arXiv:1705.09776v2 [cs.MM] 9 Jun 2017

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Fast MPEG-CDVS Encoder with GPU-CPU Hybrid
Computing

Ling-Yu Duan, Wei Sun, Xinfeng Zhang, Shiqi Wang, Jie Chen, Jianxiong Yin, Simon See, Tiejun Huang,
Alex C. Kot, Fellow, IEEE, and Wen Gao, Fellow, IEEE

Abstract—The compact descriptors for visual search (CDVS)
standard from ISO/IEC moving pictures experts group (MPEG)
has succeeded in enabling the interoperability for efficient and
effective image retrieval by standardizing the bitstream syntax of
compact feature descriptors. However, the intensive computation
of CDVS encoder unfortunately hinders its widely deployment in
industry for large-scale visual search. In this paper, we revisit the
merits of low complexity design of CDVS core techniques and
present a very fast CDVS encoder by leveraging the massive
parallel execution resources of GPU. We elegantly shift the
computation-intensive and parallel-friendly modules to the state-
of-the-arts GPU platforms, in which the thread block alloca-
tion and the memory access are jointly optimized to eliminate
performance loss. In addition, those operations with heavy data
dependence are allocated to CPU to resolve the extra but non-
necessary computation burden for GPU. Furthermore, we have
demonstrated the proposed fast CDVS encoder can work well
with those convolution neural network approaches which has
harmoniously leveraged the advantages of GPU platforms, and
yielded significant performance improvements. Comprehensive
experimental results over benchmarks are evaluated, which has
shown that the fast CDVS encoder using GPU-CPU hybrid
computing is promising for scalable visual search.

Index Terms—MPEG-CDVS, feature compression, GPU, visual
search, hybrid computing, standard

I. INTRODUCTION

ECENTLY, there has been an exponential increase in

the demand for visual search, which initiates the visual
queries to find the images/videos representing the same object
or scene. Visual search can facilitate many applications such as
product identification, landmark localization, visual odometry,
augmented reality, etc. In typical visual-search systems, the
users send a query image or its visual feature descriptors to
the remote servers [[1]. The images with the same object or
scene as that in query image are identified by measuring the
visual feature descriptor distance between reference and query
images. However, efficient and effective visual search systems
are often subject to the constraints of memory footprint,

L.-Y. Duan, W. Sun, J. Chen, T. Huang, and W. Gao are with the School
of Electronics Engineering and Computer Science, Institute of Digital Media,
Peking University, Beijing 100871, China (e-mail: {lingyu, weisun199508,
cjie, tjhuang, wgao} @pku.edu.cn).

X. Zhang and Alex C. Kot are with the Rapid-Rich Object Search
(ROSE) Lab, Nanyang Technological University, Singapore (e-mail: {xfzhang,
EACKOT} @ntu.edu.sg).

S. Wang is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong (e-mail: shigwang@cityu.edu.hk).

J. Yin, S. See are with the NVIDIA AI Tech. Centre (e-mail: {jianxiongy,
ssee} @nvidia.com).

Ling-Yu Duan, Wei Sun and Xinfeng Zhang are joint first authors, and
Ling-Yu Duan is the corresponding author.

bandwidth and computational cost, low complexity generation
and fast transmission of visual queries.

Over the past decade, numerous visual feature descriptors
are proposed from the perspectives of high accuracy, low
bandwidth and fast extraction. Although the most classical
Scale-Invariant Feature Transform (SIFT) descriptor [2f] has
achieved outstanding performance, it imposes severe com-
putational burden and memory cost, especially for mobile
visual search or large-scale visual search scenarios.. This led
to lots of research work for compact descriptors. A series of
representative visual feature descriptors, e.g., SURF [3], ORB
[4], BRISK [J5]], have been proposed. However, most of them
approach the goal of reduced computational cost and improved
descriptor compactness at the expense of performance loss
compared with the original SIFT.

Towards high performance visual search, the Moving Pic-
ture Experts Group (MPEG) has published the Compact De-
scriptors for Visual Search (CDVS) standard in 2015 [6]. The
MPEG-CDVS standard provides the standardized bitstream
syntax to enable interoperability for visual search achieving
comparable accuracy with much lower bandwidth requirement
than SIFT. Herein, two kinds of compressed descriptors, i.e.,
local and global feature descriptors, are compactly represented
at different bit rates to achieve bit-rate scalability (e.g., 512B,
1KB, 2KB, 4KB, 8KB, and 16KB). As such, the stringent
bandwidth and accuracy requirements can be well fulfilled.

Besides the bandwidth and accuracy requirements, the en-
coding efficiency of CDVS descriptors directly determines the
visual search latency and affects interactive experience, which
is becoming the bottleneck in hindering its wide deployment in
industry. Especially, when targeting large-scale video analysis,
fast extracting CDVS descriptor from huge amounts of video
frames is crucial to support pervasive video analysis applica-
tions such as mobile augmented reality, robots, surveillance
and media entertainment etc . Although some algorithms have
been proposed to speed up the encoding process in CDVS
standard, e.g., image downsampling pre-processing [7] and
BFLoG [8], the efficiency of extracting CDVS descriptors falls
far behind the practical requirements of zero-latency or real-
time visual search, for example, more than 100 ms per VGA
resolution image is incurred on CPU platform.

Undoubtedly, GPU has achieved great success in high
throughput image and video processing due to its parallel-
processing capability [9]. Especially for the state-of-the-arts
convolution neural network (CNN) approaches, GPU has
become the crucial computation platform. Therefore, how to
leverage GPU to significantly speed up CDVS encoder, and

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

explore the harmonious operation and complementary effects
of (handcrafted) CDVS compact descriptors and deep learning
based features over GPU platform is becoming a promising
and practically useful topic. In this paper, we first revisit the
CDVS technique contributions in reducing computational cost.
Then, we present the fast MPEG-CDVS encoder. The main
contributions of this paper are three-fold:

1) We revisited significant contributions of MPEG-CDVS
from the perspective of reducing the computational cost
of CDVS encoders, and its merits of accommodating
parallel implementation over GPU-CPU hybrid comput-
ing platforms. With the challenges of big image/video
data analysis, the exploration of high throughout com-
puting of standard compliant low complexity CDVS
descriptor (or other handcrafted features) via hybrid
platforms are expected to facilitate the deployment of
scalable and interoperable visual search applications.

2) We proposed a very fast CDVS encoder, which elegantly
shifts the computational intensive operations to GPU
platform. By leveraging the high parallel processing
capability of GPU and the strength of parallel operations
in CDVS, the fast CDVS encoder has achieved up to
30x speedup over CPU platform without noticeable
performance loss. To the best of our knowledge, this
is the first and the fastest CDVS standard compliant
encoder over GPU platforms.

3) Furthermore, we have studied the significant perfor-
mance improvement by combining CDVS descriptors
and CNNs features over benchmarks, with 0.0305 and
0.174 mAP gains over CDVS or CNNs, respectively. In
particular, we propose the marriage of higher computa-
tional efficiency of CDVS (3.27 ms CDVS vs 144 ms
CNNs for a 640 x 480 image) and promising search
performance of CNNs towards scalable visual search
framework, in which their complementary effects in
terms of efficiency and performance have been well
demonstrated.

The remainder of this paper is organized as follows. Section
II reviews the related works. Section III revisits the techniques
to speed up the CDVS encoding process. Section IV presents
the fast CDVS encoder using GPU-CPU hybrid computing.
Extensive experimental results and discussions are reported in
Section V, and finally we conclude this paper in Section VI.

II. RELATED WORK

A. Introduction of GPU Architecture

Different from CPU, consisting of a few cores optimized for
sequential processing, GPU exhibits massively parallel archi-
tecture consisting of thousands of smaller, but more efficient
cores designed for handling multiple tasks simultaneously by
launching with Single Instruction Multiple Threads (SIMT)
in which a set of atom operations are applied to process
huge amounts of pixels in parallel. There exist a variety of
parallel computing platforms and application programming
interface models created in recent years, e.g., CUDA, Direct-
compute and OpenCL, which have significantly strengthened

CUDA Grid GPU
Streaming Streaming Streaming
Thread Blockl Thread Block2 Thread BlockM
[Core| [core Core [Core (Core [Core.
Cen e [Tt EE EE = =
it e N I
[Core| [Core Core| [Core [Core.Core.
L s oM Thveads ey — -
: : Shared Shared Shared
T | TRMThreaN ey emory meory
Shared Shared Shared L2 cache

Fig. 1. Thread Batching and GPU architecture. The computations are executed
using a batch of threads organized as a grid of thread blocks, which are
allocated to streaming multiprocessors on GPU.

the parallel-processing capabilities of GPUs towards general-
purpose computing. Herein, CUDA is the most widely used
parallel programming framework developed by NVIDIA. It
partitions workloads into thread blocks (TB), each of which
is a batch of threads that can cooperate together by effi-
ciently sharing data through some fast shared memory and
synchronizing their execution to coordinate memory accesses.
Furthermore, thread blocks of same dimensionality and size
that execute the same kernel can be batched together into a
grid of blocks, so that the total number of threads that can
be launched in a single kernel invocation is much larger as
illustrated in Fig. [I] [10]. The TBs are allocated to streaming
multiprocessors (SM) to be executed simultaneously using
GPU cores. In addition, an important feature for the shared
memory is that the memory access operation can be performed
simultaneously when the adjacent threads in the same TB
access the adjacent shared memory units, which is known as
global memory coalescing. Therefore, by optimizing the TB
allocation and memory access, the speedup of calculations on
GPU can be further improved.

B. Review of GPU based feature extraction

Based on the outstanding parallel performance of GPU,
there has been a fast growing interest in applying GPU to
speed up visual feature descriptor construction. Especially,
tremendous algorithms have been proposed for GPU based
SIFT implementation [11]-[17], as SIFT descriptors require
high computational cost and huge demand of memory. In [[11]],
an efficient GPU implementation of SIFT was presented based
on the vector operations of GPU by texture packing, and 20 fps
with the QuadroxFX 3400 GPU was realized. In [[12]], an open
source GPU/CPU mix implementation for SIFT was provided
and achieved 27.1 fps with CUDA on 8800GTX GPU. In
[15], with GTX 1060 GPU the CUDA-SIFT implementation
consumes 2.7 ms for the images with resolution 1280 x 960
and 3.8 ms for the resolution 1920 x 1080. Wang et al.
further analyzed the workload of SIFT in [16] and proposed
to distribute the feature extraction tasks to CPU and GPU,
such that a speed of 10 fps for a 320 x 256 image and 41%
energy consumption reduction can be achieved. Besides SIFT,
the speeded-up robust feature (SURF) [3], [18] and fisher
vectors (FV) [19]] were also explored in implementing using
GPU platform, and around an order of magnitude speedup was
achieved compared to CPU based implementation.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Local Feature
Selection

5 I

® select point

Interest Point
Detection

o
ALP B
detector
\— & 4 RIS
y »

® interest point el

Input Image

=
- ‘ S

scale space

easure

—
orientation
assignment

) = 11(0) f2(0) fa(d) 1) s (Pas)

On CPU
On GPU

Local Feature
Description

Local Feature
Compression

0110010...

¥
¥ CDVS Bitstream

%

%

description

Local Feature
Aggregation

—Pi J =¥ 010110...
Selection and
Binarization

Gaussian Mixture
Model

Fisher Vector

Fig. 2. The normative blocks of the CDVS standard implemented on GPU-CPU hybrid computing architecture.

Interest Point Detection: 46.8%
Local Feature Selection: 0.2%
® Local Feature Description: 41.8%
® Local Feature Aggregation: 10.97%
Local Feature Compression: 0.23%

Fig. 3. The running time consumption for different modules of CDVS, tested
on Linux PC with Intel(R) Xeon(R) CPU E5-2650 v2@2.60GHz.

Besides hand-crafted features, recently convolutional neural
network based features have achieved promising performance
in various computer vision tasks such as image classification
[20] and retrieval [21]. CNN requires extremely fast parallel
feature extraction on GPU. In [20], a highly optimized GPU
implementation of CNN is made publicly available for training
networks. A number of CNN softwares based on CUDA using
NVIDIA GPUs have also been developed, such as Caffe [22]
and TensorFlow [23].

However, although there are many visual feature descriptors
implemented on GPU, they are inferior in fulfilling several
practical but crucial requirements, e.g., low bandwidth cost,
high performance, good compactness, and the excessive GPU
resource consumption. Therefore, the very fast and standard
compliant CDVS encoder over GPU platforms can elegantly
contribute to the state-of-the-art large-scale visual search.

III. CDVS REVISIT FOR SPEEDUP

Targeting high accuracy and low bandwidth, CDVS has
achieved significant success. Although several technique pro-
posals [[8]], [24]-[28]] were proposed to speed up the encoding
process of CDVS, it cannot fulfill real-time requirement on
CPU platform. To reduce the computational complexity, CDVS
first downsamples the input images into low resolution with
the longer side less than 640. However, CDVS extraction still
needs more than 100 ms for one image [8]].

As illustrated in Fig2] the CDVS encoder can be divided
into five major modules, i.e., interest point detection, local
feature selection, description, compression and aggregation.
To analyze the computation cost of different modules, we
test the running time of each module using TM14.0 on 1000
images with resolution 640 x 480. Fig[3] shows the percentage
of average running time for different modules. From the

results we can see that interest point detection, local feature
description and aggregation take up most of the running time,
more than 99.5%. Therefore, the optimization strategy of
CDVS encoders are centralized in the three modules.

A. Interest Point Detection

The interest point detection consists of two stages, i.e.,
scale-space construction and extremum detection. The CDVS
constructs the scale space as an image pyramid which is
generated by filtering the input image via a series of 2D
separable Gaussian filters at increasing scale factors. The
interest points are regarded as the scale-space extrema of the
normalized derivatives of each scale in an image pyramid,
which is generated by applying Laplacian filter to each scale
image. Therefore, there are multiple convolution operations
for input image I with different scale factors as follows,

Ly =1Txg~f, ey

where g; and f are the Gaussian and Laplacian kernels,
respectively. Obviously, it is a computation intensive process.

To speed up the process of LoG filtering, the Block based
Frequency Domain Laplacian of Gaussian (BFLoG) filtering
[8], [24]-[26] is proposed instead of that in spatial domain.
The original input image is first decomposed into overlapped
blocks, which are further transformed into frequency domain
using Discrete Fourier Transform (DFT). Then, the spatial do-
main convolution operation can be equivalently implemented
by element-wise product between the frequency image matrix
and frequency filter kernel matrix. To remove the FFTs for
filter kernels, BFLoG adopts the fixed block size to pre-
compute convolution kernels in DFT domain, and the pre-
computation also reduces the memory cost. Due to Fast
Fourier Transform (FFT) [29]], the computational complex-
ity of convolution in spatial domain O(M2N?) becomes
O(4NZ%logN? —11N? + 16N), where M and N are the size
of square filter and square block. By optimizing the block size
and overlap size, the BFLoG achieves about 47% filtering time
reduction with ignorable performance variations.

Although the block-level interest point detection are inde-
pendent of each other, the pixels of each block are dependent
in FFT calculation, which makes it difficult to be implemented
on pixel-level parallelism. To reduce the boundary effects,
BFLoG utilizes R overlapped pixels for each N x N block,
which leads to extra computational burdens. Empirically, the

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Pre-calculated
Frequency LoG filters

5 Times

Frequency LoG Response
1 Times LoG Filtering > Block
o —>

3 Times

Gaussian Scaled
o || T | Block

Pre-calculated
Frequency Gaussian filters

1 Time

!

Gaussian Scaled LoG Response
Frequency Gaussian filters Block Block

(b)

Pre-calculated

Fig. 4. The filtering approach for BFLoG and BMLoG, (a) BFLoG, (b)
BMLoG.

block size N = 128 and overlapped size R = 16 are optimal
for performance and efficiency. However, for an 640 x 480
image, only 35 blocks can be executed in parallel, which is
much fewer than the number of GPU cores.

For the subsequent extremum detection, BFLoG has to
recompose the (LoG and Gaussian) filtered representations,
which leads to extra IFFT operations and memory increase.
There are 8 inverse IFFTs for each block with 5 scales as
illustrated in Figl(a)] Considering the Laplacian filter kernel
with fixed and small size for all the scale images, the compu-
tational cost of Laplacian convolution is much lower than that
of Gaussian convolution. Therefore, Duan et al. proposed the
mixture domain LoG filtering approach (BMLoG) to further
reduce the computation cost of BFLoG by applying Gaussian
convolution in frequency domain and Laplacian convolution
in spatial domain as shown in Figli(b)] As a result, the
filtering process has 1 FFT and 5 IFFT operations plus 5 x 7
adds/subtractions of each pixel for the Laplacian convolution,
which achieves about 20% filtering time reduction [27].

After the LoG filtering, interest points are detected by
identifying the local extrema, which needs to compare each
sample point with its 8 neighbors in the current scale image
and 18 neighbors in the above and below scales. CDVS
adopts an alternative extrema detection algorithm with low
computational complexity, which is a low-degree polynomial
(ALP) approach [28]. By assuming that LoG kernel can
be approximated by linear combinations of LoG kernels at
different coordinates and scales, ALP approximates the LoG
scale space by a third-degree polynomial of the scale oy, for
each sample point (z,y),

3
p(@,y,00) = > iz, y)o},)
1=0

where the polynomial coefficients are functions of the image
coordinates (z,y),

K-1
o = Z BriLk(z,y), i=0,1,2,3. 3)
k=0

. Time Pis(ribution vs. Feature Number

50

30
20
-1l
0

100 150

200 250 300 350 400 450 500
Number of Features

Time (ms)
S

Fig. 5. The time consumption of CDVS modules without local feature
selection when extracting different number of local features. The test is
performed on Linux PC with Intel(R) Xeon(R) CPU E5-2650 v2@2.60GHz
for 1000 images with resolution 640 x 480.

The parameters, {fy ; }, correspond to the K predefined scales
o and {Lklk = 0,--- ,K} are the LoG filtered images in
one octave. ALP first finds the scales of the extrema via the
derivatives with respect to oy, of the polynomial in Eqn.(2),
and then it compares the point with its 8 neighbors. Compared
with the previous methods, ALP is more efficient by reducing
the 18 comparisons for each sample point to 8 comparisons.

Although these fast algorithms significantly reduce both the
computational and memory costs, the computational burden
of interest point detection is still too high for CPU, and
the interest point detection is still the most time-consuming
module. Fortunately, the calculations of convolution and ALP
are suitable for pixel-level parallelism. These computations can
well fit into highly parallel architectures like GPU.

B. Local Feature selection and Description

Since there are usually hundreds or thousands of interest
points in an image as illustrated in Fig. [6] it brings difficulties
in compact representation and low computational cost when
processing all features. Fig. [5] shows the relationship between
computational cost and feature number. Selecting a subset of
good features may save considerable computation time for the
subsequent local feature description, compression and aggre-
gation. Therefore, the core module of local feature selection
plays an important role in reducing the computational cost.

During the development of CDVS, lots of methods [30]—
[32] are proposed to describe and compress a subset of
essential interest points while maintaining and even improving
search accuracy. The basic rationale is based on the statistical
characteristics to select the interest points with high probability
being positive matching ones and remove the noise points.
Samsung Electronic proposed to extract features in visual
attention regions [30] based on the assumption that more
relevant descriptors are located in salient regions for human
visual system. Thus, computation overhead can be significantly
reduced by applying feature extraction to regions of interest
(ROI). However, this method leads to performance loss due
to the inconsistency between ROIs and the distribution of true
matching points. Moreover, it is difficult to define accurate
ROIs at low computational cost.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

(a) Interest points in query image

(b) Relevance of the interest points

Fig. 6. Comparison of ALP interest point distribution and the selected interest
point distribution using the ranked values in Eqn.@), (a) ALP interest points,
(b) relevance of the interest points, where the circle size of interest points are
proportional to the relevance measure.

Finally, CDVS adopts a relevance measure to evaluate
feature significance in image matching and retrieval perfor-
mance based on five statistical characteristics of interest points,
including the scale o of the interest point, the scale-normalized
LoG response value p obtained with p(x,y, o) as in Eqn.,
the distance d from the interest point to the image center,
the ratio p of the squared trace of Hessian to the determinant
of the Hessian, and the second derivative p,, of the scale
space function with regard to o, i.e., %. The relevance
measure indicates the priori probability of a query feature
correctly matching a feature of database images. Given a
characteristic parameter by symbol y lying within region B,
the conditional probability for correct matching is

P(y€ B,c=1)
P(y € B)

CDVS attempted to learn these conditional distributions over
training pairwise feature matching from a large database of
matching image pairs [32]], and stored the quantized char-
acteristic parameters and their corresponding function values
of conditional distributions in normative tables, which may
minimize the computational cost by look-up tables.

By assuming independency of the characteristic parameters,
the relevant score for each point is obtained by multiplying
these conditional probabilities:

T(U,p, d7 p>p0'0') = fl(U)fQ(p)f3(d)f4(p)f5(paa)~ (5)

Therefore, a subset of IV interest points will be selected by
ranking relevance measure 7, and the feature description is
only performed on the selected points. Figlf] shows the dis-
tribution comparison before and after selecting salient interest
points. The circle size of interest points in Fig[6(b)| are pro-
portional to the relevance value. We can see that the selected
relevant interest points by Eqn.(3) basically fall into the salient
regions, in which feature selection can significantly reduce
the computational cost without performance degeneration. To
balance the computational cost and search accuracy, CDVS
empirically selects around 300 local feature descriptors to
represent an image, which saves more than 30% computational
cost (seeing Fig[).

fle=1ly e B) = @)

C. Local Feature Compression

The uncompressed SIFT descriptors are difficult to use
in practice for two reasons, 1) size limitation: it needs

1024 bits for each descriptor by representing each dimension
with 1 byte; 2) speed limitation: the computational cost for
byte-vector distance is too high over large-scale databases.
Therefore, the local feature compression and fast matching
in compressed domain are necessary.

During CDVS development, two kinds of compression algo-
rithms based on vector quantization and transform are widely
discussed and both of them achieve significant improvement
on compression performance and computational efficiency. In
early stage of CDVS, the Test Model under Consideration
(TMuC) for CDVS employed tree structured vector
quantization (TSVQ) [34] and product quantization (PQ)
to make compact descriptors. However, these methods need to
store huge codebooks, thereby leading to heavy computational
burdens. For example, in [36], the authors proposed PQ-SIFT
to quantize local descriptors with over a large vocabulary with
1 million centroids for 16 sub-segments.

The Multi-Stage Vector Quantization (MSVQ) scheme
was adopted into the test model TM2.0 and significantly
reduced the size of quantization tables. The MSVQ quan-
tization consists of two stages, i.e., Tree Structured Vector
Quantization (TSVQ) for the original raw descriptors at the
Ist stage and the subsequent Product Quantization (PQ) for
the residuals at the 2nd stage. After training the MSVQ over
6 million SIFT descriptors, the MSVQ only utilizes a 2-level
tree-structure quantization table with 2048 visual centers and
a PQ table with ~16K centers. Therefore, in total comparison
operations are reduced to 256 (1st level TSVQ)+8 (2nd level
TSVQ)+16K (PQ) for each descriptor, which significantly
reduces the computational cost in searching codewords.

To further reduce the computational cost, CDVS finally
adopts the transform coding with scalar quantization instead of
the MSVQ. For each SIFT subregion Histogram of Gradients
(HoG) h with bins {hg---h7}, CDVS applies an order-8
linear transform to capture the shape of HoGs. To improve
the discriminative power of descriptors, CDVS defines two sets
of transforms and applies different transforms to neighboring
subregion HoGs, and the transforms are implemented via
addtion/subtraction and shift operations with extremely low
complexity. Each element of the transformed descriptors is
further individually quantized to three values, —1, 0 and
+1, using quantization thresholds calculated from the off-
line learned probability density function of that element. This
transform coding method exhibits much lower computational
cost than MSVQ while keeping comparable performance.
More importantly, the transform coding method is codebook
free, and it is more suitable for GPU since the I/O speed is
actually the bottleneck of GPU in large-scale computing.

D. Local Feature Aggregation

The global descriptors with highly efficient distance com-
putation are crucial for fast large-scale visual search. Differ-
ent global descriptors were proposed in CDVS development
such as Residual Enhanced Visual Vector (REVV) [38], [39],
Robust Visual Descriptor (RVD) [40], and Scalable
Compressed Fisher Vector (SCFV) [42]], [43]. The REVV
utilizes a set of 190 centroids from k-means clustering of

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

SIFT descriptors off-line, and assigns each uncompressed
SIFT descriptor of an input image to its nearest centroid in
terms of L2 distance. The difference or residual between each
SIFT descriptor and its nearest centroid is computed, and
the mean residual of all the SIFT descriptors quantized to
the same centroid is computed for a centroid. A power law
with exponent value 0.6 is applied. With dimension reduction
via PCA, these residual vectors are binarized according to its
sign and concatenated to form a global descriptor. Although
the REVV is with very low computational cost and memory
footprint, the performance is yet to be improved.

Bober et al. proposed an enhanced global descriptor, RVD,
which improves the robustness of REVV by assigning each
SIFT descriptor to multiple cetroids while reducing the com-
putational cost. To reduce the computational cost, the RVD
shifts the PCA to the first stage to reduce the computational
cost for the subsequent calculations, and utilizes the matrix
multiplication to implement PCA. This transform reduces the
PCA computational complexity from O(n?) to O(n), where
n is the number of local features. In addition, the matrix
operations has been well implemented and optimized on GPU
by NVIDIA, i.e., cuBLAS, and can greatly reduce the global
memory operations compared with non-matrix operations.
Furthermore, the RVD utilizes the L1 norm distance between
SIFT descriptors and centroids instead of L2 norm distance
in REVV to avoid the computation-intensive multiplication
operations. Although each of the SIFT descriptors is assigned
to multiple centroids with a bit increased computation, the
RVD achieves better performance compared with REVV.

Finally, the CDVS adopted the SCFV as its global descrip-
tor, which takes a Gaussian Mixture Model (GMM) with 512
components to capture the distribution of up to N selected
local feature descriptors. The SCFV also firstly reduces the
SIFT dimensions utilizing PCA matrix, but it transforms the
128D SIFT into 32D instead of 48D of RVD, which further
reduces the computational cost for subsequent operations. For
each 32D vector x;, the major computation in SCFV include
probability in Eqn.@, the accumulated gradient vector gj;.
with respect to the mean of the " Gaussian function in
Eqn.(7), and its standard deviation §(¢) in Eqn.(8),

w;p; (x| \)
S o w;ps(we|A)

V(i) = (6)
K—1

1 Z N Lt — Mg
€ = —-——— 7
gy,i [(\/17z ’715(2) o) ()

t=

31

1 L
3 Z(gj ~ 3 ng)27 ®)
k=0

Jj=0

5(i) =

where p;(z:|A) is the Gaussian function, w; is the weight
of the i*" Gaussian function, and N is the number of local
features. Then, the Gaussian components are ranked in de-
scending order according to ¢, and the top K ones are selected
based on the bit budget. Since only 250 local feature and 512
Gaussian functions are applied in CDVS, there are around
4.5 million multiplications/divisions for these 32D features,

which is more than that in RVD, about 36 thousands multipli-
caitons/divisions. However, the SCFV achieves very promising
search performance and fulfills novel bit rate scalability, and
moreover all these calculations can be transformed into matrix
operations, which can be well implemented and optimized in
parallel on GPU achieving significant speedup. The detailed
speedup results for SCFV on GPU are shown in Fig[I5(c)

IV. FAST CDVS ENCODER USING GPU-CPU HYBRID
COMPUTING

Although great efforts have been made to reduce the
computational complexity of CDVS, it is still difficult to
implement highly efficient CDVS on CPU even with multiple
threads in parallel. By leveraging the massive parallel process
cores of GPU, we design and implement the very fast CDVS
encoder using GPU-CPU hybrid computing. Three major time-
consuming modules, i.e., interest point detection, local feature
description and aggregation, are shifted to GPU platform,
while the others remains on CPU platform as shown in Fig[2]
In addition, the local feature compression and aggregation are
independent process, they can be in parallel performed on
CPU and GPU simultaneously, which elegantly leverages the
computational resources on CPU and GPU. In the following
subsection, we present technical details on interest point
detection, local feature description and aggregation.

A. Interest Point Detection on GPU

In interest point detection, we adopt sperate Gaussian filters
to construct the image pyramid, utilize Laplacian filter and
ALP to detect interest points. Distinct from BFLoG, the spatial
domain Gaussian and Laplacian filtering can be implemented
in much higher degree of parallelism with very low memory
usage, while the BFLoG is only implemented on block-level
parallel with doubling memory usage due to the complex
operations in FFT. In addition, the spatial domain filtering
can be completed in one step, while the BFLoG need three
sequential steps, i.e., FFT, element-wise production and IFFT,
which incurs more process time for GPU.

The implementation of interest point detection comprises
of three basic stages as illustrated in Fig[7] Part A illustrates
the implementation of LoG filtering and ALP detection, which
outputs the interest point candidates. To achieve high degree
parallelism, the input image is first divided into N x N blocks,
and each block is assigned to a thread block (TB) to perform
LoG filtering. Since the access speed for shared memory is
much higher than graphic memory, these image blocks are
loaded into the shared memory of their corresponding thread
blocks. Then, the threads in the same TB access the pixels
from its shared memory sequentially, i.e., TBO.threadO access
the first pixel, TB.threadl access the second pixel, and so no.
This memory access mechanism is to make full use of the
merit of global memory coalescing to reduce memory access
time cost. Then, the Gaussian filtering, Laplacian filtering
and ALP detector are sequentially performed in corresponding
threads. In our implementation, we specify that both image
block and thread block are of the same size, in which each
pixel is processed on each thread in parallel.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Candidates
*x1,y1,01)

(x2,2,02)

(N> YN ON)

TBO.thread0

TBO thread |

TBO threadN .
(s Yh 04)

TBITB2,

Refined
candidates - Make comparison

(GBI) ¥4.0))

Eliminated ¥4, 04)

3,¥3,03)

@ YR 0%

® interest points

[TBO.threado
[TBO.threadt

[TBO.threadN

TBO(hread block0) TBI

TB2
CUDA grid

Fig. 7. The block diagram of the interest point detection implementation on GPU

Local descriptors

@1,31,01,0,) b

> (x1,y1,01, 61, descriptor)

(2,2,02.0)
(x1,1,01,6,,descriptor2)
(62,2,02.0)

CI7B1 4hreadd A

I TBohread! | | C1TBI threadi

‘ [T80 hread0

hread block0)
CUDA grid

Fig. 8. The block diagram of the local feature description implementation on GPU

For Part B, the interest point candidates are refined to
remove unstable interest points and more accurate locations
of interest points are determined. To speed up the process,
we reorganize the interest point data (z;,y;,0;) and the cor-
responding pixels in its 3 x 3 neighborhood into a continuous
queue. For N continuous candidates, we assign a TB with NV
threads to calculate the LoG response in a 3 x 3 region around
the candidate, which employs the global memory coalescing
to speed up the process. Afterwards, the interest points con-
sidered as an unstable ones are removed out, otherwise, more
accurate position are updated by the interpolation.

In Part C, the final interest points are determined by
comparing the neighboring ones in adjacent octaves. Likewise,
we first construct two queues for the interest point candidates
in current octave and preceding octave respectively, and then
apply one TB to perform the comparisons between one can-
didate in current octave and all the candidates in preceding
octave by the global memory coalescing. Each thread first
executes the comparison between two candidates. If they are
close enough in (z,y, o) space, the candidate with lower LoG
response is eliminated. The implementation details on each
thread are illustrated in Algorithm [1] using pseudo-code.

The pixel-level thread allocation and efficient shared mem-
ory assess significantly reduce runtime cost for interest point
detection. Based on our experimental results, the optimal
GPU implementation can achieve around 26 times speedup
compared with that on CPU platform, and the running time

decrease from 56.2ms to 2.16ms for 640 x 480 images.

B. Local Feature Description on GPU

The local feature description includes two stages, i.e., ori-
entation computation and SIFT description. To allow rotation
invariance for local feature descriptors, each interest point
is assigned one or more dominant orientations based on the
distribution of the quantized gradient directions in its neigh-
borhood with radius 3.96¢. To derive the dominant orientation,
an orientation histogram with 36 bins shall be formed from
the computed gradient orientations. The orientations with bin
values greater than 0.8 times of the highest peak are kept as
orientations of the interest point. For SIFT description, the
image patch centered at interest point (x,y) is first rotated
to the angle of its orientation, and then it is divided into 4
horizontal and 4 vertical spatial subregions referred to as cells.
The size of each side of each cell shall be 30 pixels. From
each cell, a histogram of gradients with 8 orientation bins,
referred to as cell histogram, is generated. The SIFT descriptor
is formed by concatenating these cell histograms.

Based on the above introduction, the local feature de-
scription is divided into two stages as illustrated in Fig[§]
The histogram construction occupies major computation. To
maximize the degree of parallelism, we assign one TB to
each interest point to generate the orientation histogram and
compute the dominant orientations. However, the pixel-level
parallelism with global memory coalescing is difficult to

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Algorithm 1 Interest Point Detection on GPU

Algorithm 2 Local Feature Description on GPU

Input: Input image I, Goo =1
Output: A queue of interest points
1: for o = 0 to num_octave do

2: //Stage A: Scale-space for G, o

3: Load G, to shared memory

4 parfor each pixel(z,j) do

5: //A thread corresponds to a pixel

6: Teld)[4) = 32,5 ., Goooli + plld] * gr[p]

7 Goklillj] = Z,:,’;_rk Tyl + p] * g[p]

5 Lo slill] = S ne1 Gokli+mllj +n]x fm[n]

9: Local extremum determination via Eqn.(2)

10: end parfor

11: //Stage B: Refine extremum location

12: parfor each candidate (z,,y,,0,) in Q, do

13: /IA thread corresponds to a candidate

14: (2!, y.,0l) = CoordinateRefine(z,, Yo, 05)

15: end parfor

16: //Stage C: Extremum determination between octaves

17: parfor a pair candidates do

18: /IA thread corresponds to a pair

19: dis = distance((z), y,, 00),(x)_1,Y,_1,05_1))

20: Update @, and @Q,_; according dis and
P(T0:Yor 05) P(To—1,Yo1,T0—1)

21: end parfor

22: Merge @, into output

23: Downsampling G, 4 to Got10

24: end for

Input: Interest points after feature seletction
Output: The descriptors of interest points
1: //Stage A: orientation assignment
2: parfor each interest point (zct, Yetr, o) do
3 //Apply a thread block to an interest point
4 Load R x R regions in shared memory
5: parfor each (z,y) in R X R do
6 //a thread corresponds to a pixel
7 if distance((2ctr, Yerr),(2,y)) < 3.960 then
8 Add gradient magnitudes and orientations to

histogram
9: end if
10: Compute the orientation from the histogram
11: end parfor

12: end parfor

13: //Stage B: Feature description

14: parfor Each interest point (Z¢tr, Yetr, 0,60) do
15: //Apply a thread block to an interest point
16: parfor each (z,y) in R X R do

17: /la thread corresponds to a pixel

18: if distance((@ctr, Yetr),(2,y)) < 60 then

19: Add gradient magnitudes and orientations to
histogram

20: end if

21: end parfor

22: Generate the 128D descriptor from the histogram

23: end parfor

implement by simply allocating one thread to compute the
gradient of each pixel and sum them up into a histogram.
This is because that the number of threads in one TB should
be the same, while the image patch size 3.96¢ is variant for
different interest points. If we allocate threads according to
the largest image patch, the amount of pixels is much more
than the available threads in one TB.

To solve the problem of variant patch size, we design a novel
block-based pixel-level parallelization method. For each image
patch, we divide it into non-overlapped N x NN sub-patches,
and allocate each TB with N x N threads. Then, the gradi-
ent computation can be performed in pixel-level parallelism,
and gradients are then exported to shared memory to form
gradient histograms by atomic addition. The detailed design
for local feature description is illustrated via pseudocode in
Algorithm [2] Compared with the feature-level parallelization
which assigns one independent thread to each interest point,
the proposed block-based pixel-level parallelization is more
efficient. Because feature-wise parallelization would lead to
very unbalanced workload among threads and thus degenerate
the processing efficiency on GPU due to variant patch sizes
for interest points. Besides, local feature selection is applied
in CDVS to keep less than N (/N is usually smaller than
650) features for describing an image. It means that at most
N threads can be launched simultaneously for feature-wise
parallelization, which incurs much less than cores in GPU.
Our GPU implementation for local feature description achieves
more than 90 times speedup compared that on CPU at dif-

ferent bitrates, the running time significantly decreases from
33.2 ~ 79.2 ms to 0.4 ~ 0.83 ms.

C. Local Feature Aggregation on GPU

When the stages of interest point detection and local feature
description have been implemented optimally, the proportion
of time-consumption for local feature aggregation increase
from 10% up to 80%, which becomes the bottleneck in the
whole pipeline of CDVS encoding. Hence, the remaining issue
is to speed up the local feature aggregation. As introduced in
Section there are two parts, i) dimension reduction via
PCA, ii) the fisher vector aggregation. The PCA calculation in
CDVS is defined by matrix multiplication, which can be well
fulfilled by calling the highly optimized matrix operation lib
in CUDA.

To speed up the fisher vector aggregation, we first transform
the probability calculation for each 32D local descriptors in
Eq.(9) into the matrix multiplications and a set of element-
wise operations as shown in Egn.(I0).

31

(Dig = M;1)?
Pij= Z V—%J’ ©))
k=0 7

P = (D.«D)x(1./VT)=2Dx(M./V)T+0x((M.xM)./V)T.

(10
Here, P; ; represents the probability of the it" descriptor under
the j** GMM component, D; ;, denotes the k' dimension of

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

the i'" descriptor, M;; and V; denote the k' dimension
of mean and covariance vector for the j** GMM component,
O is a matrix filled by 1 and has the same dimension with
D. The notations, *.*’ and ’./” represent the element-wise
multiplication and division. These matrix operations can be
efficiently performed by calling the well optimized matrix
operation library in CUDA. Similarly, we derive the matrix
implementation for the calculation of accumulated gradient
vectors with respect to the mean and variance denoted as
(GM) and (GV), the calculations of which are transformed

from Eqn.(TT) and Eqn.(I3) to Eqn.(I2) and Eqn.(T4).

DescNum
D; — M;

GMi;= > (FH—22xQiy), (1)

Vik

k=0 ’
GM = (QT+D—-QT x0.x M)./V, (12)

DescNum .

D — Mj, k

GVij = Z ((’kvij)2 —1)*Qij, (13)
inj Ik

GV =(Q" x(D.+ D) — Q" x D.x2M a4

+QT 0. %« (M.x M —V.xV))./(V.xV).

Here () is the normalized probability of P, and DescNum is
the number of the local feature descriptors. After these conver-
sions, local feature aggregation module can be implemented
by invoking the matrix lib in CUDA, which is well optimized
by NVIDIA. Based on the experimental results, the running
time of local feature aggregation decreases from around 13 ms
to 0.25 ms, and the speedup of GPU implementation is more
than 49 times compared that on CPU.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Databases and Evaluation Criteria

To analyze the performance of the fast CDVS encoder, we
perform pairwise matching and image retrieval tasks on patch-
level and image-level databases. Two image-level databases
are utilized in our experiments, 1) MPEG-CDVS benchmark
database [44], which consists of 5 classes: graphics, paintings,
video frames, landmarks and common objects; 2) Holiday
database [45]], which contains images from different scene
types to test the robustness to transformations such as rotation,
viewpoint, illumination changes and blurring, and is widely
used in academic literatures. In addition, we also utilize two
patch-level databases, MPEG-CDVS patch database [46] and
Winder and Brown database [47]], which contain 100K and
500K matching pairs of 64 x 64 pixels image patches involving
canonical scaled and oriented patches.

For performance validation, we adopt the Mean Average
Precision (mAP), True Positive Rate (TPR) and False Positive
Rate (FPR) to measure the image retrieval and pair matching
performance respectively. The mAP for a set of queries is
calculated as the mean of the average precision scores for
each query, which is defined as follows,

o, AP(q)

1
mAP = —/———— AP :/ p(r)dr, (15)
Q 0

TPR
TPR

0. -0~ SIFT
SURF
-©-0r8

03 BRISK
A AKAZE

=7~ COVS_CPU
=X~ CDVS_GPU

10* 10° 102 10"
FPR FPR

(@) MPEG-CDVS patch database

Fig. 9. Comparison of ROC curves at patch level for different visual
descriptors on (a) MPEG-CDVS database, (b) Winder and Brown database.

where @ is the number of queries, and AP is the average
precision, and p(r) is the precision function at recall r. The
TPR and FPR are calculated as,
TP FP

= —— FPR= ————,

TP + FN FP+1TN
where TP, FP, TN and FN are the number of the true positive,
false positive, true negative and false negative retrieval results.

The fast CDVS encoder is implemented based on the
latest CDVS reference software TM14.0 using GPU-CPU
hybrid computing. In the following section, we validate the
improvements of visual search accuracy and descriptor ex-
traction speed, respectively. To fully understand the superior
performance of CDVS, we also compare CDVS descriptor
with state-of-the-art visual feature descriptors including SIFT
[2]], SURF [3]l, ORB [4], BRISK [5]], AKAZE [48]] and LATCH
[49]], which are from OpenCV 3.2.0 with default parameters.

TPR (16)

B. Performance Comparison

In this section, we first show the patch-level evaluation as it
provides the initial idea about the performance of descriptors
and avoids the influence of different interest point selection
strategy. To understand the matching accuracy at different
FPR, the ROC curves on MPEG-CDVS and Winder and
Brown patch databases are illustrated in Figl0] The CDVS
descriptors generated from CPU and GPU platforms (denoted
as CDVS_CPU and CDVS_GPU) yields almost the same pair-
wise matching results, which verifies that the CDVS encoder
is exactly implemented on heterogeneous architectures without
performance sacrifice. The patch matching performance of
CDVS is only inferior to the original SIFT descriptors, and
much more superior to other visual feature descriptors. It is
worthy to note, CDVS only needs 32 ~ 205 bits for each
descriptor under different rate configurations, and its bitrate
is much fewer than that of SIFT, which costs 512 bytes for
each descriptor. Although SURF, ORB, BRISK, AKAZE and
LATCH are also compact descriptors, their performances are
obviously inferior to CDVS and also cannot outperform CDVS
in compactness. Herein, there are 256, 128, 256, 244 and 128
bytes in representing each SURF, ORB, BRISK, AKAZE and
LATCH descriptor, respectively. In Fig[d] we only utilize 103
bits for each CDVS descriptor.

To verify the overall performance on real images, we
carry out image-level evaluation for pair matching and im-
age retrieval tasks. In pairwise matching database, there are

(b) Winder and Brown patch database

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

H
=~ COVS_CPU
—X= CDVS_GPU

57~ CovS_CPu ||
=X~ CDVS_GPU

10" * 10"

FPR FPR

(a) MPEG-CDVS database (b) Holiday database

Fig. 10. Comparison of ROC curves of image retrieval for different visual
feature descriptors on (a) MPEG-CDVS database, (b) Holiday database.

Fig. 11. The mismatching example using SIFT descriptors.

10,155 matching image pairs and 112,175 non-matching in
MPEG-CDVS database, and 2072 matching image pairs and
20874 non-matching in Holiday database. Fig. shows the
ROC curves on image pair matching task for different visual
descriptors. The CDVS descriptors extracted using CPU and
GPU platform achieve almost the same performance, and
obviously outperform the other competitors. Remarkably, the
performance of SIFT descriptors is poor when FPR is low. It is
observed that, there are many false matched image pairs where
the resulting matched SIFT points are on the background
as illustrated in Fig[TT] This phenomena verifies that the
local feature selection not only reduces the computational
cost, but removes the non-meaningful interest points, which
significantly contributes to high performance.

In the image retrieval experiments, we compare the perfor-
mance of the CDVS and its global descriptors generated at
6 pre-defined descriptor lengths: 512 bytes, 1K, 2K, 4K, 8K
and 16K in MPEG common test conditions. From the results
in Fig[I2] we can see that the fast CDVS encoder is well
implemented in parallel using GPU platform with negligible
performance difference. Table [[] shows the detailed numerical
mAP results for CDVS_CPU and CDVS_GPU respectively,
from which the same conclusion can be drawn.

TABLE I
COMPARISONS OF CDVS CPU AND GPU IMPLEMENTATIONS ON
MPEG-CDVS DATABASE (MAP).

Global Local+Global

CPU GPU CPU GPU

512B 0.690 | 0.690 | 0.708 | 0.706
1K 0.720 | 0.720 | 0.760 | 0.760
2K 0.725 | 0.725 | 0.793 | 0.793
4K 0.780 | 0.781 | 0.820 | 0.821
8K 0.780 | 0.781 | 0.823 | 0.823
16K 0.780 | 0.781 | 0.824 | 0.823
Average| 0.746 | 0.746 | 0.788 | 0.788

o H -6~ Covs_cru
—0~-Covs_GPU
-6~ COVS_CPU_G

COVS GPUG|

04
5128 K 2 ax 8K 16K 5128 *® I 4K I 16K
Image Deseriptor Length Image Deseriptor Length

(a) MPEG-CDVS database (b) Holiday database

Fig. 12. The mAP comparison of image retrieval using CDVS on CPU and
GPU platform on (a) MPEG-CDVS database, (b) Holiday database. Herein,
CDVS_CPU_G and CDVS_GPU_G represent the CDVS global descriptors
generated on CPU and GPU platforms, repspectively.

TABLE 11
COMPARISONS OF THE RUNNING TIME FOR FEATURE DESCRIPTOR
EXTRACTION TESTED ON LINUX PC WITH INTEL(R) XEON(R) CPU
E5-2650 v2@2.60GHZ AND A QUADRO GP100 GPU. UNIT: MS

Feature Time Feature Time
CDVS_CPU 116.69 SURF 86.27
CDVS_GPU 3.27 ORB 12.6

CDVS_CPU_L 102 BRISK 19.22
CDVS_GPU_L 3.1 AKAZE | 135.55
SIFT 368.88 | LATCH | 159.48

C. Speed Comparison

In this section, we further show the speedup of the proposed
CDVS encoder compared with that on CPU platform. Table [II]
shows the average running time of extracting different visual
descriptors on 1000 images with resolution 640 x 480. The
notations CDVS_CPU_L and CDVS_GPU_L represents the
running time for CDVS local feature descriptor extraction
on CPU and GPU platform. Except for CDVS_GPU and
CDVS_GPU_L, all others descriptors are extracted on CPU
platform with Intel(R) Xeon(R) CPU E5-2650 v2@2.60GHz.
The CDVS_GPU using Quadro GP100 achieves significant
speedup compared with that on CPU platform when extracting
200 ~ 300 local features from each image, which achieves
more than 35 times speedup for CDVS_CPU. The average
of CDVS extraction time is reduced from 116.69 ms on
CPU platform to 3.27 ms on GPU platform. Compared with
other visual feature descriptors extracted on CPU platform, the
proposed CDVS encoder also significantly outperforms them,
and it can well satisfy practical real-time applications.

Limited by computational power, the CDVS selects no
more than 300 local features for each image, which may be
less optimal for visual search accuracy especially for high
resolution images. Hence, we further analyze the relationship
between the number of local features and extraction time
(Seeing Fig. [T3). We can see that with the increase of local
features, the extraction time increases almost linearly on CPU.
However, by leveraging GPU, the extraction time cost almost
keeps in the same level, about 3 ms. Therefore, more local
feature descriptors can be allowed to further improve CDVS
performance over GPU platforms, without noticeable increase
of computational cost.

When dealing with high resolution images, CDVS needs
to first downsample the input images into low resolution

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

=©—mAP_CPU_4K
=E=mAP_GPU_4K

100

Time (ms)

0.77% i L ! L ; i Ly
100 150 200 250 300 350 400 450 500
Number of Features

Fig. 13. The image retrieval performance vs. extraction time for CDVS on
CPU and GPU platform, tested on Linux PC with Intel(R) Xeon(R) CPU
E5-2650 v2@2.60GHz and a Quadro GP100 GPU.

—-©-CDVS_GPU

++++ CDVS_GPU_Detection
12| |-©-- CDVS_GPU_Description
CDVS_GPU_Aggregation

Time (ms)

Py

0
352x240 640x480 720x576

Image Resolution

1080x720 1920x1080

Fig. 14. Influences of the resolution on the feature extraction complexity
on GPU platform, tested on Linux PC with Intel(R) Xeon(R) CPU E5-2650
v2@2.60GHz and a Quadro GP100 GPU.

with the large side no longer than 640. The downsampling
operation can directly reduce the computational cost, but it
also brings image distortion or information loss especially for
high resolution images. We explore the variations of feature
extraction time along with image resolutions for CDVS using
GPU platform, and the results are shown in Fig[T4 We can
see that the most time-consuming module on GPU is still
the interest point detection, which has been implemented on
pixel-level parallelism. When the pixel number exceeds thread
number, the running time will increase significantly. Therefore,
the running time increases very slowly when we have enough
computational resources on GPU, e.g., the image resolution
smaller than 1080 x 720. The running time for local feature
description and aggregation almost does not changes since
their computation mainly depend on the number of local
features.

To explore the speedup on GPU, we test the running time
for these modules on CPU and GPU respectively, and Fig. [15]
shows their running time at different pre-defined descriptor
length. The CDVS_GPU achieves about 26, 50 and 22 times
speedup for interest point detection, local feature description
and aggregation compared with that of CDVS_CPU, respec-
tively. Fig[T6] shows the running time proportion for different
modules with GPU-CPU hybrid computing. We can see that
the running time consumption can be covered by the local
feature aggregation when using GPU-CPU hybrid computing.

To further test the speedup of the fast CDVS encoder, we run
tests on different kinds of GPUs as shown in Table Herein,

the 11 NVIDIA GPUs are utilized in our experiment, Tesla
M40, GTX1060, GTX1080 and GTX1080Ti are the popular
GPUs targeting at hyper-converged systems, and the Jetson
TX1 is the popular GPU for embedded systems. Specially,
NVIDIA has provided us the up-to-date GPUs for the two
systems, i.e., Tesla P40, P100, Titan X, Quadro GP100 and
Jetson TX2, which shows the maximum speedup. Our CDVS
encoder only costs 3.38 ~ 5.06 ms for VGA resolution
images on popular GPUs, and 3.24 ~ 3.75 ms on the up-
to-date GPUs. Even for the 1920 x 1080 images, our encoder
can extract the descriptors in real time with minimum 12.41
ms. More importantly, our CDVS encoder can extract feature
descriptors for 640 x 480 images in real time on Jetson TX2,
which are the promising platform for embedded systems with
low power consumption. This indicates that the CDVS can be
well deployed on mobile devices to support very fast visual
search. Based on comprehensive experimental results, we can
claim that the CDVS using GPU-CPU hybrid computing can
well support scalable image/video retrieval and analysis with
real-time requirements.

TABLE III
THE RUNNING TIME COMPARISON OF CDVS ON DIFFERENT GPU
PLATFORM, TESTED ON LINUX PC WITH INTEL(R) XEON(R) CPU
E5-2650 v2 @ 2.60GHz, TIME (MS).

GPUs 640 % 1920x | GPUs 640 x 1920
480 1080 480 1080
GTX 1060 5.05 20.91 GTX 1080 354 12.97
Tesla M40 5.02 20.4 GTX 1080Ti 3.38 12.58
Titan X uadro
Pascal* 3.75 15.37 gPlOO* 3.27 12.41
Tesla P4(F] 3.7 14.38 | Jetson TX1 40.22 161.51
Tesla P100* 3.56 14.61 | Jetson TX2* 28.69 138.74

D. Promising Future of CDVS and CNN Feature Descriptors

CDVS provides MPEG standard compliant handcrafted vi-
sual feature descriptor with high performance, good com-
pactness and friendly to parallel implementation. Recently,
although the visual feature descriptors generated from convo-
lutional neural network (CNN) have provide very promising
performance, the performance can be further improved when
combining the handcraft visual descriptors of CDVS. In [50],
we have proposed a Nested Invariance Pooling (NIP) method
to obtain compact and robust CNN descriptors, which are
generated by applying three different pooling operations to the
feature maps of CNNs in a nested way towards rotation and
scale invariant feature representation. To explore the potential
performance, we combine the CDVS local and global feature
descriptors with two CNN features, i.e., NIP-VGG-16 [50] and
RMAC [51] to perform pair matching and image retrieval.

In our experiments, the dimensions of NIP-VGG-16 and
RMAC descriptors are 512. We use 4 bytes to represent
each dimension, which leads to 2KB representation for NIP-
VGG-16 and RMAC. Table [[V| shows the image retrieval and
matching performance on MPEG-CDVS database. Although
both CNN feature descriptors achieve good performance at low

*The state-of-the-art GPU provided by NVIDIA

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

Interest Point Detection

CIcovs-cPu

B CDV'S-GPU g0 || CcDVS-CPU

I CDVS-GPU

6.6 56.31 56.71

&
1S
1S
2
-
3

43.56

8 33.54 33.18

2.14 2.13 2.16 2.2 215
- -

B = ° 0.4 0.401 | lo.a1

‘Local Feature De‘scription‘

0.456

‘Local Fegtu re Aggregation

[CIcovs-cPu
I CDVS-GPU 13.32 13.25 3.34

11.82 1S

\‘
=
)

Time (ms)

5 | ogs 024 025

9.237 0,268 2271 927

5128 1K 2 4K 8K 16K 5128 1K 2K 4K
Descriptor Length Descriptor Length

(@ (b)

8K 16K 512B 1K 2K 4K 8K

Descriptor Length

(©)

16K

Fig. 15. Complexity comparisons for different modules. (a) Interest point detection; (b) Local feature description; (c) Local feature aggregation. These results
are tested on on Linux PC with Intel(R) Xeon(R) CPU E5-2650 v2@2.60GHz and a Quadro GP100 GPU.

TABLE IV
PERFORMANCE COMPARISON OF CNNs, CDVS AND THEIR COMBINATION DESCRIPTORS, TESTED ON LINUX PC WITH INTEL(R) XEON(R) CPU
E5-2650 v2@2.60GHZ AND A QUADRO GP100 GPU.

mAP Top Match | TPR@FPR=0.01 | Descriptor Size | Extraction time (ms) Memory
CDVS 0.8203 0.9093 0.918 4 KB 3.27 205 MB
RMAC 0.57 0.6638 0.456 2 KB 36.5 6635 MB
RMAC + CDVS local 0.7858 0.8921 0.913 4 KB 40.1 6715 MB
RMAC + CDVS global 0.8009 0.872 0.8714 4 KB 40.2 6840 MB
NIP-VGG-16 0.6768 0.7809 0.52 2 KB 144 6635 MB
NIP-VGG-16 + CDVS local 0.8003 0.865 0.9166 4 KB 147.6 6715 MB
NIP-VGG-16 + CDVS global | 0.8508 0.9124 0.874 4 KB 147.7 6840 MB

Interest Point Detection: 66.16%
Local Feature Selection: 6.95%
® Local Feature Description: 13.59%
® Local Feature Aggregation: 8.16%
Local Feature Compression: 5.14%

Fig. 16. The running time consumption for different modules of the
proposed fast CDVS, tested on Linux PC with Intel(R) Xeon(R) CPU ES-
2650 v2@2.60GHz and a Quadro GP100 GPU.

bitrate, their performances are further improved by combining
CDVS descriptors. The improvements of NIP-VGG-16 with
CDVS global descriptors are up to 0.0305 and 0.174 compared
with CDVS and NIP-VGG-16 respectively in terms of mAP.
To the best of our knowledge, the combination of CNN and
CDVS achieves the best pair matching and image retrieval
performance at the same descriptor length, which also has been
verified in the latest proposals of the emerging MPEG Com-
pact Descriptors for Video Analysis (CDVA)standard [52].

Although the CNN descriptors achieve promising results in
computer vision applications, the extremely huge computa-
tional burdens make them heavily dependent on GPU platform.
For 1000 VGA resolution images, the average running time of
CNN descriptor extraction about 144 ms and 36.5 ms for NIP-
VGG-16 and RMAC networks, which obviously exceed that of
CDVS on the GPU platform. In additional, the CNN descriptor
extraction also consumes too much memory compared with
that of CDVS as shown in Table Hence,it is promising
to combine the CNN feature descriptors and the handcraft
feature descriptors, and implement them harmonically using

GPU platform, which can provide scalable descriptors for both
computational resources and visual search accuracy.

VI. CONCLUSION

We have revisited the merits of the MPEG-CDVS standard
in computational cost reduction. A very fast CDVS encoder
has been implemented using hybrid GPU-CPU computing.
By thoroughly comparison with other state-of-the-art visual
descriptors on large-scale database, the fast CDVS encoder
achieves significant speedup compared with that on CPU plat-
form (more than 35 times) while maintaining the competitive
performance for image retrieval and matching. Furthermore,
by incorporating the CDVS encoder with deep learning based
approaches on GPU platform, we have shown that the hand-
craft visual feature descriptors and CNN based feature descrip-
tors are complementary to some extent and the combination of
CDVS descriptors and the CNN descriptors has achieved the
state-of-the-art visual search performance over benchmarks.
Especially towards real-time (mobile) visual search and aug-
mented reality applications, how to harmoniously leverage
the merits of highly efficient and low complexity handcrafted
descriptors, and the state-of-the-art CNNs based descriptors
via GPU or GPU-CPU hybrid computing, is a competitive
and promising topic.

REFERENCES

[1] B. Girod, V. Chandrasekhar, R. Grzeszczuk, and Y. A. Reznik, “Mobile
visual search: Architectures, technologies, and the emerging mpeg
standard,” IEEE MultiMedia, vol. 18, no. 3, pp. 86-94, 2011.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91-110,
2004.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346-359, 2008.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 2564-2571.

S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International Conference on
Computer Vision, Nov 2011, pp. 2548-2555.

L.-Y. Duan, V. Chandrasekhar, J. Chen, J. Lin, Z. Wang, T. Huang,
B. Girod, and W. Gao, “Overview of the MPEG-CDVS standard,” IEEE
Transactions on Image Processing, vol. 25, no. 1, pp. 179-194, 2016.

“Information technology-Multimedia content description interface-
Part 13: Compact descriptors for visual search,” ISO/IEC
JTC1/SC29/WG11/N14956, Oct 2014.

J. Chen, L. Y. Duan, F. Gao, J. Cai, A. C. Kot, and T. Huang, “A
low complexity interest point detector,” IEEE Signal Processing Letters,
vol. 22, no. 2, pp. 172-176, Feb 2015.

M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with cuda,” Micro, IEEE, vol. 28, no. 4, pp. 13-27, 2008.

S. Clara, “Nvidia cuda compute unified device architecture: Program-
ming guide version 1.1.”

S. Heymann, K. Miiller, A. Smolic, B. Froehlich, and T. Wiegand,
“SIFT implementation and optimization for general-purpose GPU,”
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, 2007.

C. Wu, “SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT),” 2007.

B. Rister, G. Wang, M. Wu, and J. R. Cavallaro, “A fast and efficient
SIFT detector using the mobile GPU,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013, pp.
2674-2678.

C. Lee, C. E. Rhee, and H.-J. Lee, “Complexity Reduction by Modified
Scale-Space Construction in SIFT Generation Optimized for a Mobile
GPU,” IEEE Transactions on Circuits and Systems for Video Technology,
2016.

CUDASIFT, “https://github.com/Celebrandil/CudaSift,” 2007.

G. Wang, B. Rister, and J. R. Cavallaro, “Workload analysis and efficient
OpenCL-based implementation of SIFT algorithm on a smartphone,” in
Global Conference on Signal and Information Processing (GlobalSIP),
2013 IEEE, 2013, pp. 759-762.

D. Patlolla, S. Voisin, H. Sridharan, and A. Cheriyadat, “GPU acceler-
ated textons and dense sift features for human settlement detection from
high-resolution satellite imagery,” GeoComp, 2015.

N. Cornelis and L. Van Gool, “Fast scale invariant feature detection
and matching on programmable graphics hardware,” in Computer Vision
and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer
Society Conference on, 2008, pp. 1-8.

W. Ma, L. Cao, L. Yu, G. Long, and Y. Li, “GPU-FV: Realtime
Fisher Vector and Its Applications in Video Monitoring,” arXiv preprint
arXiv:1604.03498, 2016.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

L. Zheng, Y. Yang, and Q. Tian, “SIFT meets CNN: a decade survey of
instance retrieval,” arXiv preprint larXiv:1608.01807, 2016.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675-678.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

D. Pau, E. Napoli, G. Lopez, E. Plebani, A. BRUNA, and
D. SORENSEN, “Fourier transform Based interest point detector using
LoG frequency response,” ISO/IEC JTCI1/SC29/WGI11/M28076, Jan
2013.

Z. Liu, Q. Zhou, and X. Guojun, “Huaweis Response to CE 4:
Preliminary Results by Fourier Transform Based LOG,” ISO/IEC
JTC1/SC29/WG11/M28090, Jan 2013.

C. Jie, L.-Y. Duan, T. Huang, W. Gao, A. C. Kot, M. Balestri,
G. Francini, and S. Lepsgy, “CDVS CEl: A low complexity detector
ALP_BFLoG,” ISO/IEC JTC1/SC29/WG11/M33159, Oct 2014.

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

C. Jie, L.-Y. Duan, T. Huang, and W. Gao, “Peking University Re-
sponse to CEl: Improved BFLoG Interest Point Detector,” ISO/IEC
JTC1/SC29/WG11/M31399, Oct 2013.

G. Francini, S. Lepsoy, and M. Balestri,
Italias response to CEl interest point
JTC1/SC29/WG11/M30256, Jul 2013.

P. Carr and D. Madan, “Option valuation using the fast fourier trans-
form,” Journal of computational finance, vol. 2, no. 4, pp. 61-73, 1999.
L.-T. Cheok, J. Song, and K. Park, “CDVS: Telecom Italias response
to CEl interest point detection,” ISO/IEC JTCI1/SC29/WG11/M23822,
Feb 2012.

W. Chunyu, L.-Y. Duan, C. Jie, T. Huang, and W. Gao, “Reference
results of key point reduction,” ISO/IEC JTC1/SC29/WG11/M23929, Feb
2012.

G. Francini, S. Lepsgy, and M. Balestri, “Selection of local features for
visual search,” Signal Processing: Image Communication, vol. 28, no. 4,
pp. 311-322, 2013.

G. Francini, S. Lepsoy, and M. Balestri, “Description of Test Model
under Consideration for CDVS,” ISO/IEC JTCI1/SC29/WG11/N12367,
Feb 2012.

——, “Telecom Italia Response to the CDVS Core Experiment 2,”
ISO/IEC JTC1/SC29/WG11/M24737, Apr 2012.

H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 33, no. 1, pp. 117-128, 2011.

J. Chen, L.-Y. Duan, C. Wang, T. Huang, and W. Gao, “Peking Univ.
Response to CE 2: Improvements of the SCFV Global Descriptor,”
ISO/IEC JTC1/SC29/WG11/M22806, Oct 2011.

C. Jie, L.-Y. Duan, T. Huang, and W. Gao, “CDVS:CE2: Multi-
Stage Vector Quantization for Low Memory Descriptors,” ISO/IEC
JTCI1/SC29/WG11/M24780, Apr 2012.

D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, H. Chen, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Residual enhanced visual vectors for on-
device image matching,” in Signals, Systems and Computers (ASILO-
MAR), 2011 Conference Record of the Forty Fifth Asilomar Conference
on. IEEE, 2011, pp. 850-854.

D. Chen, V. Chandrasekhar, G. Takacs, S. Tsai, M. Makar, R. Vedan-
tham, R. Grzeszczuk, and B. Girod, “Improvements to the Test
Model Under Consideration with a Global Descriptor,” ISO/IEC
JTC1/SC29/WG11/M23578, Feb 2012.

S. S. Husain and M. Bober, “Improving large-scale image retrieval
through robust aggregation of local descriptors,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2016.

M. Bober, S. Husain, S. Paschalakis, and K. Wnukowicz, “Improving
performance and usability of CDVS TM7 with a Robust Visual De-
scriptor (RVD) - CE 2 Proposal from University of Surrey and Visual
Atoms,” ISO/IEC JTCI1/SC29/WG11/M31426, Oct 2013.

J. Lin, L.-Y. Duan, Y. Huang, S. Luo, T. Huang, and W. Gao, “Rate-
adaptive compact fisher codes for mobile visual search,” IEEE Signal
Processing Letters, vol. 21, no. 2, pp. 195-198, 2014.

J. Lin, L.-Y. Duan, Z. Wang, T. Huang, and W. Gao, “Peking Univ.
Response to CE 2: Improvements of the SCFV Global Descriptor,”
ISO/IEC JTC1/SC29/WG11/M31401, Oct 2013.

“Evaluation framework for compact descriptors for visual search,”
ISO/IEC JTC1/SC29/WG11/N12202, Jul 2011.

H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” Computer Vision—
ECCV 2008, pp. 304-317, 2008.

CDVS Patches, 2013. [Online]. Available: http://blackholel.stanford.
edu/vijayc/cdvspatches.tar

S. Winder, G. Hua, and M. Brown, “Picking the best daisy,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.
IEEE, 2009, pp. 178-185.

P. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for
accelerated features in nonlinear scale spaces,” in British Machine Vision
Conference, 2013, pp. 13.1-13.11.

G. Levi and T. Hassner, “Latch: Learned arrangements of three patch
codes,” in 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), March 2016, pp. 1-9.

Y. Lou, Y. Bai, J. Lin, S. Wang, J. Chen, V. Chandrasekhar, L.-Y. Duan,
T. Huang, A. C. Kot, and W. Gao, “Compact deep invariant descriptors
for video retrieval,” in 2017 Data Compression Conference, 2017.

G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with inte-
gral max-pooling of cnn activations,” arXiv preprint arXiv:1511.05879,
2015.

“CDVS:
detection,”

Telecom
ISO/IEC

http://arxiv.org/abs/1604.03498
http://arxiv.org/abs/1608.01807
http://arxiv.org/abs/1603.04467
http://blackhole1.stanford.edu/vijayc/cdvs patches.tar
http://blackhole1.stanford.edu/vijayc/cdvs patches.tar
http://arxiv.org/abs/1511.05879

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2017

[52] Y. Lou, F. Gao, Y. Bai, J. Lin, S. Wang, J. Chen, C. Gan,
V. Chandrasekhar, L. Duan, T. Huang, and A. Kot, “Improved
retrieval and matching with CNN feature for CDVA,” ISO/IEC
JTC1/SC29/WG11/M39219, Oct 2016.

	I Introduction
	II Related Work
	II-A Introduction of GPU Architecture
	II-B Review of GPU based feature extraction

	III CDVS Revisit for Speedup
	III-A Interest Point Detection
	III-B Local Feature selection and Description
	III-C Local Feature Compression
	III-D Local Feature Aggregation

	IV Fast CDVS Encoder using GPU-CPU Hybrid Computing
	IV-A Interest Point Detection on GPU
	IV-B Local Feature Description on GPU
	IV-C Local Feature Aggregation on GPU

	V Experimental Results and Analysis
	V-A Databases and Evaluation Criteria
	V-B Performance Comparison
	V-C Speed Comparison
	V-D Promising Future of CDVS and CNN Feature Descriptors

	VI Conclusion
	References

