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Abstract

Recognizing an action from a sequence of 3D skeletal
poses is a challenging task. First, different actors may per-
form the same action in various performing styles. Second,
the estimated poses are sometimes inaccurate due to sen-
sory noises. These challenges can cause large variations
between instances of the same class. Third, the datasets are
usually small, with only a few actors performing few rep-
etitions of each action. Hence training complex classifiers
risks over-fitting the data. We address this task by mining
a set of key-pose-motifs for each action class. A key-pose-
motif contains a set of ordered poses, which are required
to be close but not necessarily adjacent in the action se-
quences. The representation is robust to style variations.
The key-pose-motifs are represented in terms of a dictionary
using soft-quantization (probabilities) to deal with inaccu-
racies caused by quantization. We propose an efficient algo-
rithm to mine key-pose-motifs taking into account of these
probabilities. We classify a sequence by matching it to the
motifs of each class and selecting the class that maximizes
the matching score. This simple classifier obtains state-of-
the-art performance on two benchmark datasets.

1. Introduction

Action recognition from RGB videos [10, 28, 26, 7, 22,
16] is an important task with many applications, such as
intelligent surveillance, sports video analysis and human-
computer interactions. Although this task has attracted a lot
of attention, the recognition performance is unsatisfactory
because of the considerable variations in the appearance and
the scales of the people performing the same action. In ad-
dition, 2D images will be very dependent on viewpoint and
the same action can vary as the perspective changes.
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Figure 1: Overview: (a) a sequence of training poses. (b)
the poses quantized by a simplicial model. (c) mined key-
pose-motifs. (d) a sequence is classified by matching it to
the motifs of each class.

The introduction of RGB-D cameras and the correspond-
ing pose estimation algorithms [19] makes it possible to
obtain 3D human poses and hence study pose-based action
recognition. This leads to progress on the appearance and
viewpoint variations [11] [25] [27] [23] but there are other
challenges remaining unsolved. First, different actors often
perform the same action in differing styles. Second, the 3D
poses are sometimes inaccurate because they are usually es-
timated from noisy depth maps. The two challenges togeth-
er cause large intra-class variations making two instances
of the same class far apart. It is not plausible to compare t-
wo instances directly. Third, most benchmarks only provide
only a few sequences for each action which makes training
complex classifiers sensitive to over-fitting.

Psychological studies, however, show that humans can
effortlessly recognize actions from pose sequences despite
all these challenges [9]. Indeed some actions can be clas-
sified from a single key-pose [31]. This suggests that we
can perform action classification using a set of key poses
rather than using the whole pose sequence. The key pos-
es are close but not necessarily adjacent in the sequences
and hence allows short and variable gaps between the poses.
These gaps help deal with style variations. Also the repre-
sentation is robust to outlier poses as they have little effect
on the representation as long as the key poses are accurate.
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Inspired by the psychological studies, we propose to
mine a set of key-pose-motifs for each action class. We de-
fine a motif to be a short sequence of poses which are n-
earby but not necessarily adjacent in the original sequences.
A motif is called a key-pose-motif of a particular class if
it appears in a sufficient number of sequences of that class.
We mine several key-pose-motifs for each action class and
classify an input sequence by finding the action class whose
key-pose-motifs best match the sequence. Observe that this
approach also has the ability to detect the start and finish
of an action sequence by inspecting the matching results,
although that is not the focus of this paper.

To mine the key-pose-motifs, we need to quantize the
continuous pose sequences (by a dictionary) into discrete
sequences where each pose of the sequence is represented
by a symbol of the dictionary. We use clustering algorith-
m to learn the dictionary. We use the activated simplices
method proposed in [24] to learn the dictionary. Each sym-
bol in the dictionary is an activated simplex consisting of a
set of bases which represents data by their convex combina-
tions. Typically, each pose is quantized (represented) by the
closest simplex. However, in our work, to reduce the influ-
ence of quantization error (e.g., two similar poses are quan-
tized by different simplices), we use soft-quantization so
that a pose is represented by several symbols with a proba-
bility for each (based on the distance to the symbol). Hence
each pose is represented by a probability vector (its dimen-
sion is the same of as the number of symbols in the dictio-
nary) and a sequence of poses is represented by a probabil-
ity matrix where each column is the probability vector of
the corresponding pose. Standard sequential pattern mining
algorithms do not deal with this type of probabilistic data
so we propose a novel, and efficient, algorithm to mine the
key-pose-motifs which is one of our contributions.

We classify a test sequence by matching it to the key-
pose-motifs of each class and select the class by maximiz-
ing the matching score. The classifier is interpretable be-
cause we can visualize the mined key-pose-motifs and the
matched positions in the sequence. So when there are mis-
classifications, we can easily detect why and where the fail-
ures happen. In experiments we use action-units consisting
of short sequences of poses (e.g., neighboring three poses
compose an action-unit and the original pose sequence is
transformed to an action-unit sequence). But for ease of ex-
position, we will describe our method using poses only (and
introduce action-units in the experiment section).

The paper is organized as follows. Section 2 reviews re-
lated work. Sections 3, 4 and 5 describe the proposed action
representation (action-snippets), the key-pose-motif mining
algorithm and the action classification method respective-
ly. The remainder of the paper is devoted to experiments
followed by a conclusion of this work.

2. Related Work
In this section, we provide a brief overview of the related

work on human pose based action recognition. We also re-
view the existing sequential pattern mining algorithms and
discuss how they differ from our method.

2.1. Human pose based on action recognition

We classify the existing work into three categories ac-
cording to how temporal cues are modeled. The first class
of work [8] [3] [23] ignores the temporal information and
treat the poses in a sequence independently. They usually
adopt “bag of poses” [8] [23] or majority voting [3] schemes
for classification. At the other extreme, the second class of
work [30] classifies pose sequences by modeling all poses
in a sequence, for example by Hidden Markov Models [30]
or by dynamic time warping [18]. Another line of work
[25] [27] [12] encodes restricted temporal pose structures,
for example, using temporal pyramid matching [27] [12] or
by modeling neighboring pose changes [25].

Our proposed key-pose-motifs models the temporal
structures of a set of key poses. However, our approach d-
iffers from [25] [27] [12] as key-pose-motifs are more flex-
ible because they allow gaps between neighboring poses
which makes them robust to speed variations. Besides the
temporal structures are automatically learned from training
sequences rather than manually designed.

2.2. Sequential pattern mining

Sequential pattern mining is the task of discovering fre-
quent subsequences as patterns in a sequence database.
There a lot of work [1, 20, 32] when the sequence database
is certain (or deterministic) rather than probabilistic. The
main challenge of sequential pattern mining is that it is com-
putationally infeasible to examine all possible subsequences
to determine the frequent ones, most early sequential pat-
tern mining methods are based on A-prior algorithm[2]
where the main idea is that the sub-sequences of frequen-
t patterns are also frequent. So we can generate candidate
longer frequent patterns from the shorter ones which can
substantially reduce the search space to be examined. How-
ever, those methods can not deal with the situations where
the sequences are uncertain. Consider the amount of noise
in our data, it is important for us to use soft-quantization
which means that standard mining methods do not apply.

There are some work [33] [13] which address the task
when the database is uncertain. But the uncertainty in these
work [33] [13] occurs at different levels as ours. Muham-
mad et al. [13] propose a method to mine sequential patterns
when there is uncertainty about which sequence an item is
associated with (but this is not equivalent to our problem).
Zhao et al. [33] solve a similar problem as ours. However, it
is impossible to incorporate the gap constraints using their
framework.



3. Action Representation

We represent an action by a sequence of 3D poses
{y(1), · · · , y(m)} where each pose y is a high dimensional
vector consisting of a set of body joint locations. This is a
natural and intrinsic representation as it conforms to studies
of how humans understand actions [4].

To mine key-pose-motifs, we first quantize the poses us-
ing a dictionary of discrete symbols. The classic quanti-
zation method is k-means which represents a pose by its
nearest symbol in the vocabulary. However, small perturba-
tions of poses, due to inaccuracies in poses, can cause the
poses to be assigned to different symbols which will hurt
classification performance.

We propose instead to use an alternative quantization
method, namely the activated simplices method [24]. The
simplicial model consists of a mixture of activated simplices
S = {s1, · · · , sK} where each simplex has several bases.
A simplex represents poses by convex combinations of the
bases which will form a convex hull. All the data which are
close to the convex hull will be regarded as similar. For each
action class, we learn a dictionary of activated simplices and
combine them to make our dictionary of symbols. There are
two reasons for choosing the simplicial model. First, it was
shown to be robust to the inaccuracies in poses [24]. Slight-
ly distorted poses will be projected to the same simplex.
Second, the simplicial model is more semantically mean-
ingful. In the simplicial model, semantically similar poses
are projected to different positions of the same simplex and
they all have small projection errors. This is because acti-
vated simplices are able to represent the local linearity of
poses, as described in [24]. We will compare the two quan-
tization methods in the experiment section.

To make the representation more robust to inaccurate
poses, we use soft-quantization to assign each pose to all
symbols. More precisely, We represent a pose using all of
the K symbols in the dictionary and associate each symbol
with a probability pi which measures its distance to the pose
pi = e−dist(si,y)∑K

j=1 e−dist(sj,y) (dist(sj , y) measures the distance of

the point y to the convex hull formed by the activated sim-
plex sj . see [24] for the definition). Intuitively, small dis-
tances induce large probabilities and vice versa. Finally,
each pose y(i)in a sequence is represented by a probabili-
ty vector p(i) = [pi

1, · · · ,pi
K ]T and a sequence of poses is

represented by a matrix P = (p(1), · · · ,p(m)).

4. Mining Key-pose-motifs

We propose an efficient algorithm to mine key-pose-
motifs from the probability matrices, representing the soft-
assignment of poses to symbols, as described above. We
first give formal definitions of the terms which are going to
be used in this paper.

Table 1: An example probabilistic sequence of length five
which is defined on a vocabulary of five symbols (each col-
umn sums to one). The most probable sequence is (s1, s2,
s5, s1, s1) but there are 95 other possibilities.

XXXXXXXXXXsymbols
time

1 2 3 4 5

s1 0.7 0 0.3 0.9 1
s2 0.1 0.8 0.0 0.1 0
s3 0.1 0.1 0.1 0 0
s4 0.1 0.0 0.2 0 0
s5 0.0 0.1 0.4 0 0

Definition 4.1 (Deterministic sequence). T =
(t(1), · · · , t(m)) is a deterministic sequence of length
m containing symbols chosen from the dictionary, i.e.,
t(i) ∈ S, at each of the m time-stamps.

Definition 4.2 (Probabilistic sequence). P =
(p(1), · · · ,p(m)) is a probabilistic sequence of length
m where each item p(i) is a K dimensional vector spec-
ifying the soft-assignment of the input pose y(i) to the
K symbols in S. For example, p(i)

j represents the proba-
bility that the pose y(i) is sj . Table 1 shows an example
probabilistic sequence of length 5.

Definition 4.3 (Probabilistic support). Given a determinis-
tic sequence T and a probabilistic sequence P, the proba-
bilistic support from P to T is a scalar value η between zero
and one which measures how well T can be matched to P.
The formal definition is given in section 4.1.

Definition 4.4 (Key-pose-motif). A key-pose-motif of an
action class is a deterministic sequence whose probabilis-
tic support averaged over all (probabilistic) sequences from
that class is larger than a threshold ε. A motif of length m
is called an m-motif.

Method Overview: The task of key-pose-motif mining
is to find out all the key-pose-motifs from a datasets of pose
sequences. Each pose sequence is soft-quantized and hence
is represented by a probability matrix. Algorithm 1 shows
the algorithm. Initially, each symbol in the dictionary S is
a candidate 1-motif. We compute the average probabilistic
supports for the candidates and remove the ones whose av-
erage supports are smaller than the threshold ε. Then we
expand the 1-motifs to get candidate 2-motifs and continue
recursively to get higher-order motifs. We repeat the pro-
cess until no larger motifs can be generated. There are two
main components in the algorithm. The first computes the
probabilistic supports for the candidate motifs which is dis-
cussed in section 4.1. The second expands the k-motifs to
get candidate k+1-motifs which is discussed in section 4.2.



Algorithm 1 Key-pose-motif Mining Algorithm

1: T 1={1-motifs}
2: for (k = 2; T k−1 6= ∅; k++) do
3: T k = expand(T k−1)
4: for (i = 1; i ≤ |T k|; i++) do
5: support=0
6: for (j = 1; j ≤ |D|; j++) do
7: support=support+η(tki , Dj)
8: If support

|D| ≤ ε
9: T k ← T k − {tki }

10: endif
11: end for
12: end for
13: end for

4.1. Probabilistic Support

Unlike the existing sequential mining algorithms such as
[20], the inputs are probabilistic sequences. It is non-trivial
to decide whether a key-pose-motif appears in a probabilis-
tic sequence. We propose to compute the probabilistic sup-
port of the motif in the sequence as follows.

Let a deterministic sequence (e.g., a candidate motif)
be T = (t(1), · · · , t(m)) and a probabilistic sequence be
P = (p(1), · · · ,p(n)). The length m of the deterministic
sequence is usually much smaller than the length n of the
probabilistic. The probabilistic support of P for T measures
how well T can be matched to P. Formally, we search for
a mapping M(i) ∈ {1 · · ·n}, i ∈ {1 · · ·m} which maps
each item in T to an item (location) in P with the constraint
M(i) < M(i+1) and M(i+1)−M(i) ≤ g. Here g is the
maximum gap constraint which prevents neighboring poses
in a motif from matching to positions which are far away
from each other in the sequence.

We define the probabilistic support η(T,P) as follows:

η(T,P) =max
M

m∏
i=1

p(M(i))

t(i)

s.t. M(i) < M(i+ 1), M(i+ 1)−M(i) ≤ g
(1)

We now show that this objective function can be optimized
efficiently by dynamic programming. Let T (1 : n1) =
(t(1), · · · , t(n1)) and P(1 : n2) = (p(1), · · · ,p(n2)). Let
f(T (1 : n1),P(1 : n2)) denote the probabilistic support of
matching T (1 : n1) to P(1 : n2) with the condition that
t(n1) is matched to p(n2). Hence f(T (1 : n1),P(1 : n2))
can be computed by:

f(T (1 : n1),P(1 : n2)) =

p(n2)

t(n1)× max
i∈{n2−g,··· ,n2−1}

f(T (1 : n1 − 1),P(1 : i))

(2)
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Figure 2: Left: matching the mined key-pose-motifs of
Classes 1, 2 and 3 to a sequence of Class 1 (length 54). Each
line segment defines the matching regions of each motif and
its y-axis value gives the matching score. Right: a long se-
quence is composed by sequences from classes 1, 2 and 3,
respectively (lengths 54, 34 and 40). We match the key-
pose-motifs of the three classes to the long sequence. This
shows that motifs can be used to roughly detect the starts
and ends of actions.

Using Eq.(2), we can efficiently compute a probabilistic
support matrix f(, ) of dimension m × n. We iterate over
the last row of the matrix and find out the maximum value
which is η(T,P).

4.2. The Expansion Algorithm

The expansion algorithm enables us to mine key-pose-
motifs by efficiently searching over the enormous space of
deterministic sequences. It exploits the fact that larger se-
quences are compositions of smaller sequences. Suppose
a sequence T = (t(1), · · · , t(k+1)) is a key-pose-motif,
then we can guarantee that its head and tail sub-sequences
Thead = (t(1), · · · , t(k)) and T tail = (t(2), · · · , t(k+1))
are also key-pose-motifs (note that, by equation (1), these
subsequences must have higher support than the sequence
and hence their supports will be above threshold). Un-
like existing methods which do not have the maximum
gap constraints [33], it is not guaranteed that all the oth-
er sub-sequences, e.g., (t(1), t(3), · · · , t(k)) are also key-
pose-motifs. For example, suppose there is a sequence
(1, 2, 3, 4, 5) and the maximum gap is set to be one, then
the sequence (1, 3, 5) is supported by the input sequence
but the sub-sequence (1, 5) is not.

We derive our expansion algorithm based on these ideas.
Let FT k = {T k

1 , T
k
2 , · · · , T k

|FTk|} denote the set of k-
motifs mined in the last iteration. For each pair of motifs
in FT k, for example, T k

1 and T k
2 , we compare the last k−1

items of T k
1 with the first k − 1 items of T k

2 . If they are all
equal, then we generate a k + 1-motif candidate T k+1

1 by
concatenating the T k

1 with the last item of T k
2 .

Example 4.1 (Expansion). Suppose we have three 3-
motifs FT 3 = {(1, 2, 3), (2, 3, 4), (3, 4, 6)}. Then by join-
ing (1, 2, 3), (2, 3, 4) we obtain (1, 2, 3, 4) and by joining



Table 2: The state-of-the-art action recognition accuracies
over all 252 splits on the MSR-Action3D Dataset.

Methods Acc (%) Year
HON4D [14] 82.15 2013

Tran [21] 84.54 2013
Wang [24] 88.10 2014

Du [6] 89.00 2015
Ours 94.40 2015

(2, 3, 4), (3, 4, 6) we obtain (2, 3, 4, 6). Hence we get two
4-motifs FT 4 = {(1, 2, 3, 4), (2, 3, 4, 6)}.

Proposition 4.1. The above expansion algorithm will not
leave out any key-pose-motifs.

Proof. If a sequence is a key-pose-motif, then its head
and tail subsequences must also be key-pose-motifs by e-
quation (1). It means that the two subsequences have al-
ready been mined. Then in the expansion stage, the two
subsequences will generate the larger candidate key-pose-
motif for sure.

5. Action Recognition: Inference Algorithm
We propose a simple classifier which works by matching

a test sequence to the key-pose-motifs of each class. During
the matching process each motif will get a probabilistic sup-
port, given by equation (1). We classify the sequence to be
the class that gets the largest average probabilistic support
over all motifs of that class. Ideally, a sequence of a particu-
lar class should have large supports for the key-pose-motifs
mined for that class and small supports for the key-pose-
motifs of other classes. Figure 2 shows an example.

The classifier is simple because it has no parameters. In
addition, it is also interpretable. We can visualize the mined
key-pose-motifs and the matched poses in a sequence. This
helps us spot why and where failures may happen. Figure 2
shows that we can even use this model for action localiza-
tion, i.e. to coarsely find the start and end of an action.

6. Experiments
We conduct experiments on four most popular action

recognition benchmarks, i.e. the MSR-Action3D dataset
[11], the UTKinect dataset [30], the MSR Daily Activity3D
dataset [27] and the Florence dataset [17]. We first compare
our method with the state-of-the-arts on the four dataset-
s respectively. Then we present diagnostic analysis of the
method on the MSR-Action3D dataset.

Action-units. In our experiment, we concatenate l
consecutive poses together to form an action-unit ŷ(i) =
[y(i) · · · y(i+l−1)] and represent an action by a sequence
of action-units: A = {ŷ(1), · · · , ŷ(m−l−1)}. Consecutive

Table 3: The state-of-the-art action recognition accuracies
using single split on the MSR-Action3D Dataset.

Methods Acc (%) Year
Vemulapalli [23] 89.48 2014

Wang [25] 90.22 2013
Wang [24] 91.30 2014
Luo [12] 96.70 2013

Ours 99.36 2015

Table 4: Action recognition accuracies on the UTKinect
Dataset using the “leave-one-sequence-out” criterion.

Methods Acc (%) Year
Maxime [5] 91.5 2014

Xia [30] 90.92 2012
Ours 93.47 2015

action-units have overlaps. The proposed mining and clas-
sification algorithms are readily applicable to the action-
unit sequences. The activated simplices are also learned
on action-units. The use of action-units is more robust to
outlier poses because a single inaccurate pose will not sig-
nificantly affect the action-unit. We evaluate the influence
of this pre-processing in experiments.

6.1. On The MSR-Action3D Dataset

The MSR-Action3D dataset provides 557 pose se-
quences of ten subjects performing 20 actions. There are
about 50 frames in each sequence. This is a challenging
dataset because first many actions in the dataset are similar
and second the pose sequences of the same action can have
large variations due to either 3D pose estimation inaccura-
cies and performing style variations.

While learning the simplicial model, we set the number
of bases to be 400 by cross-validation. We obtain about
200 activated simplices whose average dimension is about
five. While mining the key-pose-motifs, we decrease the
minimum support threshold ε from 1 to 0 with the step size
of 0.05 until we obtain about 50 key-pose-motifs for each
class. The number 50 is set by cross validation.

Most existing works choose five subjects for training and
the remaining five subjects for testing, e.g. in [11], and re-
port the result based on a single split. However, it is shown
in [15] that the way how the data are split (i.e. choosing
which five subjects for training) can have large influence
on the results. To make the results more comparable, in this
work, we experiment with all 252 possible subject splits and
report the average accuracy. Figure 4 shows the classifica-
tion confusion matrix of a certain split.

Comparison with the State-of-the-arts. Table 2 com-
pares our method with the state-of-the-art methods using
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Figure 3: The x-axis is the index of the 20 classes of key-pose-motif-models and the y-axis is the average matching scores
(standard deviations) which are computed when matching a set of test sequences of a particular class to those models. For
example, in the first sub-figure, we match a set of sequences of class 1 to the 20 classes of models and obtain the average
matching scores and standard deviations for each model. The motif model of class 1 gets the largest average score.

the protocol of “average over all splits”. We can see that
our method outperforms the state-of-the-art methods [14]
[21] [24] [6]. In addition, our method is also the simplest
in terms of both the features and the classifiers. Note that
the method proposed in [24] uses the activated simplices as
classifiers directly using a nearest-neighbor algorithm. We
can see that we improve the performance by mining key-
pose-motifs on activated simplices. Du et al. [6] use deep
learning techniques to learn an end-to-end classifier which
achieves the current best performance.

Since some methods only provide results for a single s-
plit, we also provide these numbers. However, note that
they are not directly comparable as the methods may choose
different five subjects for training. The accuracies of our
method using single split criterion: (1) the accuracy is
95.88% when we use subjects 1, 2, 3, 4, 5 for training; (2)
the accuracy is 97.44% when we use subjects 1, 3, 5, 7, 9 for
training; (3) the best accuracy of a single split is 99.36%.
Table 3 shows the state-of-the-art results using the single
split criterion.

Comparison with Baselines. The first baseline is the
Direct Matching Method. Given a test sequence of action-
units, we compute the dynamic time warping based match-
ing scores between the sequence and the training sequences
of all classes. The class that achieves the largest average
matching score is the predicted class. The method achieves
an accuracy of 88%. The result is not satisfactory which
is mainly because it cannot deal with large intra-class vari-
ations effectively. The second baseline uses the proposed
key-pose-motifs mining method. However, each action-unit
is quantized into only one symbol (It is not a probabilistic
representation). We name this method as the Deterministic
Mining Method. The deterministic mining method achieves
an accuracy of 91% which is lower than our method, but is
already higher than the state of the arts. We also compared
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Figure 4: Confusion matrix on the MSR-Action3D dataset.

with a method which uses probabilistic key-pose-motif min-
ing but uses k-means to obtain the probabilistic data. The
method achieves an accuracy of 88.7% which is lower than
ours. This is mainly because k-means based quantization
is not meaningful in the sense that semantically close poses
will have similar probabilistic representations.

6.2. On The UTKinect Dataset

The UTKinect dataset [30] was captured using a single
stationary Kinect. There are ten action including walk, sit
down, stand up, pick up, carry, throw, push, pull, wave
hands, clap hands. There are ten subjects involved in the
experiment with each subject performing each action twice.
There are 199 sequences in total.

We learn 200 bases and end up with about 120 activat-
ed simplices. The number of bases in the simplices is five



Table 5: Action recognition accuracies on the MSR Daily
Activity3D Dataset.

Methods Acc (%) Year Features
Ours 83.47 2015 Skeletons

Actionlet [27] 68.00 2012 Skeletons
HON4D [14] 80.00 2014 depth
Actionlet [27] 85.75 2012 Skeletons + depth

Xia [29] 88.20 2013 Skeletons + depth

on average. We use the “leave-one-sequence-out” evalua-
tion criterion where one sequence is used for testing and the
rest of the sequences are used for training. We repeat the
process for all sequences (199 in total) and report the aver-
age accuracy. Table 4 shows the results. We can see that
our approach outperforms the state-of-the-arts. The main
reason may be because our method suffers less from noisy
poses because it is only the key poses rather than all poses
are useful for classification. In other words, the model will
be accurate as long as the key poses are accurate.

6.3. On the MSR Daily Activity3D Dataset

The Daily Activity3D dataset is captured by a Kinect de-
vice and it provides both depth map and 3D skeleton se-
quences. It includes 16 activities: drink, eat, read book, call
cellphone, write on a paper, use laptop, use vacuum cleaner,
cheer up, sit still, toss paper, play game, lay down on sofa,
walk, play guitar, stand up and sit down. For some actions,
each subject performs them in both “sitting” and “standing”
poses. In total, there are 320 sequences.

This is a rather challenging dataset and very few work
have demonstrated good performance on it. In particular,
the 3D joint locations are very noisy when the performer
stands close to the sofa or sits on the sofa. Considering
the large amount of noises in 3D skeletons, most methods
[27, 29] combine both depth maps and 3D joint locations
for action recognition. Note that the depth map is relatively
more accurate in this dataset. Our method only uses 3D
skeletons which is a more challenging problem.

We use the cross-subject evaluation method to compare
our method with the state-of-the-arts. However, it is worth
noting that the dataset doesn’t specify which five subjects
to use for training. We report the result when training on
subjects 1-5. We also report the average recognition result
over all 252 possible splits.

Table 5 shows the results on this dataset using a single s-
plit evaluation criterion. Our method outperforms the state-
of-the-art methods [27, 29] which use only 3D skeletons or
depth maps. Some methods which use more information
(e.g., combine the 3D skeletons and depth maps) achieve
slightly better performance than ours. The average recog-
nition accuracy over all 252 splits for our method is 79%.

Table 6: Action recognition accuracy on the Florence
dataset using leave-one-actor-out setting.

Methods Accuracy (%) Year
Lorenzo et al. [17] 82.15 2013
Raviteja et al. [23] 90.88 2014

Tran et al. [5] 87.04 2014
Our Approach 92.25 2015

The result is promising given the amount of noises in the
dataset. To the best of our knowledge, no previous methods
have reported the average results.

6.3.1 The Florence Dataset

The dataset [17] was captured using a Kinect camera at the
University of Florence. It includes nine activities: wave,
drink from a bottle, answer phone, clap, tight lace, sit down,
stand up, read watch, and bow. During acquisition, ten sub-
jects were asked to perform the above actions for two or
three times. This resulted in a total of 215 activity samples.
Following the data suggestion, we adopt a leave-one-actor-
out protocol: we train the classifier using all the sequences
from nine out of ten actors and test on the remaining one.
We repeat this procedure for all actors and compute the av-
erage classification accuracy values of the ten actors.

We set the number of bases for each class to be 50 (450
in total) by cross-validation. Table 6 compares our method
with the state-of-art methods on this dataset. Our approach
achieves the highest recognition accuracy.

6.4. Diagnostic Analysis

Reasons behind the performance. We observe in ex-
periments that given a test sequence of a certain class, the
corresponding class of key-pose-motifs usually obtain very
large probabilistic supports while other key-pose-motifs ob-
tain small supports. See Figure 3. We can also tell from the
figure which actions are easy to differentiate and which are
not. For example, in the eighth sub-figure (row 2, column
3) of Figure 3, we can see that the classes of 7, 8 and 9 are
ambiguous because they all get large supports when the test
sequences are from class 8. The three classes are “draw x”,
“draw tick” and “draw circle” actions respectively which
are in fact very similar.

Influence of the Parameters. We evaluate the three
main parameters in the proposed method: the gap g in the
maximum gap constraints, the number of mined key-pose-
motifs for each class and the number of poses l in an action-
unit. To save time, we only use the first ten splits out of the
252 splits and report the average recognition accuracy.

Figure 5 shows the influence of the gap constraints. We
can see that there is large performance improvement by al-
lowing gaps between consecutive poses. One of the reasons
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Figure 5: Influence of the maximum gap constraint, the number of mined key-pose-motifs in each class and the number of
poses in an action-unit.
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Figure 6: The influence of the number of occluded joints
and the number of affected frames in a test sequence on
action recognition accuracies on the MSR-action3D dataset.
See section 6.1 for more details.

might be that it can deal with the speed variations among
different sequences. In other words, the key poses might
appear at various positions of different sequences and al-
lowing gaps between consecutive poses helps reduce the in-
fluence of the variations. The best performance is achieved
when the maximum gap is 20. After that, increasing the
gap will degrade the performance a little bit. This may be
because too large a gap encourages the model to find key-
pose-motifs that are not meaningful.

We also evaluate the influence of the number of key-
pose-motifs. We adjust the minimum probabilistic support
threshold ε and obtain a desired number of key-pose-motifs.
Figure 5 shows the result. First, using more key-pose-motifs
will consistently improve the performance when the number
is smaller than 80. This is reasonable because the model
becomes more representative using more key-pose-motifs.
However, when the number is too large, then many motifs
which only appear in a few sequences are also mined which
makes the model over representative. In other words, the
motifs become less discriminative because they might be
able to represent sequences of other classes well which de-

grades the action recognition performance.
The use of action-units improves the performance. See

Figure 5. We can see that there is a large performance im-
provement by putting more poses in an action-unit. But the
change is not significant after the number exceeds 9.

Robust to Occlusion. We now evaluate the robustness
of the method to inaccurate poses which are mainly caused
by occlusions. We synthesize a set of data by randomly
perturbing the 3D poses in the MSR-Action3D dataset. In
particular, we set some joint locations of several poses in
a pose sequence as zero to simulate occlusion. We control
the number of perturbed joints and frames. See Figure 6 for
the results. In the worst case, when 9 joints (about 45%) of
11 frames (about 20%) are contaminated, the performance
only drops by about 2%. The results justify that our method
is robust to the occlusions.

7. Conclusion
We propose a simple and interpretable method for action

recognition. By mining the key-pose-motifs which are not
necessarily adjacent in the original sequence, we obtain a
compact representation which is robust to intra-class vari-
ations. We evaluate the model on two benchmark datasets
and show that it outperforms the state-of-the-arts. More-
over, the model is easy to interpret and we can spot where
and why failures happen. In our future work, we would like
to improve the discriminative power of the method by min-
ing discriminative key-pose-motifs which can match to the
sequences of its class very well but will not match to the
sequences of other classes.
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