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Abstract

Although significant progress has been made in SLAM
and object detection in recent years, there are still a series
of challenges for both tasks, e.g., SLAM in dynamic environ-
ments and detecting objects in complex environments. To
address these challenges, we present a novel robotic vision
system, which integrates SLAM with a deep neural network-
based object detector to make the two functions mutually
beneficial. The proposed system facilitates a robot to ac-
complish tasks reliably and efficiently in an unknown and
dynamic environment. Experimental results show that com-
pare to the state-of-the-art robotic vision systems, the pro-
posed system has three advantages: i) it greatly improves
the accuracy and robustness of SLAM in dynamic environ-
ments by removing unreliable features from moving objects
leveraging the object detector, ii) it builds an instance-level
semantic map of the environment in an online fashion using
the synergy of the two functions for further semantic appli-
cations; and iii) it improves the object detector so that it can
detect/recognize objects effectively under more challenging
conditions such as unusual viewpoints, poor lighting condi-
tion, and motion blur, by leveraging the object map.

1. Introduction

In recent years, tremendous progress has been made in

areas of simultaneous localization and mapping (SLAM)

and image-based object detection. As an extensively in-

vestigated topic, many visual-based SLAM systems have

been proposed, whose localization precision down to a few

centimeters and could build a large-scale 3D map in real

time [5, 12, 18]. With the recent advancement of deep

convolutional neural networks (CNN), the performance of

image-based object detection [14, 24, 26] has been boosted.

However, the performance and application of both func-

tions, while running separately, are limited by a series of

thorny problems. For instance, the SLAM systems are usu-

ally prone to failure in dynamic environments, and the de-

tectors can be sensitive to changing viewpoints [22], occlu-

sion, etc. Nonetheless, these two tasks can be complemen-

tary: SLAM aims to estimate the ego-motion and geometry

of the environment from a video; object detectors represent

the semantic information of an image by placing a bound-

ing box with a pre-defined object class around the instance.

Intuitively, a question is raised that is it possible to integrate

SLAM with object detector in a system to share the geom-

etry information and the semantic understanding with each

other to make them mutually beneficial?

Inspired by the recent success of combing SLAM with

object detection [2, 3, 7, 21, 32], we propose a novel frame-

work, Detect-SLAM, which integrates visual SLAM with a

deep neural network (DNN) based object detector to make

them mutually beneficial.

In Detect-SLAM, we utilize the semantic information to

eliminate the negative effects caused by moving objects in

the SLAM pipeline. To overcome the delay of semantic

information mainly caused by communication and detec-

tion, we propose a method that propagates moving proba-

bility of each keypoint in real-time. In the SLAM pipeline,

we also build an object map, a semantic map composed

of all detected static objects in the mapping thread. Such

object map can be regarded as a database containing the

knowledge about object class and location. Using this map,

a robot can execute commands such as ‘deliver the book

from the nearest desk to me’ or answer queries about the

semantics of the scenario, like ‘How many monitors do we

have in the room?’. To enhance the object detector to work

under more challenging conditions such as unusual view-

points, poor lighting conditions, and severe occlusion, we

utilize the object map as prior knowledge for the detector

and project the object map into 2D image plane for spatio-

temporal consistent object region proposal. Such SLAM

enhanced detector can be used to mine hard examples in
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Figure 1. The framework of Detect-SLAM. It is composed of moving object removal, object detection, SLAM-enhanced detector and

mapping objects. The input data are RGB-D images. Moving object removal contains the tracking and local mapping thread of ORB-

SLAM. The deep detector (SSD) is running on the GPU, the others are running on the CPU.

those challenging conditions, and these hard examples can

be subsequently used as training data to improve/fine-tune

the original deep detector.

To the best of our knowledge, this is the first work that

couples SLAM and the DNN-based detector to simultane-

ously accomplish three vision tasks: improving the robust-

ness of SLAM in dynamic environments, building a seman-

tic map, and boost the performance of object detection, as

illustrated in Fig. 1.

We employ the ORB-SLAM [18] and Single Shot Multi-

box Object Detector(SSD) [14] in Detect-SLAM. The

ROS [23] interface is utilized for communication between

system components, which makes it straightforward to dis-

tribute the Detect-SLAM across mobile devices and GPU

devices in real-time.

In the rest of the paper, we will discuss related work in

Section 2, present the technical details of our system in Sec-

tion 3, demonstrate our system with experimental result in

Section 4 and end with conclusions in Section 5.

2. Related Work
Simultaneous Localization and Mapping: For most

previous SLAM systems [36, 11, 34], the core assumption

is that the environment is largely static and the camera is

the only moving object in the scene. However these ideally

cases are hardly met indoors or outdoors. [9, 37] attempted

to treat those moving objects, mostly people, as outliers and

remove them from the environment representations. Some

other SLAM systems like [13, 16, 17, 35] use the frame-

work that combines a SLAM system with object tracking

and detection to improve positioning accuracy in dynamic

environments.

Such frameworks combining SLAM and detection are

still used in recent years. The works most closely re-

lated to ours are Paschalis et al. [20] and Sun et al. [33].

Both works detect moving objects frame by frame without

building models for moving object like our system, where

Paschalis et al. [20] focus on 3D point cloud but Sun et
al. [33] on 2D patches. They both include segmentation and

get moving objects’ mask additionally, but our system omits

these operations and filter features belonging to moving ob-

jects by updating the moving probability of features, which

means our method is based on feature-level representation

and could be more robust and efficient.

Deep Neural Network Based Object Detection: With

the advancement of deep-neural-network [8, 14, 24, 25, 26],

the accuracy of image-based object detection has been

boosted [1, 10]. Faster R-CNN [26] is one of the most accu-

rate deep neural networks with more than 80% mAP in the

PASCAL VOC dataset, depending on region proposal algo-

rithms [6]. Redmon et al.designed an unified architecture

for YOLO [24] and its improved model YOLOv2 [25], mak-

ing YOLOv2 one of the fastest networks that could process

images at 91 FPS with 69% mAP or 40 FPS with 78.6%

1002



mAP on PASCAL VOC dataset [6]. Single Shot Multibox

Object Detector (SSD) [14] is the first DNN-based real-

time object detector that achieves above 70% mAP in PAS-

CAL VOC dataset [6] with 40 FPS in TitanX. This detector

balances speed and accuracy well, hence we deploy SSD as

the detector module in our Detect-SLAM.

However, it is hard to reach real-time performance while

communicating with SLAM or deploying it in embedded

system. To overcome the latency between the SLAM

and the detector, we avoid detecting frame by frame and

consider the spatio-temporally consistency of successive

frames.

Combining SLAM and Object Detection: Previous

works [3, 21, 29] have combined SLAM or SfM technology

with object detection to solve issues in SLAM and recogni-

tion. Pillai et al. [21] designed a SLAM-supported object

recognition system earning outperformance. McCormac et
al. [15] combine SLAM with CNN to produce a seman-

tic 3D map efficiently. Bowman et al. [2] integrate dis-

crete recognition and data association problems with con-

tinuous SLAM optimization into an optimization problem,

which result in more accurate trajectories. Duncan et al. [7]

created a monocular-based method with object detector to

solve the scale ambiguity and drift in conventional monoc-

ular SLAM system. Sucar et al. [32] combine a kalman

filtering-based monocular SLAM with semantic informa-

tion provided by detector to estimate the global scale of the

3D models in a Bayesian scheme.

However, all of these combining systems are designed to

solve single problems. To do more tasks in the combining

system, Chhaya et al. [3] combine SLAM with shape pri-

ors to detect and reconstruct vehicles from multiple view,

improving 3D shape estimation and robust camera trajec-

tory estimation in the pipeline. Unfortunately, this pipeline

has to run off-line. By contrast, our Detect-SLAM frame-

work runs in real-time, accomplishing three vision tasks:

improving the robustness of SLAM in dynamic environ-

ments, building a semantic map and boosting the perfor-

mance of object detection simultaneously.

3. Detect-SLAM
In this section, we present the technical details about

Detect-SLAM. In Detect-SLAM, we incorporate a DNN-

based object detector into the SLAM system, as illustrated

in Fig. 1. Detect-SLAM is built on ORB-SLAM2 [18],

which has three main parallel threads: Tracking, Local

Mapping, and Loop Closing. Compared to ORB-SLAM2,

the Detect-SLAM includes three new processes:
• Moving objects removal, filtering out features that are

associated with moving objects.

• Object Mapping, reconstructing the static objects that

are detected in the keyframes. The object map is com-

posed of dense point clouds assigned with object ID.

• SLAM-enhanced Detector, exploiting the object map

as prior knowledge to improve detection performance

in challenging environments.

3.1. Moving Objects Removal

For moving object removal, we modify the Tracking and

Local Mapping thread in ORB-SLAM2 to eliminate the

negative impact of moving objects, shown in Fig. 3. Note

that the moving objects in this process belong to movable

categories which are likely to move currently or in times to

come, such as people, dog, cat, and car. For instance, once

a person is detected, no matter walking or standing, we re-

gard it as a potentially moving object and remove the fea-

tures belonging to the region in the image where the person

was detected.

One key issue concerning detection-enhanced SLAM is

the efficiency of object detection. The object detection pro-

cess should be fast enough to enable per-frame detection in

real-time, so that the unreliable regions can be removed dur-

ing the per-frame tracking process of the SLAM. However,

naively applying the detector in each frame is not a viable

option, as even the state-of-the-art SSD [14] method runs

only at about 3 FPS in our preliminary experiments.

In this section, we propose two strategies to effectively

overcome this issue: 1) detect moving objects in keyframes

only and then update the moving probability of points in

the local map to accelerate the tracking thread; 2) propagate

the moving probability by feature matching and matching

points expansion in the tracking thread to remove the fea-

tures extracted on moving objects efficiently before camera

pose estimation.

We call the probability of a feature point belonging to

a moving object as moving probability. Shown as Fig.2,

We distinguish these keypoints into four states according

to the moving probability. Both high-confidence points are

used in matching point expansion to propagate the moving

probability to those neighbouring unmatched points. After

every point gets the moving probability via propagating, we

remove all of dynamic points and using RANSAC to filter

other outliers for the pose estimation.

Figure 2. Four states of keypoints distinguished by the moving

probability.

Updating Moving Probability. Considering the delay

of detection and the spatio-temporal consistency of succes-

sive frames, we only select the color images of keyframes

to detect, shown as in Fig. 3. The rule of keyframe selec-

tion is the same as ORB-SLAM2. Then we pre-process

and forward-propagate the color image through the deep
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Figure 3. The process of moving object removal.

neural network, meanwhile propagating moving probability

frame-by-frame in the tracking thread. Once the detection

result is obtained, we insert the keyframe into the local map

and update the moving probability in the local map. We up-

date the probability of 3D points that has found matching

keypoints in the keyframe according to the following equa-

tion:

Pt(X
i) = (1− α)Pt−1(X

i) + αSt(x
i), (1)

where Pt−1(X
i) is the moving probability of 3D point Xi

after the updating in the last keyframe It−1. If it is a new

point, we set Pt−1(X
i) = Pinit = 0.5. The state of

matched keypoint xi in keyframe It is St(x
i). It depends

on the detected region. If the keypoint xi is in the bounding

box of moving objects, we treat it as a determinate dynamic

point, whose state value St(x
i) = 1. The others are treated

as determinate static points, with state value St(x
i) = 0. α

is an impact factor to smooth the immediate detection result.

A higher value means more sensitivity to the immediate de-

tection result and the lower value means that more history

results from multi-view are considered. In our experiment,

we set α = 0.3 in the reason that we observed the detector

sometimes provide false result in complex environments.

Moving Probability Propagation. In the tracking

thread, we estimate the moving probability of every key-

point frame by frame via two operations: 1) feature match-

ing and 2) matching point expansion. We call it as ‘Mov-
ing Probability Propagation’, for the moving probability in

the current frame is propagated from keypoints in the last

frame, points in local map without any knowledge of detec-

tion. Fig. 4 shows the details of moving probability propa-

gation in symbol.

Feature matching. We use the same features as ORB-

SLAM2, for feature matching to take advantage the robust-

ness and efficiency of the ORB features [28]. During fea-

ture matching, when a keypoint xi
t is matched to another

keypoint xi
t−1 in the last frame, the moving probability

Pt(x
i
t−1) is propogated.

Apart from this, once a key point is matched to any 3D

Figure 4. The process of propagating the moving probability

frame-by-frame. The size of the points reflects the confidence.

point Xi
t in the local map, it is also assigned a moving prob-

ability which is equal to the value of matched point P (Xi
t).

Note that if a point finds matched point not only in the last

frame but also in the local map, the probability of local

map should be prioritized. We assign an initial probabil-

ity Pinit to the other unmatched points in this frame. The

initial probability P(init) is set to 0.5, as we have no prior

assumption about which state these points belong to.

We summarize the operation that use feature matching to

propagate the moving probability in an equation as below:

P (xi
t) =

⎧⎨
⎩

P (xi
t−1), if ‖φ(xi

t)− φ(xi
t−1)‖ < θ

P (Xi
t), if ‖φ(xi

t)− φ(Xi
t)‖ < θ

Pinit, otherwise
(2)

where φ(xi
t), φ(x

i
t−1), φ(X

i
t) represent the ORB-feature of

point xi
t, x

i
t−1 and Xi

t respectively. θ is a threshold for

feature matching.

Matching point expansion. This operation is designed

to expand the moving probability from the high-confidence

points to other neighboring points that do not correspond

to any matched points in the feature matching operation.

It relies on the assumption that the state of points in the

neighborhood is consistent in most of case.

So after propagating via feature matching, we select

high-confidence points χt, including static and dynamic

ones. Then we expand the impact region of the high-

confidence points to a round region with radius r and look

for unmatched points within the region. The probability of

the found points is updated following the rule as below:

P (xi
t) = Pinit +

∑

xj
t∈χt

λ(d)(P (xj
t )− Pinit), (3)

Where Pinit is the initial moving probability. If a point is

impacted by more than one high-confidence point, we will

sum all the impact of these neighboring high-confidence

points. We formulate the impact of a high-confidence point

considering the difference of moving probability Pm(xj
t )−

Pinit and a distance factor λ(d). If the point is in the impact

region of a high-confidence point(d � r), the distance fac-

tor λ(d) = Ce−d/r, C is a constant value, otherwise(d >
r), λ(d) = 0.
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3.2. Mapping Objects

Reconstructing the environment in a map is the core abil-

ity of SLAM system, but most of the maps are built in pixel

or low-level features without semantics. Recently, with the

advancement of object detection, creating semantic map

supported by object detector becomes more promising.

In this process, we reconstruct an object map containing

all of the detected objects. Every 3D point in the map is

assigned an object ID for recognition. The pipeline of this

process is shown in Fig. 1.

The original ORB-SLAM only builds sparse map aim-

ing to improve localization accuracy. As for semantic map,

such sparse map is not enough for further applications. So

we build on top of existing RGB-D-based ORB-SLAM and

insert a dense point clouds mapper, similar to some other

RGB-D based dense mapping solution [4].

Predicting Region ID. At the beginning of mapping pro-

cess, we predict the object ID of every detected region in

image space. The purpose of the region ID prediction is

to find corresponding object ID in the object map or gener-

ate a new ID if it is detected for the first time. The object

ID prediction is based on the geometry assumption that the

area of projection and detection should overlap if both areas

belong to the same object. So we compute the intersection

over union(IOU) between two areas to represent the level of

overlapping:

IoU(R1, R2) =
R1 ∩R2

R1 ∪R2
(4)

where R1 is the area from detection, R2 is the area from the

object map projection.

When we find that two areas are overlapping(IOU >
0.5), we estimate the depth likelihood between them:

P (R1|R2) = IoU(R1R2) ∗ e−Err, (5)

where error(depth) is the MSE between the observed and

the projected depth in the overlapping region.

Err =
1

N

∑
(u,v)∈R1∩R2

(Dp(u, v) − Do(u, v))
2, (6)

where Do(u, v) and Dp(u, v) represent the depth of ob-

served and projected in the pixel (u, v). N is the number of

point clouds projected into the overlapping region R1 ∩R2.

If the depth likelihood is higher than the threshold θd,

we assign the object ID of projected region to the detected

region. On the contrary, we assign a new object ID to the

region.

Cutting Background. Even though the detector pro-

vides the bounding box of object in the image, it is a rectan-

gle box containing some unexpected background for build-

ing a clean object map. Therefore, we cut the background

(a) Get object region (b) Cut background

Figure 5. The left is the raw color image with bounding box, and

the right is the result of segmentation by Grab-Cut.

utilizing Grab − Cut [27] algorithm, serving points pro-

jected from previous reconstructed object in the overlapping

area as seed of foreground and points outside of the bound-

ing box as background. Then we get a segment mask of the

target object from the bounding box, after three iterations.

Reconstruction. Leveraging the object mask, we cre-

ate object point cloud assigned with object ID and filter the

noise point in 3D space. Finally, we transform the object

point cloud into the world coordinate with the camera pose

and insert them to the object map.

3.3. SLAM-enhanced Detector

Semantic map can be used not only for optimizing tra-

jectory estimation [2, 15] but also improving object detec-

tor [21]. Contrary to classical per-frame object detection

methodologies, robots observe the same instance of objects

in its environment several times and from disparate view-

points. It is natural to improve object detector via provid-

ing geometry information from the reconstructed 3D con-

text to the object detection, which ensures the object de-

tector working with spatially consistency. When the object

detector is supported by the reconstructed object map and

precisely estimated camera pose, it is enhanced.

Region Proposal. In the SLAM-enhanced object de-

tector, the region of each object is proposed by projecting

the 3D object map M into 2D plane with the current cam-

era pose estimated by tracking. Using the projected image,

we propose candidate regions that are likely to contain ob-

jects by clustering the pixels with the same object ID. As

the point cloud in object map is labeled by object ID while

building object map, every correspond pixel in the project-

ing image get the same object ID naturally. In this case, the

object ID of every region can be recognized directly.

Region Filter. But there are still unexpected regions pro-

posed, such as some small region caused by noisy point

cloud or regions that contain occluded objects. So we cull

out small candidates whose region size is less than 20× 20
px and estimate likelihood between the observed depth and

projected depth to detect the occluding candidates, in the re-

gion checker stage. The likelihood of the candidate in depth

is similar to the region likelihood function (Equation.5), ex-
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(a) The original SSD (b) The SLAM-enhanced detector (c) The object map of the scenario

Figure 6. Image (a) and (b) show the comparison of detection results from the original SSD and our SLAM-enhanced detector. The object

map (c) of the scenario including four monitors and three chairs. The SLAM-enhanced detector detects the chairs successfully when it is

only observed partially.

cept that IoU = 1 in constant.

Hard Example Mining. Previous works [30] have

demonstrate that selecting hard examples to train or fine-

tune deep neural network can yield significant boosts in de-

tection performance. To make the deep detector perform

better without SLAM, we apply the SLAM-enhanced ob-

ject detector to mine hard examples, which augments the

training data. Then we fine-tune the original SSD network

to boost detection performance in similar scenes. The in-

stances of the hard examples are shown in Fig. 7.

Figure 7. Hard examples mined by the SLAM-enhanced detec-
tor. Hard examples contain monitors observed from one side and

potted plants observed with motion blur.

4. Experiment

In our system, we implement the DNN-based detector in

python, the other processes in C++. We use a pretrained

Inception v3 based SSD model1 as our deep detector and

the RGB-D based ORB-SLAM2 as our basic SLAM sys-

tem. The communication between SSD and SLAM is im-

plemented with the Robot Operating System [23]. All ex-

periments are conducted in real-time.

We have evaluated the two main functions of our sys-

tem, moving object removal and SLAM-enhanced detector,

respectively. The object map is not evaluated for the im-

perfect of dataset. But the boosted performance of SLAM-

enhanced detector can be regard as a positive proof of

the object map. Our system runs in real-time on an In-

tel Core i7-4700 laptop with 16GB RAM and Nvidia GPU

GTX960M. The GPU is only used for the deep detector.

1https://github.com/zhreshold/mxnet-ssd

4.1. Robust SLAM in Dynamic Environments

In this section, we demonstrate our detector-based mov-

ing object removal approach on TUM RGB-D datasets.

Sturm et al. [31] collected several video sequences with

a RGB-D Kinect camera to evaluate RGB-D SLAM sys-

tems. They also provide the camera trajectories, obtained

from a high-accuracy motion capture system. There are var-

ious patterns of camera ego-motion, such as moving along

the x-y-z axes, rotating along the roll-pitch-yaw axes, and

following a halfsphere-like trajectory. This dataset contains

several typical dynamic scenes. For example, in fr3/w/rpy
sequence, two people walk around the table while the cam-

era rotating. Since large parts of the visible scenes are dy-

namic, it constitutes a very difficult task.

ORB-SLAM is known as the state-of-the-art method

producing good results in static scenarios and low-dynamic

scenarios, while our method extends its application scenar-

ios to high-dynamic scenarios. To evaluate the effective-

ness of our moving object removal method, we select seven

high-dynamic sequences, two low-dynamic sequences and

one static sequence in the experiment.

Fig. 4.1 shows some examples of computed trajectories

of our system using the TUM dataset, with comparison

to the ground-truth and the original RGB-D-based ORB-

SLAM [19]. Qualitatively, we can see that our estimated

trajectories are much closer to the ground-truth compared

to ORB-SLAM in these dynamic environments. While a

man walking past the camera, the trajectory recovered by

the original ORB-SLAM drifts severely, as ORB-SLAM

treats the features in the person’s body as static landmarks.

By contrast, our approach successfully filters those moving

features before motion estimation, shown as the red points

in Fig. 8(d), 8(e), and 8(f).

For a quantitative comparison we run the sequences on

each system 5 times and compute the median, to account for

the non-deterministic nature of the multi-threading system.

The overall comparison of the results are summarized in Ta-
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(a) fr3/w/xyz (b) fr3/w/half (c) fr2/flower

(d) fr3/w/xyz (e) fr3/w/half (f) fr2/flower

Figure 8. The first row are the estimated trajectories by our system (red), RGB-D ORB-SLAM (blue), and groundtruth (green) in

fr3/w/xyz, fr3/w/half, and fr2/flower, respectively. The second row are the snapshots of the states of keypoints when running. The red

points represent the dynamic keypoints, the green points represent the static keypoints, and the radius of each reflects the confidence of each

state. These images show that using our method can classify most of key points into dynamic or static state accurately frame-by-frame.

ble 1, obtained by the original RGB-D-based ORB-SLAM,

a motion removal approach for RGB-D SLAM in dynamic

scenes [33](represented as MR), our method without last

keyframe matching(represented as Ours1), and our com-

plete method(represented as Ours2). For brevity, we use

the words fr, half, w, s, d, v as representatives for freiburg,
halfsphere, walking, sitting, desk, validation in the name of

the sequences.

As we can see, the applicability of the original ORB-

SLAM in challenging dynamic scenarios is limited. The

motion removal approach [33] performs much better than

the original ORB-SLAM in dynamic scene, but still unable

to get ideal result comparing to those produced by ORB-

SLAM in static scenarios. On the contrary, our method

acquires comparable results. It verifies not only the intu-

ition that semantic information can make the feature-based

SLAM be much more robust, but also the usability and ef-

fectiveness of our practical measures in handling some chal-

lenging dynamic scenarios.

Additionally, comparing Ours1 with Ours2, we can find

that it is necessary and meaningful to propagate moving

probability from the last frame to track the moving features

frame-by-frame, in case that the delay of detection causes

the moving probability of points in local map unable to up-

date in time, especially when the object is moving largely.

Table 1. Comparison of Translation RMSE(m) in TUM

Dataset.

MR1 ORB2 Ours13 Ours2

fr3/w/xyz 0.0932 1.0122 0.0254 0.0241
fr3/w/xyz/v 0.0655 0.9993 0.0268 0.0218
fr3/w/half 0.1252 0.5827 0.2021 0.0514

fr3/w/half/v 0.0811 0.3286 0.0697 0.0522
fr3/w/rpy 0.1333 0.8951 0.4559 0.2959

fr3/w/rpy/v 0.2333 0.3262 0.1050 0.0767
fr2/flower - 0.5471 0.1489 0.0569
fr3/s/xyz 0.0470 0.0117 0.0210 0.0201

fr3/s/half 0.0482 0.0178 0.0273 0.0231

fr3/d/person 0.0596 0.0947 0.0825 0.0813

1 A motion removal method for RGB-D SLAM [33]
2 The original RGBD-based ORB-SLAM
3 Our method but not propagating moving probability

from last frame.

Table 2. The run time of each operation in moving object removal

Propagation Detection Updating

Run-times(s) ≈ 0.02 ≈ 0.31 ≈ 0.01
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Besides, we investigate the run-time performance of

moving probability propagation, updating the moving prob-

ability in local mapping and object detection. Note that the

run-time of detection includes sending the keyframe to de-

tector, preprocessing the image, feed-propagating the image

in the deep neural network and feed-back the result to the

SLAM system. Considering that the original ORB-SLAM

has taken the feature matching operation, so we only cal-

culate the extra run-times excluding feature matching. The

detection is time consuming compared to other process, but

it only happens when a new keyframe inserted. The mov-

ing probability propagation is efficient to keep the tracking

thread running in real-time. We summarize the run-times of

our approach in Table 2.

4.2. Boosting Detection Performance

We collect 200 hard examples about monitors and 150

hard examples about potted plant from 15 sequences of

TUM dataset and 5 sequences of our office to fine-tune the

SSD network, aiming to make the object detector more ro-

bust to the deform of object or the motion blur while chang-

ing viewpoints. While fine-tuning network, all convolu-

tional feature layers are fixed except box prediction layers.

To evaluate the improvement of the detector, we select

and annotate two sequences(fr2/desk and fr1/plant). They

film a monitor and a plant respectively over wide change

of viewpoint and some of them observe partial objects.

There are 2201 images captured the monitor on the desk

in fr2/desk and 1070 images captured the plant in fr1/plant.
In fr2/desk, the monitor is occluded by others occasionally.

In fr1/plant, we can find a number of blurred images caused

by the camera motion. Therefore, to boost detection perfor-

mance in these sequences, the detector has to overcome the

challenges including partial observation, motion blur, and

occlusion.

In the experiment, we can see that most of bounding box

proposed by the three method is precise when the confi-

dence threshold is set to 0.7. But in most of challenge case,

the original SSD missed the target object but our method

detected it. Quantitatively, we compare the recall of tar-

get object of the three fashion detectors in both sequences,

shown in Table. 3. As we can see, both our joint and fine-

tuned methods extend the detectable viewpoints of moni-

tors. The object map built simultaneously led to a huge

boost in the enhanced-SLAM detector performance. The

fine-tuned SSD is also improved by the collected hard ex-

amples. And the accurate bounding box proposed by our

system is also a proof of the accuracy of localization and

the object map.

5. Conclusions
In this paper, we present a novel coupled framework

called Detect-SLAM for making object detector and SLAM

(a) Circle (b) Looking from one side

(c) Looking from another side (d) Looking from the back

Figure 9. The first image (a) visualizes the orientations that de-

tect the monitor successfully in a circle. The blue, yellow and

green sectors represent the original SSD, fine-tuned SSD, and

our SLAM-enhanced detector, respectively. As we can see, the

SLAM-enhanced detector covers most of orientations and the SSD

performs better after fine-tuning. The other three images represent

results looking the monitor from different orientations and posi-

tions.

Table 3. Comparision of recalls of target object in fr2/desk and

fr1/plant.
Original Fine-tuned SLAM-Enhanced

monitor 33.44% 44.62% 95.27%

plant 41.12% 53.56% 92.24%

mutually beneficial in one system. Detect-SLAM can lo-

calize precisely in dynamic scenes, build a semantic ob-

ject map, and detect/recognize objects robustly. The ex-

periments on TUM dataset demonstrate the effectiveness of

our system in SLAM and object detection. The SLAM-

enhanced detector is robust to motion blur, uncommon

viewpoints by means of the object map. Moreover, we have

apply our system to mining hard examples about monitors

and plants appeared in TUM dataset, and then fine-tune the

SSD network.
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