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Abstract

Compressed Sensing (CS) has drawn quite an amount of attention as a joint sampling and
compression methodology. Recent studies further show that image prior models play an
important role in image CS recovery. By exploiting the non-local self-similarity of natu-
ral images and clustering similar patches, low-rank prior model is adopted in this paper.
Different from traditional nuclear norm, we extend the I, (0 < p < 1) penalty function
on singular values of a matrix to characterize low-rank prior model, and propose a new
non-nonvex /, nuclear norm prior model for image CS recovery, which is able to more accu-
rately enforce image structural sparsity and self-similarity at the same time. The proposed
optimization problem is efficiently solved within the alternative direction multiplier method
(ADMM) framework. Experimental results demonstrate that the proposed I, nuclear norm
based ADMM framework for image CS recovery framework exhibits good convergence and
achieves significant performance improvements over the current state-of-the-art methods.

1 Introduction

Compressed Sensing (CS) has drawn quite an amount of attention as an alternative
to the current methodology of sampling followed by compression [1]. By exploiting
the redundancy existed in a signal, CS conducts sampling and compression at the
same time. From many fewer acquired measurements than suggested by the Nyquist
sampling theory, CS theory demonstrates that, a signal can be reconstructed with
high probability when it exhibits sparsity in some domain.

Specifically, a signal x of size N is said to be sparse in domain or basis W, if its
transform coefficients a = ¥Tx are mostly zeros, or nearly sparse if the dominant
portion of coeflicients are either zeros or very close to zeros. Then, given M linear
measurements, the CS recovery of x from b is formulated as the following constrained
optimization problem:

minH\I/TXHq s.t. b= Ax, (1)

where A represents the random projections (RS). ¢ is usually set to 1 or 0, char-
acterizing the sparsity of the vector ®Tx. || - ||; is /; norm, adding all the absolute
values of the entries in a vector, while || - ||o is [p norm, counting the nonzero entries
of a vector. According to [2], CS is capable of recovering K-sparse signal x (with an
overwhelming probability) from b of size M, provided that the number of random
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samples meets M > cK log(N/K). A compressive imaging camera prototype using
RS has been presented in [1].

The most attractive strength of CS-based compression is that the encoder is made
signal-independent and computationally inexpensive at the cost of high decoder com-
plexity, that is, simple encoder and complex decoder. This asymmetric design is
severely desirable in some image processing applications when the data acquisition
devices must be simple (e.g. inexpensive resource-deprived sensors), or when over-
sampling can harm the object being captured (e.g. X-ray imaging) [3].

Since natural signals such as images are typically non-stationary, there exists no
universal domain in which all parts of the signals are sparse. Traditional CS re-
covery methods explored a set of fixed domains (e.g. DCT, wavelet, and gradient
domain), therefore are signal-independent or not adaptive, resulting in poor rate-
distortion performance. To rectify the problem, many works incorporated additional
prior knowledge about transform coefficients (statistical dependencies, structure, etc.)
into the CS recovery framework, such as Gaussian scale mixtures (GSM) models [4].
Additionally, in [5], a projection-driven CS recovery coupled with block-based random
image sampling was developed, which aims to encourage sparsity in the domain of
directional transforms. Chen et al. [6] exploited multi-hypothesis predictions to gen-
erate a residual in the domain of the CS random projections, where this residual being
typically more compressible than the original signal leads to improved reconstruction
quality. The adaptively learned sparsifying basis was also utilized for image CS re-
covery [7]. Furthermore, many latest works concentrate on utilization of both local
and nonlocal statistics for high quality image restoration. Zhao et. al [8] explored the
structured Laplacian sparsity of DCT coefficients for high-quality CS reconstruction.
Zhang et al. [9] [10] proposed a framework for CS recovery via collaborative sparsi-
ty, which enforces local 2-D sparsity and nonlocal 3-D sparsity simultaneously in an
adaptive hybrid space-transform domain, thus greatly confining the CS solution space.
Lately, Zhang et al. [11] further proposed a structural group sparse representation
(SGSR) model, which efficiently characterizes the intrinsic sparsity and self-similarity
of natural images in an adaptive group domain, achieving state-of-the-art results.

Recent studies show that, by exploiting the non-local self-similarity and clustering
similar blocks, low-rank prior models achieve promising results in image restoration
tasks [12]. However, in general, the rank minimization is an NP-hard problem. To
obtain an approximated solution, the nuclear norm (sum of the singular values) is
usually adopted as a convex surrogate of the rank. By the nuclear norm, the rank
minimization problem can be efficiently solved by the classic technique of singular
value thresholding (SVT) [13]. Despite exhibiting good theoretical guarantee, the
nuclear norm is actually not accurate to approximate the rank.

Inspired by the success of [, (0 < p < 1) sparse optimization, in this paper, we
extend the surrogate function of Iy norm, i.e. I, (0 < p < 1) penalty function on
singular values of a matrix to substitute for the nuclear norm for characterizing low-
rank prior model, which is expected to be more accurate than traditional nuclear
norm. Moreover, to make the optimization tractable, the alternative direction multi-
plier method (ADMM) framework [14] is adopted, enabling each sub-problem solved
efficiently. Experimental results demonstrate that the novel CS recovery framework
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Figure 1: Illustrations for image low-rank prior. Extract each exemplar patch vector
x;, from image x. For each xj, denote Sy, the set composed of its best matched
patches. Stack all the patches in Sy, to construct the data matrix, denoted by X, .
Xg, has the low-rank property.

exhibits good convergence and achieves significant performance improvements over
the current state-of-the-art methods.

The remainder of the paper is organized as follows. Section 2 elaborates the pro-
posed non-convex [, (0 < p < 1) nuclear norm prior model for CS. Section 3 describes
the implementation details under the ADMM optimization framework. Experimental
results are reported in Section 4. In Section 5, we conclude this paper.

2 Non-convex L, Nuclear Norm Prior Model for CS

In this section, we will elaborate the proposed non-convex [, nuclear norm prior model,
which is used to characterize the low-rank property of the data matrix composed of
similar patches.

The basic assumption is that the well-known non-local self-similarity, which de-
picts the repetitiveness of higher level patterns (e.g. textures and structures) globally
positioned in natural images, implies that many similar patches can be searched for
any exemplar patch [15] [16] To be concrete, as illustrated in Fig. 1, first, divide
the image x € RY with size N into K overlapped patches of size /B, x /B, and
each patch is denoted by the vector x;, € RPs ie. k=1, 2,..., K. Then, for each
exemplar patch xj, denoted by small red square in Fig. 1, within the W, x W train-
ing window (big blue square), search its ¢ best matched patches, which comprise the
group Sy, . Here, Euclidean distance is selected as the similarity criterion between
different patches. Next, all the patches in cach group Sy, arc stacked into a data ma-
trix of size B, x ¢, denoted by X, , which includes every patch in Sy, as its columns,
ie. Xg,=[Xe, ®@1: X6, ®2: - - - X6, ®c)- Since all the patches in each data matrix have
similar structures, the constructed data matrix X¢, has a low-rank property. By
incorporating the low-rank prior into the image CS recovery framework Eq. (1), we
easily have the following optimization problem:

K
1
X = argmin §|]Ax—y\|§ +)\Zmnk(XGk). (2)
k=1

In general, the rank minimization is an NP-hard problem. To obtain an approxi-
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mated solution, the nuclear norm (sum of the singular values) is usually adopted as a
convex surrogate of the rank. By the nuclear norm, the rank minimization problem
can be efficiently solved by the classic technique of singular value thresholding (SVT)
[13]. Despite exhibiting good theoretical guarantee, the nuclear norm is actually not
accurate to approximate the rank. Inspired by the success of [, (0 < p < 1) sparse
optimization, we believe that the non-convex optimization toward rank minimization
could give rise to better recovery results.

In this paper, to approximate matrix rank more accurately, we extend the non-
convex [, (0 < p < 1) penalty function on singular values of the data matrix to
substitute the convex nuclear norm. Concretely, the rank function can be approxi-
mately solved by the following function:

F(Xg,) = Z |0:(Xa, )", (3)

where 0 < p < 1 and 0;(X) denotes the i-th singular value of a matrix X € RP=x¢
(assuming B; < ¢ in this work).

Accordingly, considering all the matrices X, , the proposed non-convex low-rank
prior model for CS recovery is formulated as

K

. 1
X:cw"gmméﬂAX—}’Hg—|—)\z:F(XGk)7 (4)
k=1
where X¢, = Re,X = [X6, @1, X6, ®2, - - - X, @ and R, is the matrix operator

that extracts the matrix X, from x. Obviously, the proposed non-convex low-rank
model is able to exploit both the group sparsity of similar patches and the non-
convexity of rank minimization simultancously, which is expected to achieve better
recovery than previous methods.

3 L, Nuclear Norm based ADMM Framework for CS

In this paper, we adopt the alternative direction multiplier method (ADMM) frame-
work [14] to solve the proposed CS recovery optimization problem with the non-convex
l, nuclear norm, which is verified to be quite effective, making each sub-problem solved
efficiently.

To be concrete, by exploiting ADMM and introducing a variable z and a constraint
x = z, the minimization of Eq. (4) is transformed into three iterative steps:

1 p >
(D) — argmin §HAX —ylls+ 5 [ — 21 — b(t)H2; 5)
p \ K
') = argmin 5 [ — 2 - O]+ 0 Y F(Ze,) ©
z k:l
b+l — p® _ (X(t+1) _ Z(t+1)> ) (7)
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Thus, by ADMM, we obtain two sub-problems, namely x and z sub-problems.
In the following, we will provide the implementation details to obtain the efficient
solutions to each separated sub-problem.

3.1 x Sub-problem

Given z®, the x sub-problem denoted by Eq. (5) is essentially a minimization problem
of strictly convex quadratic function. Since A is a random projection matrix without
special structure, it is too costly to compute the matrix inverse to solve Eq. (5).
Instead, in this paper, the gradient descent method is utilized by iteratively applying

XD = (0 _ g, (8)

where d is the gradient direction of the objective function and 7 represents the op-
timal step. Therefore, solving the x sub-problem for image CS recovery only requires
computing the following equation iteratively

D — () n® (ATAX@ —Afy +8 (X<t) — 7" — b(t))) ) ()

where ATA and ATy can be calculated before, making above computation more
efficient.

3.2z Sub-problem

(t+1

Given x**1  the z sub-problem is formulated as

K
AR :argmin%HZ—W(t)HzﬂL%ZF(ZGk)’ (10)
k=1

where w®) = x(+1) — (). To enable solving Eq. (10) tractable, furthermore, like
[11] we also make a reasonable and general assumption that each element of e(*) =
x —w® follows an independent zero-mean distribution with the variance, leading to
the following Theorem 1 [11].

Theorem 1 Let x,w € RV, X, , Wq, € RP*¢_ and denote the error vector by e =
x —w and each element of € by e(j),j =1,...,N. Assume that e(j) is independent
and comes from a distribution with zero mean and variance o*. Then, for any € > 0,
we have the following property to describe the relationship between ”X—WH% and

ZkK:1 1Xe, — WGkHQF, that is,
) =1, (11)

P (
With Theorem 1, incorporating Eq. (11) into Eq. (6) leads to

N&E
2 2
[x =wl; == > X, = Wg, |z <e
L
k=1

where P(-) represents the probability and L = Bs x ¢ x K.

K
o 1 Ol
2 = arg min o kz; <Hng - W, . +7F(Z¢,) ), (12)
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where 7 = % It is obvious to see that Eq. (12) can be efficiently minimized by

solving K sub-problems for all the Z;, , each of which is formulated below:

287 = argmin 2|12, ~ WE+ Y 0-(0i(Za,)) (13)
k i=1
where the penalty function g,(-) is defined as ¢, (z) = 7|x|?, (0 < p < 1).

Note that g,(z) is concave and monotonically increasing on [0 co), with its gra-
dients being decreasing. Based on this property, recently, Lu et. al proposed an it-
eratively reweighted nuclear norm (IRNN) algorithm to solve the general non-convex
non-smooth low-rank minimization with convergence guarantee [17]. Here, borrowing

the wisdom of IRNN, we will show how to solve the problem (13).

For simplicity of notation, denote h(Zg,) = ||Z¢, — ng”%, o; = 0i(Z¢g,), and

o= O-j(Z(Cl;)k ). Owing to that g,(x) is concave and differentiable on [0 c0), we obtain

g;

9:(0:) < g:(0") + 0 (0 — o). (14)

0

Here w;” = g’T(U(l)

(2

), and ¢ (z) = 7pzP~!, x € [0 o0). Then, by the anti-monotone
gradient property of g,(x), since agl) > oél) > .. >0 >0, wehave 0 < wﬁ” < ?Uél) <
< wd, According to (14), we minimize its right hand instead of g,(o;), leading to

the following relaxed problem

Zgﬁl) =aryg 'réw'n g (6 + w0 (0; — o) + MZe,). (15)

G}, !
Removing the constant terms, the problem (15) equivalently becomes

Z(Cl;‘:l) =aryg ’I%’LZ’I”L w,gl)(o-i(ZGk)) + h(ZGk) (16)

G

Furthermore, instead of updating Zg:l) by solving (16) directly, we linearize

MZg,) at Z(CIJ);, and add a proximal term:

l l l H l
WZa,) ~ WZG)+ < VMZG). Ze, — Zg), > +51|Ze, — Zallp (A7)

where u > L(h), and L(h) > 0 is the Lipschitz constant of Vh. Hence, Zgj:l) is

141 N % p 1 I
Zg," = argmin i (01(Za,)) + 26, = (2, = Vh(ZG)F- (18)

Zg,

Although (18) is still non-convex, it actually has a closed-form solution based on
Theorem 1 in [18]. Therefore, by iteratively computing wl@ and updating Z(éf),
we achieve the efficient solution to the non-convex low-rank minimization (13). The
convergence analysis is provided by Theorem 2 in [17]. This process is applied for all
Z(Cl;:_rl), which are then returned to their original positions and averaged at each pixel
to obtain the solution for Eq. (10).

In light of all derivations above, the complete description of proposed [, nuclear
norm based ADMM framework for image CS recovery is given in Algorithm 1.
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Algorithm 1 L, Nuclear Norm based ADMM Framework for CS

1: Input: The observed measurement b, the measurement matrix A
2: Initialization: Set initial estimate x(©)
3: Repeat
: Update x**1) by computing Eq. (9);
For Each Z¢,
Update Zg:l) by solving problem (18);

End For
Update z(+1) by averaging all Zg:l) :

9:  Update b®*Y by computing Eq. (7);
10: t+—t+1;
11: Until maximum iteration number is reached
12: Output: Final recovered image X.

o

38

Figure 2: Test images: House, Barbara, Leaves, Monarch, Parrots, Vessels.

4 Experimental Results

In this section, experimental results are presented to evaluate the performance of the
proposed [, nuclear norm based ADMM framework for image CS recovery. Six test
images are shown in Fig. 2. In our experiments, the CS measurements are obtained by
applying a Gaussian random projection matrix to the original image signal at block
level, i.e., block-based CS with block size of 32 x 32 [5]. The proposed algorithm
is compared with four representative CS recovery methods in literature, i.e., DWT
[5], MH [6], CoS [9], and SGSR [11], which deal with image signals in the dual-tree
wavelet domain, random projection residual domain, hybrid space-transform domain,
and adaptive structural group domain, respectively. It is worth emphasizing that
SGSR is known as the state-of-the-art algorithm for image CS recovery .

It is also necessary to stress that the choice for all the parameters is general, and
can be generalized to other natural images, which has been verified in our experiments.
In this paper, we set p = 0.2 and exploit the results of MH as initialization of the
proposed algorithm for image CS recovery. The PSNR comparisons for all the test
images in the cases of 25% to 45% measurements are provided in Table 1. The
proposed algorithm provides quite promising results, achieving the highest PSNR
among the five comparative algorithms over all the cases, which can improve roughly
8.2 dB, 5.8 dB, 5.4 dB, and 2.9 dB on average, compared with DWT, MH, CoS, and
SGSR respectively.

The visual results of the recovered image Monarch by various algorithms are
presented in Fig. 3. Obviously, DWT generates the worst perceptual results. The CS

'We would like to thank the authors of [5], [6], [9] and [11] for kindly providing their software or
codes. Our source code is available on the website http://124.207.250.90/staff/zhangjian/.
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Table 1: PSNR comparisons with different CS recovery methods (dB)

subrate | Algorithm | House Barbara Leaves Monarch  Parrots Vessels | Average

DWT 34.29 25.43 23.60 27.88 29.51 26.49 27.87
MH 34.94 31.97 26.38 28.25 30.07 28.69 30.05
0.25 RCoS 35.07 27.45 29.25 30.36 29.50 28.55 30.03
SGSR 36.53 34.84 31.07 30.48 31.13 32.75 32.05
Proposed | 38.22  35.76 34.17 34.12 32.31 36.31 35.15
DWT 35.99 27.22 25.26 29.96 32.12 28.21 29.79
MH 36.41 34.31 28.95 30.39 32.12 31.69 32.31
0.35 RCoS 36.16 30.75 32.49 32.69 31.18 33.15 32.74
SGSR 38.21 36.82 34.44 33.47 33.78 36.26 35.50
Proposed | 40.25  38.21 37.97 37.34 35.28 40.70 38.29
DWT 37.36 29.17 27.02 31.72 34.21 30.58 31.68
MH 37.80 36.01 30.96 31.98 34.67 34.41 34.31
0.45 RCoS 38.05 33.61 35.25 34.95 33.23 36.05 35.19
SGSR 39.87 38.55 37.05 35.85 36.72 38.67 37.79
Proposed | 41.89  40.06 41.01 39.89 37.65 43.80 40.72

recovered images by MH and CoS possess much better visual quality than DW'T, but
still suffer from some undesirable artifacts, such as ringing effects and lost details.
SGSR produces better results than MH and CoS, almost eliminating the ringing
effects. However, the proposed algorithm preserves sharper edges and finer details,
showing much clearer and better visual results than the other competing methods.
which fully demonstrates the effectiveness of the [, nuclear norm. In addition, we
provide empirical evidence to illustrate the nice convergence of the proposed CS
recovery scheme. Fig. 4 plots the evolutions of PSNR versus iteration numbers
for image Monarch with various subrates of measurements. One can clearly see that
with the growth of iteration number, all the PSNR curves increase monotonically and
ultimately become flat and stable, exhibiting good convergence.

The complexity of the proposed framework is discussed below. Assume that the
number of image pixels is NV, that the average time to compute similar patches for each
exemplar patch is Ty . The SVD of cach X¢;, with size of Byxcis O (B,c?). Hence, the
total complexity is O (N (Bsc? + Ty)). For a 256 x 256 image, the proposed algorithm
requires about 9~10 minutes for CS recovery on an Intel(R) Core(TM) 3.40GHz PC
under Matlab R2015a environment, while CoS and SGSR require about 6~7 minutes.

5 Conclusion

In this paper, the [, (0 < p < 1) penalty function is extended on singular values of a
matrix to characterize low-rank prior model, and a novel non-nonvex [, nuclear norm
based ADMM framework for image CS recovery is proposed. Extensive experiments
manifest that the developed general CS recovery framework is able to increase image
recovery quality by a large margin compared with the current existing state-of-the-art
methods, further offering a successful instance to corroborate the CS theory applied
for real signals (i.c., natural images). Ongoing work includes the extensions on a
variety of other image restoration applications by taking advantage of the proposed [,
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(c) MH (28.2.5 dB)

(d) CoS (30.36 dB) (e) SGSR (30.48 dB) (f) Proposed (34.12 dB)

Figure 3: Visual comparison of CS recovered results for Monarch (subrate = 0.25).

nuclear norm prior and the utilization of GPU hardware to address the parallelization.
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