect of Q0. If the window is the first window of
the video sequence, we can use MAD0EMAD_O0 to calcu-
late D0. Otherwise, MAD0 can be obtained by (8) since its
reference frame has already been encoded. Thus, we can
get that

D0 ¼ αðMAD2
0þQ0Þþβ ð35Þ

Substituting (35) into (34), we can get the relationship
between Qi and Q0 as

Qi ¼ θiQ0þτi ð36Þ

where θi and τi are decided by the model parameter of
(18,19) and MAD_Oi.
4.3. QP decision

With this relationship about the quantization step size
between frames in window-D, complexity-based frame bit
allocation will be introduced together with the INTER-
dependent R–Q model. First, we derive the total bit budget
of window-D, which is denoted as WD. Considering time
instance t, window-R consists of L�1 already encoded frames
and the current frame, while window-D consists of the cur-
rent frame and future M�1 frames. After M frame time (at
time instance tþM), all M frames in window-D at time t are
already contained in window-R with the window-R sliding M
times, meanwhile the firstM frames in window-R at time t are
excluded from it, which means that the bit budget for
window-D at time t should be equal to the total bits of the
first M frames in window-R also at time t. Then WD can be
represented as follows,

WD ¼ ∑
M�1

i ¼ 0
Rr;i ð37Þ

Then, we allocate frame bits using the INTER-
dependent R–Q model. By summing up the R–Q model
(23) for each frame in window-D, we can get that

WD ¼ ∑
M�1

i ¼ 0
a2
SAD_Oi

Qi
þb2

� �
ð38Þ

Substituting (36) into (38), the relationship between
WD and Q0 can be obtained. Since it is a high order equ-
ation and gets harder to resolve with the increasing of the
window size M, we use the average quantization step size
Q in window-D replacing Qi to obtain a simple yet efficient



Y. Li et al. / Signal Processing: Image Communication 29 (2014) 1046–1062 1055
solution. Then (38) becomes

Q ¼ a2 ∑
M�1

i ¼ 0
SAD_Oi=ðWD�Mb2Þ ð39Þ

From (36) and (39), the quantization step size of the
first frame in window-D is derived as

Q0 ¼ MQ� ∑
M�1

i ¼ 0
τi

 !
= ∑
M�1

i ¼ 0
θi ð40Þ

Q0 is the quantization step size of the current frame which
takes into account both the fluctuation of video quality and
the encoding complexity.

The above-mentioned quantization step size Q0 is derived
from the window-D for consistent video quality purpose,
which can be renamed as QD. Meanwhile, from window-R,
we can also obtain the quantization step size of the current
frame. Using the bit budget RT from (25), a quantization step
size for bit rate constraint can be derived from (23), which is
denoted as QT. Similar to the video quality optimization in
window-D, we also use the conclusion (32) to smooth the
video quality in window-R. Let DC denote the distortion of
the current frame, to minimize the variance of distortion in
window-R, the following equation can be get from (32)

DC ¼
1

L�1
∑
L�2

i ¼ 0
Dr;i ð41Þ

where Dr,i represents the real distortion of previously
encoded ith frame in window-R. Then the quantization step
size QC is derived from (19) as follows

QC ¼
DC�b

a
�MAD_O2

C�k2Dr;L�2 ð42Þ

Then we use the average of QT and QC to represent the
quantization step size fromwindow-R, which is denoted as
QR. The generation of QR considers the bit rate constraint
and the smooth video quality in window-R. After that, to
balance the bit rate constraint and the fluctuation of video
quality, the final quantization step size QF of current frame
can be derived as follows

QF ¼ δQRþð1�δÞQD ð43Þ
where δ denotes a weighting factor, which is set to 0.5 in
our study. The larger δ makes more accurate bit rate and
lower buffer latency, while being smaller brings more
consistent video quality.

4.4. Optimization of RD performance

To further improve the RD performance, the Lagrange
multiplier should also be adjusted under the INTER-
dependent situation. We also take two frames into con-
sideration for simplifying the problem as in Section 2. The
formulation (2) can be rewritten as (44) by introducing the
Lagrange multiplier.

min fJidg;where Jid ¼ ðD0þD1ÞþλidðR0þR1Þ ð44Þ
where λid denotes the Lagrange multiplier in the INTER-
dependent environment and Jid is the Lagrange cost func-
tion, D0 and R0 are the distortion and bit rate of the current
frame, D1 and R1 are the distortion and bit rate of the next
frame which references the current frame. It has been
proved that the solution of unconstrained problem (44) is
the solution of (2) as well [15]. Since our window-based
rate control scheme operates frame by frame, the target of
the Lagrange optimization is to find the relationship betw-
een the Lagrange multiplier λid, quantization step size Q of
current frame and correlations of adjacent frames. Con-
sidering that the R–D curve is convex, and both R and D
are differentiable everywhere, we can get the solution of
(44) by setting its derivative to zero, which is

dJid
dR0

¼ dðD0þD1Þ
dR0

þλid
dðR0þR1Þ

dR0
¼ 0 ð45Þ

From Section 3.2 we know that the bit rate of one frame
has a weak relationship with the bit rate of its reference
frame. So we can get that dR1/dR0¼0. Then (45) becomes

λid ¼ �dðD0þD1Þ
dR0

ð46Þ

Substituting the R–D model (19,23) into (46), we
can get

λid ¼ �∂ðD0þD1Þ=∂Q0

∂R0=∂Q0
¼ aþðað∂Q1=∂Q0Þþak2ð∂D0=∂Q0ÞÞ

a2dSAD_O0dQ
�2
0

ð47Þ
Here we focus on how the correlation of adjacent

frames affects the Lagrange multiplier, therefore decouple
the relationship between Q0 and Q1 derived from the con-
straint of constant video quality. The final form of λid can
be represented as

λid ¼
aþa2k2

a2dSAD_O0
dQ2

0 ð48Þ

where a and a2 are model parameters similar with (19) and
(23), k denotes the impact of the distortion of the reference
frame to the next frame as discussed in Section 2.

From (48), some implications of the relationship about
Lagrange multiplier, quantization step size and correlations
between adjacent frames can be further studied. Firstly, the
most popular and efficient RDO used in H.264 [2] derives
the Lagrange multiplier λorg from

λorg ¼ cdQ2 ð49Þ

where c is a constant and experimentally set by 0.85 [26]. This
optimization is under the assumption of independent coding
unit (either frame or MB). Our proposed λid, which is for the
INTER-dependent situation, is actually an extended form of
λorg. Both INTER-dependency (parameter k) and coding com-
plexity (SAD_O) are introduced in the determination of the
Lagrange multiplier besides the quantization step size. Then,
we can see that λid is inversely proportional to SAD_O, which
means a higher coding complexity (usually occurs at scene
change or high motion) makes a smaller λid and vice versa.
Since the Lagrange multiplier represents a tradeoff between
the distortion and bit rate, a small λid implies that the dis-
tortion should be more concerned than bit rate in the coding
process under this kind of situation. Furthermore, the para-
meter k, which represents the impact of distortion between
one frame and its reference frame, also affects the λid with a
nearly quadratic relationship. A larger k makes a larger λid,
which means the bit rate becomes more important since the
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correlation of the adjacent frames is high (maybe stable
scenes or slow motion).

After the λid is determined by (48), it can be used in the
encoding process. However, there are some practical aspects
about the implementation which is worth discussing. Firstly,
when using (48) at MB level RDO, MAD_O is adopted instead
of SAD_O to obtain the similar order of magnitude comparing
with λorg. Secondly, according to (48), λid is affected by many
parameters, which increases the probability of its fluctuation.
The fluctuation of λid should be avoided to guarantee that
neither distortion nor bit rate will be emphasized too much.
Considering the good performance of λorg in H.264, we use
λorg to limit λid in the real application. The range of λid is
(Blow�λorg, Bup�λorg), where Blow¼0.8 and Bup¼2 are
obtained experimentally. Thirdly, the parameters in (48)
are updated after each frames encoded. Five previously
encoded frames are used for estimation by averaging them
to further reduce the fluctuation.
4.5. Model parameter update

Model parameters have a significant impact on the bit
rate accuracy and the consistent video quality in rate
control during the encoding process. In our proposed rate
control scheme, the model parameters are updated frame
by frame using linear regression with the real data after
each frame encoded. The detailed updating steps are listed
as follows.

Step 1. Updating parameters k and t in (8) using
MAD_O2, real data of MAD2 and D1;
Step 2. Updating parameters a and b in (19) using Q2,
Table 5
Comparison of the bit rate accuracy among different rate control schemes.

Format Sequence Rtarget (kbps) RC in JM Xie's

Ractual Err (%) Ractual

CIF Foreman 1000 1004.26 0.43 994.35
500 498.61 0.28 507.45

News 1000 1003.95 0.40 992.86
500 504.31 0.86 504.67

Mobile 1000 1005.21 0.52 991.34
500 502.89 0.58 503.97

Akiyo 1000 1003.51 0.35 993.87
500 502.23 0.45 503.42

720P City 8000 8015.64 0.20 7962.07
5000 5020.13 0.40 4983.51

Crew 8000 8050.37 0.63 7940.91
5000 5021.62 0.43 5042.13

Night 8000 8020.32 0.25 7950.89
5000 5014.87 0.30 4972.65

Harbour 8000 8018.52 0.23 7959.97
5000 5011.64 0.23 4987.61

1080P Blue_sky 12,000 12,063.54 0.53 12,105.34
8000 7982.1 0.22 8049.87

Mobcal_ter 12,000 11,963.1 0.31 12,084.6
8000 7977.08 0.29 8029.67

Average – 0.39 –
MAD_O2, real data of D1 and D2, and k from step 1;
Step 3. Updating parameters a2 and b2 in (23) using
SAD_O, Q and real data of R;
Step 4. Updating parameters in (48) using a, a2 and k
from above steps.
It should be noticed that the real data of five recent
frames are used in the linear regression process. The final
updated new parameters are clipped to the range of
[0.5dparameterold, 2.0dparameterold] to prevent the abrupt
fluctuation.
5. Experimental results

The proposed rate control scheme is implemented on
the JM18.5 of H.264/AVC. Several video sequences are
tested using the configuration as follows: IPPP coding
structure with GOP length of 15, 2 reference frames, RDO
on and CABAC, 30f/s frame rate. The frame number of the
window-R is set to 30, while the number of window-D is
set to 10. Tested video sequences include CIF, 720P and
1080P format. To compare the performance between our
rate control scheme and the state-of-the-art works, we
also use the algorithm in JM [7], Xie's work [9] and Xu's
work [10] as benchmarks.

The rate control accuracy is represented by the bit rate
mismatch between the target bit rate Rtarget and the actual
bit rate Ractual as follows.

Err¼ jRtarget�Ractualj
Rtarget

� 100% ð50Þ
Xu's Proposed

Err (%) Ractual Err (%) Ractual Err (%)

0.56 997.24 0.28 1002.04 0.20
1.49 498.28 0.34 499.38 0.12
0.71 998.34 0.17 998.97 0.10
0.93 501.48 0.30 501.21 0.24
0.87 998.67 0.13 997.86 0.21
0.79 498.65 0.27 500.83 0.17
0.61 997.87 0.21 996.86 0.31
0.68 498.65 0.27 500.91 0.18

0.47 7975.61 0.30 7976.32 0.30
0.33 5010.34 0.21 5013.97 0.28
0.74 8031.84 0.40 7970.08 0.37
0.84 4986.38 0.27 5016.97 0.34
0.61 7986.54 0.17 7989.65 0.13
0.55 5014.36 0.29 5010.37 0.21
0.50 7984.64 0.19 8012.67 0.16
0.25 5013.24 0.26 4987.34 0.25

0.88 11,952.48 0.40 12,031.64 0.26
0.62 7986.34 0.17 7978.35 0.27

2 0.71 12,022.21 0.19 11,984.67 0.13
0.37 7996.34 0.05 8015.31 0.19

0.68 – 0.24 – 0.22
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Fig. 3. Accuracy of INTER-dependent D–Q model (19) during encoding
process. (a) “Foreman”; (b)“Akiyo”. Act. D: Actual distortion after each
frame encoded. Est. D: Estimated distortion via (19) before encoding.
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Fig. 4. Comparison of R–D performance among different rate control schemes.
(a) “Foreman”; (b)“News”; (c) “Mobile”; (d) “Akiyo”; (e) “Night”; and (f) “Harbour”.
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The result of the bit rate accuracy can be seen in
Table 5. In Xie's work, the target frame bit is derived by
meeting the consistent video quality and the buffer con-
straint, where the bit rate constraint of GOP or “window”

structure is not considered. The assumption of this scheme
is that meeting the buffer constraint will automatically
guarantee the convergence of the actual bit rate to the
target bit rate, as long as the buffer size is negligible with
respect to the total size of the compressed bit stream.
However, this frame bit allocation scheme is not accurate
enough and the bit rate accuracy is inferior to other three
methods as shown in Table 5. Both Xu's work and our
proposed scheme achieve better bit rate accuracy than the
algorithm in JM by using more reasonable encoding
complexity obtained from the pre-analysis, while the latter
only uses predicted encoding complexity instead, which
has certain mismatch at high motion scenes, e.g. “Fore-
man” and “Night”.

The accuracy of proposed INTER-dependent D–Q model
(19) during encoding process with window-based rate
control is also tested. The detailed results are shown in
Fig. 3. The model parameters are initialized experimentally
and updated frame by frame after encoding using the
method represented in Section 4.5. From Fig. 3 we can see
that the estimated distortions via model (19) before enc-
oding are highly matched with the actual distortions after
encoding. With the updating of model parameter during
encoding process, the proposed model can represent the
relationship between distortion and quantization step size
from various video contents either the high motion scenes
(Fig. 3(a) “Foreman”) or smooth scenes (Fig. 3(b) “Akiyo”).

The performance of the rate control scheme is repre-
sented by R–D performance. From Fig. 4, we can see that
both our scheme and Xu's work has higher R–D performance
than other two algorithms for that the content complexity is
considered in frame bit allocation, meanwhile certain char-
acteristics of further frames are also involved to make up a
group for allocating bit quota to each frame. It should be
pointed out that the encoding complexity used in these two
methods, either MAD in our work or the percentage of zeros
among the quantized coefficients (ρ-domain) in Xu's work, is
obtained from the original video frames. This encoding
complexity has some mismatch with the real complexity
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which is generated in the encoding process because of the
distortion caused by the quantization. In other words, this
complexity is INTER-independent. By further considering the
INTER-dependency among frames and using the INTER-
dependent R–D model, the R–D performance of our work
is better than Xu's work in “Foreman”, “News”, “Night” and
“Harbour” sequences, which is up to 0.16 dB in “Foreman”
sequence as shown in Table 6. The optimization of Lagrange
multiplier represented in Section 4.4 also leads to a gain of
R–D performance about 0.05�0.11dB. The detailed data is
shown in Table 7. In Xie's work, only MAD of current frame is
used for allocating frame bits. Its R–D performance is not as
good as the just-mentioned two methods. The algorithm in
JM allocates frame bits only according to the frame type
within a GOP, which makes I frames get inappropriate bits
budgets. For example, in “Foreman” sequence (Fig. 5(a))
Table 6
Comparison of the PSNR and the variance of PSNR among different rate control

Format Sequence Rtarget (kbps) RC in JM

PSNR VPSNR

CIF Foreman 1000 39.78 1.56
500 36.93 2.23

News 1000 45.14 1.67
500 41.86 6.05

Mobile 1000 30.78 7.08
500 27.74 0.56

Akiyo 1000 48.14 2.79
500 45.37 7.97

720P City 8000 38.63 4.79
5000 37.38 2.73

Crew 8000 41.80 3.83
5000 40.75 2.48

Night 8000 38.59 2.54
5000 36.93 1.33

Harbour 8000 37.07 1.75
5000 35.26 0.71

1080P Blue_sky 12,000 43.23 4.22
8000 42.23 2.95

Mobcal_ter 12,000 35.69 1.97
8000 34.71 1.62

Average 38.90 3.04

Table 7
Comparison of PSNR between proposed rate control with and without λ optimi

Format Sequence Rtarget (kbps) Proposed RC F

W/O λ W λ

CIF Foreman 1000 39.85 39.94 7
500 37.15 37.22

News 1000 45.19 45.24
500 42.22 42.30

Mobile 1000 31.03 31.13
500 27.96 28.01

Akiyo 1000 48.90 48.97
500 46.02 46.10

Average 39.79 39.86 A
I frames have less PSNR than other frames for the insufficient
bit budgets, while in “Mobile” sequence (Fig. 5(b)), the PSNR
of I frames are much higher than other frames for the extra
bit budgets. This scheme causes the R–D performance not
good enough.

The fluctuation of the video quality is measured by the
variance of the PSNR (VPSNR). The detailed experimental
results are listed in Table 6. Our proposed rate control scheme
achieves the least VPSNR mainly because of the INTER-depe-
ndent R–D model and the mechanism of window-D for video
quality optimization. Among the three benchmark methods,
Xu's work gives the best performance of VPSNR since the
window model is used to control the QP variation. How-
ever, the variance of PSNR is not always coincident with the
variance of QP. Therefore, our algorithm which is toward
optimizing the fluctuation of PSNR directly has better
schemes.

Xie's Xu's Proposed

PSNR VPSNR PSNR VPSNR PSNR VPSNR

39.87 0.46 39.92 0.36 39.94 0.21
37.09 0.48 37.06 0.31 37.22 0.23
45.21 0.75 45.13 0.29 45.24 0.21
42.03 0.48 42.19 0.59 42.30 0.11
31.12 1.05 31.07 1.13 31.13 0.27
28.17 0.39 27.96 0.39 28.01 0.20
48.67 0.38 48.96 0.21 48.97 0.11
45.80 0.38 46.20 0.24 46.10 0.21

38.71 0.76 38.84 0.49 38.96 0.25
37.52 0.57 37.64 0.42 37.72 0.21
41.93 0.47 42.08 0.36 42.12 0.19
40.97 0.75 41.02 0.39 41.13 0.23
38.64 0.62 38.69 0.49 38.77 0.11
37.10 0.49 37.08 0.34 37.18 0.12
37.25 0.34 37.40 0.40 37.44 0.16
35.55 0.34 35.52 0.22 35.61 0.16
43.31 1.24 43.42 0.76 43.51 0.35
42.36 0.97 42.41 0.53 42.49 0.32
35.87 0.53 35.96 0.29 36.05 0.20
34.85 0.49 34.87 0.16 34.92 0.14

39.11 0.60 39.17 0.42 39.24 0.20

zation.

ormat Sequence Rtarget (kbps) Proposed RC

W/O λ W λ

20P City 8000 38.87 38.96
5000 37.64 37.72

Crew 8000 42.01 42.12
5000 41.04 41.13

Night 8000 38.69 38.77
5000 37.10 37.18

Harbour 8000 37.34 37.44
5000 35.53 35.61

verage 38.53 38.62
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Fig. 5. Comparison of video quality fluctuation among different rate control schemes. (a) “Foreman”, 0–80 frames; (b) “News”, 0–80 frames; (c) “Mobile”,
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Table 8
Comparison of initial QP and average QP between different rate control schemes.

Format Sequence Rtarget (kbps) RC in JM Xie's Xu's Proposed

IQP AQP IQP AQP IQP AQP IQP AQP

CIF Foreman 500 35 27.75 27 28.54 26 27.36 28 27.77
News 500 35 23.82 23 23.93 23 23.71 24 23.68
Mobile 1000 25 34.87 29 32.57 32 31.68 33 32.73
Akiyo 500 35 19.55 21 22.13 20 21.37 22 22.05

720P Night 5000 35 28.72 26 27.55 25 26.35 27 27.24
Harbour 8000 35 28.73 27 28.68 27 28.51 29 28.43

IQP: Initial QP for the first frame.
AQP: Average QP for the whole video sequence.
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Fig. 6. Comparison of CBR for random access among different rate
control schemes. (a) “Foreman”, 0–80 frames; (b) “News”, 0–80 frames;
(c) “Mobile”, 0–80 frames; and (d) “Akiyo”, 0–80 frames.
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performance than Xu's algorithm especially in the complex
scenarios, e.g. “Mobile”, “Night” and “Harbour” sequences. The
PSNR of each frame can be seen in Fig. 5. Moreover, the
mechanism of “jumping” window in Xu's work cannot well
handle the fluctuation of video quality among the boundary of
two adjacent windows and thus violating the CBR rule, while
our sliding window performs better in this situation and
guarantee a CBR characteristics across the entire stream for
any given observation point (frame). Xie's method uses MAD
to track the nonstationary characteristics of video sequence to
allocate frame bits, whose result of VPSNR is better than the
algorithm in JM which has no optimization for the fluctuation
of video quality.

Besides, the initial QP for the first frame is also quite
important. It has been claimed that the best initial QP which
provides the best consistent video quality (smallest standard
deviation of all PSNRs for whole video sequence) is very close
to the average QP for the whole video sequence [36]. We can
use this conclusion as the criterion to judge the performance
of the initial QP selection. The detailed results are listed in
Table 8. The rate control algorithm in JM chooses the initial QP
just according to the bpp (bits per pixel), without the
consideration of the distortion. It causes the improper video
quality for the first frame compared with the following
frames, e.g. the PSNR of first frame in “Mobile” sequence
(Fig. 5(c)) is much higher than other frames, while other
sequences show opposite results (Fig. 5(a)–(f)). The initial QP
of JM is also far from the average QP from Table 8. In Xie's
work, the bit allocation for the first frame is set as 40% of the
available encoder buffer to adapt to different bit rates or frame
rates. Without the distortion optimization, this scheme still
could not reach the best initial QP. The result is better than JM,
but not as good as Xu's work and our work. Both Xu's work
and our work take the first frame and several consecutive
frames as a group to allocate frame bits according to the R–Q
model, while encoding complexities from pre-analysis are also
used. The difference is our proposed scheme use D–Q model
to track the video quality, while Xu's work use ΔQ to make
the PSNR smooth. Table 8 shows that our work can get the
better initial QP than Xu's work.

We also test CBR for random access and the results are
shown in Fig. 6. Here random access is defined as the sum of
bits for any consecutive frames, which is aimed to simulate
the real application environment of the transmission channel.
The number of consecutive frames is set to 30 since the frame
rate is 30 f/s. Both Xu's work and our proposed scheme are
tested for the using of windowmechanism. JM is also listed as
benchmark. The results in Fig. 6 demonstrate that our prop-
osed scheme has less fluctuation of CBR for random access
than Xu's work. This is because we use the sliding window to
keep the bit rate constraint rather than the “jumping”window



0
50

100
150
200
250

0 20 40 60 80 100

B
uf

fe
r

Frame number

JM Xu
Proposed 80% fullness

Foreman 500k

0
50

100
150
200
250

0 20 40 60 80 100

B
uf

fe
r

Frame number

JM Xu
Proposed 80% fullness

News 500k

0

200

400

600

800

0 20 40 60 80 100

B
uf

fe
r

Frame number

JM Xu
Proposed 80% fullness

Mobile 1000k

0
50

100
150
200
250

0 20 40 60 80 100

B
uf

fe
r

Frame number

JM Xu
Proposed 80% fullness

Akiyo 500k

Fig. 7. Encoder buffer status among different rate control schemes, the
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in Xu's work. Both of these two methods have better
performance than JM for random access, while there has no
consideration for random access in JM. Besides, both bit rate of
Xu's work and our scheme have the similar envelopes, the
reason is that both of these two methods adopt the comp-
lexity-based frame bit allocation.

The encoder buffer status of different rate control
schemes during encoding process are shown in Fig. 7. The
buffer size is set as 0.5 s bit rate. The dash line for 80%
buffer size represents a threshold of potential frame drop-
ping, which means that the next frame will be dropped if
the current buffer fullness exceeds this threshold. From
Fig. 7, we can see that, the buffer occupations of JM rate
control are smooth in most cases due to its frame bit
allocation according to frame type. It also means that JM
rate control does not use the tolerance of encoder buffer well
to assign frame bits according to the encoding complexity
among various scenes. Both Xu's work and our work take full
advantage of the flexibility provided by the encoder buffer,
which is allocating more bits to the more complicated scenes
to maintain the consistent video quality. The situation of
exceeding 80% buffer size also occurs in the “Mobile”
sequence of 1000 kbps for JM rate control (Fig. 7(c)). That
is because the frame bit allocation does not consider the
encoding complexity. On the contrary, Xu's work and our
work do not have this situation. It should be noticed that the
encoder buffer size also has an effect on the smoothness of
video quality. A larger buffer can tolerate more fluctuation of
bit rate, thus smoother video quality can be achieved and
vice versa. At this point, our proposed rate control scheme is
scalable to smooth video quality for different applications.

6. Future work

In this paper, we focus on the frame-level bit allocation
and QP decision to reach the bit rate accuracy and consistent
video quality. The derivation of INTER-dependent R–Dmodel
is also based on the statistical characteristics at frame level.
However, considering the different characteristics at MB
level, how to extend the INTER-dependent R–D model to
MB level is still need to be studied. Besides, most recently
works mainly concern about the R–Q model at MB level for
accurate bit rate [5,12,14], however the bit allocation con-
sidering D–Q model for consistent video quality at MB level
is also need to be further discussed.

For HEVC, our proposed window-based rate control
scheme with the consideration of consistent video quality
can be used directly since the structure of frame level and
GOP level at HEVC does not change much than H.264/AVC.
However, the INTER-dependent R–D model needs to be
adjusted according to the new quadtree-based coding unit
(CU) structure. Resent rate control works on HEVC [31,32]
have found that the PDF of transform coefficient highly
depends on the depths of CU, which will affect the deriva-
tion of R–D model. Our future work will also target at the
INTER-dependent R–D model and rate control on HEVC.

7. Conclusion

In this paper, we first introduce the concept of INTER-
dependency and analyze the INTER-dependent problem
and establish the relationship between the residual of one
frame and the distortion of its reference frame. Based on
this analysis, we derive the INTER-dependent D–Q model
and R–Q model via the study of the spatial-domain residual
and the transform-domain residual. Then a window-based
rate control scheme is proposed with the complexity-based
frame bit allocation and video quality optimization. Further-
more, the optimization of Lagrange multiplier is also dis-
cussed under the INTER-dependent situation. Experimental
results demonstrate that the proposed window-based rate
control scheme with INTER-dependent R–D model can
achieve accurate target bit rate and improved PSNR perfor-
mance, meanwhile the variation of PSNR is the smallest
compared with other three benchmark algorithms. This
one-pass rate control scheme is highly practical for the real-
time video coding applications.
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