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Person re-identification (RelD) is a challenging task due to arbitrary human pose variations, background
clutters, etc. It has been studied extensively in recent years, but the multifarious local and global fea-
tures are still not fully exploited by either ignoring the interplay between whole-body images and body-
part images or missing in-depth examination of specific body-part images. In this paper, we propose a
novel attention-driven multi-branch network that learns robust and discriminative human representation
from global whole-body images and local body-part images simultaneously. Within each branch, an intra-
attention network is designed to search for informative and discriminative regions within the whole-body
or body-part images, where attention is elegantly decomposed into spatial-wise attention and channel-
wise attention for effective and efficient learning. In addition, a novel inter-attention module is designed
which fuses the output of intra-attention networks adaptively for optimal person RelD. The proposed
technique has been evaluated over three widely used datasets CUHKO3, Market-1501 and DukeMTMC-
RelD, and experiments demonstrate its superior robustness and effectiveness as compared with the state

of the arts.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Person re-identification (ReID) aims to identify the same indi-
vidual across non-overlapping cameras. It has attracted increasing
interests in recent years in the computer vision and pattern recog-
nition research communities, largely due to its wide applications in
surveillance analysis, etc. On the other hand, person RelD remains
an open research challenge because of two major factors. First, the
same person often has very large ‘intra-class’ variation due to dif-
ferent imaging conditions in camera sensors, human poses, occlu-
sion, background clutters and illuminations as illustrated in Fig. 1a.
Second, as shown in Fig. 1b, the ‘inter-class’ variation of differ-
ent persons may be much smaller as compared with the ‘intra-
class’ variation of the same person. Most traditional methods ad-
dress these challenges by either designing discriminative features
[1-8] or learning powerful similarity metrics [7,9-17].

Deep neural networks have been widely used for the per-
son RelD task in recent years. Leveraging large-scale person RelD
datasets such as CUHKO3 [18], Market-1501 [19] and DukeMTMC-
RelID [20], they have achieved very competitive performance and
become prevalent in human visual feature learning. Most exist-
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ing methods [21,22] learn a global representation from whole-body
images but lose discriminative information lying around specific
body parts. For example, the two distinct persons in the middle
of Fig. 1b have very similar global appearance but fine differences
around the head region. To capture the local discriminative infor-
mation, several works [23,24] have been reported to learn part rep-
resentations from some predefined horizontal partition strips. But
human images collected by automatic detectors often suffer from
misalignment and even part missing as illustrated in Fig. 1c. To
address the misalignment issue, pose estimation [25,26] has been
exploited to detect human parts to learn the local discriminative
features. On the other hand, different regions within the same hu-
man part usually have different importance to the local discrimina-
tive feature learning, and different human parts also have different
contributions to the final person RelD matching.

Visual attention can be exploited to detect informative pix-
els/regions within an image, which has good potential to train bet-
ter deep network models by guiding the learning toward infor-
mative image regions [27,28]. Given top-down target information,
it helps to learn target relevant features and produces an atten-
tion map where regions of interest if present usually have much
stronger response as compared with non-target regions. Atten-
tion has been used in person RelD, but most works [29,30] learn
global attention from whole-body images only where discrimina-
tive features of body-part images are often suppressed, e.g. the
global attention has strong responses around certain specific re-
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Fig. 1. Person RelD Challenges: The ‘intra-class’ appearance variations of the same person in 1a (grouped by green-color boxes) may be larger than the ‘inter-class’ appearance
variations of different persons in 1b (grouped by red-color boxes) due to different human poses, occlusion, illuminations, etc. Additionally, large ‘intra-class’ variations could
be introduced by misalignment resulting from the inaccurate human detection as illustrated in 1c. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 2. Global attention detects globally discriminative regions which may suppress local informative regions and is insufficient in representation learning for person RelD

by itself.

gions only as illustrated in Fig. 2. Several attempts have been re-
ported [29,31] to learn attention in multiple rounds under different
parameters aiming to capture more local discriminative features,
but the learnt attention is still global using whole-body images
which often leads to redundant focus around similar regions.

We design an attention-driven person RelD network that ad-
dresses the above constraints from two aspects: 1) it learns com-
plementary discriminative representations from global whole-body
images and local body-part images independently, and 2) it fuses
the global and local features according to their learned contribu-
tions/importance to the feature matching. We formulate the two
aspects by two specific terms, namely, intra-attention and inter-
attention. The intra-attention aims to guide the learning to capture
discriminative features of whole-body images and body-part im-
ages more precisely. For the whole body and each of the interested

body parts, a dedicated intra-attention network is designed to
learn the optimal feature representation and attention maps simul-
taneously. The inter-attention then learns optimal weights adap-
tively for optimal fusion of the output of intra-attention networks.
To the best of our knowledge, this is the first attempt that models
intra-attention and inter-attention under an end-to-end trainable
network architecture. The proposed technique has four major con-
tributions as listed:

o It designs a novel multi-branch network architecture that learns
precise and discriminative person RelD features under the guid-
ance of intra-attention and inter-attention.

o It designs a novel intra-attention network that learns discrim-
inative features from precisely aligned global whole-body im-
ages and body-part images concurrently and independently.
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o It designs a novel inter-attention module that fuses discrimina-
tive features of the global whole-body images and local body-
part images adaptively for optimal person RelD.

o It develops an end-to-end trainable deep network system that
achieves superior person RelD performance across a number of
widely used benchmarking datasets.

The rest of this paper is organized as follows. Section 2 briefly
overviews related works. Section 3 presents our proposed method
in detail. Implementation details and experimental results are pre-
sented in Section 4. Finally, several concluding remarks are drawn
in Section 5.

2. Related work

Person RelD has been studied for years and a large number of
person RelD techniques have been reported in the literature. This
section will focus on prior works using deep networks because
our proposed approach is deep network based and also deep net-
work based techniques clearly outperform most prior works using
‘shallow’ models. According to different learning strategies, existing
deep network based methods can be broadly grouped into three
categories including: 1) methods using global whole-body infor-
mation only [18,21,22,32-43], 2) methods using both global whole-
body and local body-part information [23-26,44-47] and 3) meth-
ods using attention [27-31,48-51].

2.1. Person RelD using whole-body information

Earlier deep person RelD works learn global representation
from whole-body images only. Different approaches have been re-
ported to learn representation features and distance metrics by us-
ing different losses such as identity classification loss, pair-wise
verification loss and triplet ranking loss [18,32,33]. For example,
Xiao et al. [21] train a classification model by treating images of
a unique person as a specific category. In [36,37], pose-normalized
images are included to train the classification model. Different net-
works have also been investigated for the person RelD problem.
For example, Siamese networks which learn to estimate the simi-
larity between a pair of images have been studied for person RelD
by jointly considering classification and verification losses [34,38].
Triplet networks have also been studied for person RelD by learn-
ing relative similarity among three types of images including an-
chors, positive ones and negative ones. For example, Wang et al.
[22] combine triplet loss with a pairwise verification loss to unify a
single-image representation and a cross-image representation and
Hermans et al. [39] use a variant of the triplet loss to perform end-
to-end deep metric learning. Quadruplet deep network which learn
from four input images with a margin-based online hard negative
mining strategy have also been investigated for person RelD prob-
lem recently [40]. Further, different person attributes have been
examined to improve the discrimination of the learned represen-
tation, e.g. Lin et al. [42] explore complementary cues from at-
tribute labels for better RelD performance and Su et al. [35] de-
sign a semi-supervised attribute learning framework to learn bi-
nary attribute features. Though these methods can learn global
person representation effectively, they often produce sub-optimal
RelD performance because they ignore the very informative details
around body parts.

2.2. Person RelD using whole-body and part information

To address the constraints of using the whole-body information
only, a number of new methods have recently been designed to
capture richer and finer visual cues by jointly learning from both
whole-body images and body-part images. These newly designed

methods can be broadly classified into three categories depend-
ing on the part generation scheme. Methods in the first category
use some predefined partition strategy such as fixed-height hor-
izontal strips [23,24,46]. This approach is simple to implement,
but the predefined partitions are often poorly aligned with hu-
man body parts when human images are collected using imper-
fect automatic detectors. Methods in the second category use off-
the-shelf pose estimation models to detect body parts. For exam-
ple, Zhao et al. [25] first learn part representation and then fuse
them with the global representation iteratively for person RelD.
Wei et al. [26] perform person RelD by concatenating part repre-
sentation and global representation directly. Though learning rep-
resentation from the estimated body parts alleviates the misalign-
ment constraint, it can easily lead to failure when certain body
parts are occluded or missing due to detection errors. Methods in
the third category jointly learn part regions and features. For ex-
ample, Li et al. [47] propose to localize body parts using Spatial
Transformer Networks (STN) [52] but the learned body parts may
belong to similar regions. Yao et al. [53] propose to estimate body
parts in a feature space and generate local features by ROI pool-
ing, but the method is computationally intensive in both training
and testing stages. More importantly, these methods focus more
on developing robust part partition schemes instead of extracting
discriminative features from body parts, and most of them ignore
different importance while fusing local features of different body
parts.

2.3. Person RelD using attention

In recent years, visual attention [54] has been widely exploited
to learn visual representations in various tasks in classification
[28,55], object recognition [27], image captioning [48] as well as
person RelD [3,30,31,50,51,56]. Liu et al. [3] propose an atten-
tion model that dynamically generates discriminative features from
global whole-body images in a recurrent way. Li et al. [31] pro-
pose a Harmonious Attention (HA) model that locates body parts
from whole-body images and learns multi-scale feature maps si-
multaneously. Liu et al. [30] propose a multi-directional attention
module that generates attentive features by masking different lev-
els of features using an attention map. Si et al. [50] extract fea-
ture vectors by pooling predefined sub-regions and then apply an
intra-sequence attention mechanism to refine the extracted feature
vectors. Chang et al. [51] propose a Multi-Level Factorisation Net
(MLEN) that learns visual factors at multiple semantic levels where
an attentive factor selection module is designed to dynamically se-
lect which subset of factor modules are activated. Most existing
works thus focus on attention learning using whole-body images,
where dedicated attention learning from each body parts is largely
neglected. On the other hand, global attention focuses more on
global informative regions which often suppresses or ignores lo-
cal informative regions around body parts and accordingly leads
to suboptimal RelD performance when person images suffer from
large pose variations, severe misalignments, local occlusion, etc.

The proposed attention-driven person RelD technique addresses
the above constraints from two aspects. First, it learns comple-
mentary intra-attention from global whole-body images and lo-
cal body-parts images independently. Second, it exploits inter-
attention that fuses the global and local features according to their
relevance to person RelD.

3. Methodology

Given n training images I = {I,-}?;(} of g distinct person with the
corresponding identity labels L = {L,-}?;l (where L; € [0, ...,q—1]),
the target of person RelD is to learn a model that is capable of
re-identifying images of the same person given some query image.
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Fig. 3. The framework of the proposed attention-driven network: Given a person image I;, an aligned whole-body image and four body-part images are first determined
by pose estimation. Five intra-attention networks with shared lower convolutional layers then map the respective input image to discriminative features as supervised by
independent softmax classification loss. An inter-attention module is further trained to fuse the outputs of five intra-attention networks according to their relevance to

feature matching.

We design a multi-branch attention-driven network that simulta-
neously learns and fuses discriminative and complementary fea-
tures from both global whole-body images and local body-part im-
ages as illustrated in Fig. 3. The following subsections will describe
the design and implementation of the attention-driven person RelD
network in detail, specifically on the base network, the body part
detection and alignment, the intra-attention network and the inter-
attention module.

3.1. Base network

We adopt the Residual units [57] as the basic building elements
and design a multi-branch network for person RelD. As illustrated
in Fig. 3, the designed network consists of five branches includ-
ing: 1) one branch that aims to learn global features from whole-
body images and 2) four independent branches that aim to learn
local features from four body-part images. To minimize the model
complexity, we simplify the ResNet50 in both network layers and
channel numbers. In addition, we remove the last down-sampling
operation in each branch (for higher granularity of the learnt fea-
tures). All five branches learn independently, targeting optimal cap-
ture of complementary and discriminative identification features
from whole-body images and four body-part images as well as
minimization of overfitting risks. More details of the architecture
of the base network are listed in Table 1.

3.2. Body part detection and alignment

Human images especially those collected using automatic de-
tectors often suffer from various misalignment by either including
too much background clutters or missing certain body parts. On
the other hand, robust person RelD often requires good alignment
of human body and sometimes even body parts. Based on the ob-
servation that human body and body parts can usually be localized
by body joints, we employ pose estimation [58,59] to first local-
ize body joints and then use the localized body joints for human
alignment. In particular, we adopt an off-the-shelf pose estimator

Table 1

Detailed design and implementation of the base network: MP stands for max-
pooling, AP stands for average-pooling and S stands for stride.

Layer #  Layer Share  Global Branch Part Branch

1 Convl Yes 3 x3,32,52x2 3x3/32S82x2

9 Conv2x No 3 x 3MP,S-2 x 2 3 x 3MP,S-1 x 2
r1x1,32 rlx1,16
3><3,32:|><3 3><3,16i|><3
L1 x 1,64 L1x 1,32
r1x1,64 r1x1,32

9 Conv3x No 3><3,64i| x3 3><3,32]><3
L1 x 1,128 L1 x 1, 64
r1x1,128 r1x1,64

9 Conv4x No 3x3, 128] x3 3x3, 64:| x3
L1 x 1,256 L1 x 1,128
rl x 1,256 r1x 1,128

9 Conv5x No 3x3, 256] x3 3x3, 128] x3
L1x 1,512 L1 x 1,256

1 FC_reduce  No AP AP
256 128

1 FC No ID ID

[58] that directly produces 2D locations of 18 major body joints
Kj(j=1,...,18) as illustrated in Fig. 4a.

Note that joint detection may suffer from detection errors while
dealing with low-quality images due to occlusion, poor lighting,
etc. We improve the joint detection by leveraging a set of canonical
human poses that represent a list of typical human body configu-
rations as exhibited in public surveillance cameras. Then for a new
person image, only body joints with good detection confidence are
kept and those missing or with ultra-low detection confidence are
estimated by using the canonical poses. With 18 landmark body
joints as illustrated in Fig. 4b, we first localize and divide the hu-
man images into five body regions as illustrated in Fig. 4c. In par-
ticular, the five regions are defined by the respective body joints
which consist of the whole body region Py = {Kj, ..., Kig}, the head
region P; = {Kj,...,Kg}, the upper-body region P, = {Kg, ..., K4},
the upper-leg region P; = {Ki3,...,Kig} and the lower-leg region
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Fig. 4. Illustration of the human part detection: (a) 18 major human body joints by pose estimation, (b) definition of five body parts using the 18 major body joints, (c)

detection of five body regions based on the definition in Fig. 4b.

Py = {Kis. ..., Kig}. Let (x;, y;) denote the coordinates of the 18 ma-
jor body joints, several key parameters of the global human region
can be computed as follows:

4 1 . .
H=3 r}r,le?):((yj) ~3 I}lg}(yj) — (2% r}l})?()’j) - 1}133(%))
(Xc,Ye) = (XT,JT,) jeh
x; = min(x, — H/4, min(x;))

jehy

(1)

Xr = max(xc + H/4, max(x;))
jeh

where (x;, xr), (Xc, yc) and H denote the horizontal boundary, the
center and the height of the whole body region, respectively. The
bar symbol in X; and y; denotes a mean operator. For each body
region P, (i=0,...,4), the corresponding bounding box R;, (i =
0,...,4) can thus be determined as follows:

(1, 2 x min(y;) ~max(y;). & 3 I}gj((yj)—% min(y;)) i=0,
(X, 2+ min(y;) — max(y;), x,, max(y;) + B) i=1,

jeP, Jjeh jeb
(x;, min(y;) — B, %, max(y;) + B) i=2,3
Jjeh jeb

. 4 ‘l . .
x;, min(y;) — B, xr, 3 max(y;) — z min(y; i=4
( 1 Py (y]) ,3 T 3 Py (.V]) 3 Py (.VJ))

Ri= (2)

where § is the height of overlapping between two neighboring re-
gions which is empirically set at H/10. For the sample image in
Fig. 4a, Fig. 4c shows the determined five human regions.

3.3. Intra-attention network

The intra-attention network is constructed by stacking multi-
ple representation learning blocks B;(i=1,...,4) as illustrated in
Fig. 5. Multiple attention branches are adopted to generate atten-
tion maps at multiple resolutions, targeting to refine the learned
representation progressively. In particular, features from the previ-
ous conv-layer are first fed into Block 1 to extract low level fea-
tures. Blocks 2-4 each consists of two paths, one for feature ex-
traction and the other for attention estimation. The feature extrac-
tion path acts as multiple detectors to extract semantic structures,
where the initial features of the ith block B; can be formulated as
follows:

a; = F(v;,6;) (3)

where v; and q; are the input and output of feature extraction path
of block B;, and F is the stacked residual unit with parameters 6;.
The output g; is a 3-D tensor q; € RPWx¢ where h, w, and ¢ de-
note the height, width, and channel number of the feature map a;,
respectively.

The attention path acts as a mask function to re-weight the fea-
tures for automatic inference of regions of interest. It processes ev-
ery input features of B; to obtain an attention score m; e RhxWxc
with the same size as a;:

m; = M(v;, ¢;) (4)

where M is the attention scoring function with parameters ¢;.
With the attention mask, the basic form of the adjusted features
become:

Vipg =M; ® @ (5)

where ® denotes element wise product, and v;,; is the output
of B;. Higher scores will be computed around the local regions
that are more relevant to the discriminative representation, largely
driven by the loss function that aims to reduce the person RelD
error to be described in Section 3.5.

More details of the proposed intra-attention network will be
described in the following subsections, including encoder-decoder
network, spatial-wise and channel-wise attention and optimization
as illustrated in Fig. 5.

3.3.1. Encoder-decoder network

Coherent understanding of the whole image and further focus-
ing on discriminative local regions are essential for confidence es-
timation in various image recognition and classification tasks. For
example, head, hat and glasses become the most discriminative
visual cues around the head region while working on images of
lower resolutions progressively. Aiming to capture discriminative
features across multiple scales, we design an intra-attention net-
work that employs the popular encoder-decoder structure as illus-
trated in Fig. 5. The encoder aims to learn multi-scale feature maps
of the whole image region, where residual unit and max pooling
are applied to process features down to lower resolutions. After
reaching a predefined lowest resolution, the decoder employs sym-
metrical up-sampling iteratively to produce pixel-wise attention.
To consolidate information across scales, skip layers are employed
to combine features across the encoder and decoder at the same
resolution, where the combination is implemented by an element
wise addition of two sets of features. Note that we apply max pool-
ing two times in Block 2, and one time in Blocks 3-4 as shown in
Fig. 5.

3.3.2. Spatial-wise and channel-wise attention

A convolutional layer employing ¢ channel filters scans an in-
put image or feature map and outputs a h x w x ¢ feature map,
where each filter detects one specific feature pattern across the
spatial domain. Convolutional feature detection is therefore spatial-
wise and channel-wise. Inspired by this observation, we design a
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novel attention learning strategy that decomposes attention into
a spatial-wise attention component and a channel-wise atten-
tion component. Specifically, it decomposes attention of dimen-
sion h x w x ¢ (the same size as features as in conventional atten-
tion models) into a spatial-wise attention component of dimen-
sion h xw x 1 and a channel-wise attention component of dimen-
sion 1 x 1 x c. The decomposition thus reduces the number of pa-
rameters as well as the searching space significantly which helps
to lower the model complexity and improve the person match-
ing clearly, more details to be discussed in the experiments in
Section 4.

In particular, the spatial-wise attention attempts to focus on
semantic-related regions in the spatial domain, e.g. the head when
we want to extract features from the head region as illustrated in
Fig. 4c. In the proposed intra-attention networks, the spatial-wise
attention S; € RPWx1 of block B; is computed by a convolutional
layer which is formulated as follows:

Si = f(AL W) (6)

where f is the convolutional operation with parameter matrix W7,
A; is the initial attention confidence score as computed by the
encoder-decoder network.

At the other end, each feature channel is actually an activa-
tion response of the corresponding convolutional filter and can be
viewed as a semantic attribute. The learning of the channel-wise
attention can therefore be interpreted as a process of selecting the
most discriminative semantic attributes across multiple channels.
For example, the channel-wise attention attempts to assign higher
weights to the features of hat, glasses and hair while learning
features around the head region. In implementation, an averaging
pooling is first applied to each channel A; to obtain a channel fea-
ture V; € R1*1x¢_ A convolutional layer is then employed to obtain
the channel-wise attention map C; € R'*1x¢, Finally, the spatial-
wise attention S; and channel-wise attention C; are combined by
first multiplying S; and C; and followed by a 1 x 1 convolution op-
eration. The output m; is normalized to the range of [0, 1] using a
sigmoid function as illustrated in Fig. 5.

3.3.3. Optimization

As studied in [28], element-wise production in Eq. (5) using a
mask ranging from O to 1 may degrade the features of deep net-
work layers. We address this issue by using a residual attention
scheme which modifies the masking operation as follows:

V=0 +m)eg (7)

As defined in Eq. (7), the adjusted features will approximate the
original ones when the attention score approximates 0. Otherwise,
they are enhanced depending on the attention score. The new
masking operation therefore attenuates the feature adjustment as
compared with the one in Eq. (5).

3.4. Inter-attention network

The intra-attention networks learn discriminative features
within the respective input images, where global features from
whole-body images lay the groundwork and local features from
body-part images capture complementary identification informa-
tion. Local features of images of the four body parts usually cap-
ture different visual cues that have different contributions to the
feature matching. Additionally, images of the four body parts of-
ten have different qualities due to variations in human poses, back-
ground clutters, etc. As a result, direct concatenation of the output
of the four intra-attention body-parts networks with equal weights
often leads to sub-optimal person RelD features.

We design an inter-attention module that adaptively fuses the
output of the four intra-attention networks. Let E;(i=1,...,4) de-
note local features of the four intra-attention body-part networks,

Table 2

Settings of person RelD datasets that are used in the ensuing experiments.
Dataset Cams IDs Train IDs  Test IDs  Images
CUHKO3-Labeled 6 1467 1367 100 14,097
CUHKO3-Detected 6 1467 1367 100 14,097
Market-1501 6 1501 751 750 32,668
DukeMTMC-RelID 8 1404 702 702 36,411

the corresponding weights w; can be learnt via four independent
fully-connected layers as follows:

Wi = Sigmoid (W;E; + b;) (8)

where w; and b;,i=1,...,4 denote the weight vector and bias
term of the four fully-connected layers. By applying the same
aforementioned residual scheme in Eq. (7), the fused local feature
E; can be derived by:

Ep=[(u1+ DEr, (2 + 1)Ez, (3 + 1)Es3, (g + 1)E4] (9)

where [, ] denotes concatenation.

The final person RelD feature is derived by assigning the same
weight to the global feature Eg (learnt from the whole-body im-
ages) and the fused part feature E;. The principle here is that the
global feature Eg and the fused part feature E; have similar con-
tributions to the person RelD though they usually capture comple-
mentary identification information, more details to be discussed in
Section 4.4. Note we also investigated the scheme of learning the
weight of E; in the similar way as in Eq. (8), but the obtained per-
formance is slightly lower than the scheme described above.

3.5. Loss functions

We use the cross-entropy classification loss to train both intra-
attention networks and inter-attention module. Given a training
image I; with identity label L; and X; denoting the input of the pre-
diction layer, the cross-entropy loss [ can be evaluated as follows

n-1
=1 3 log(— BT (WL, X0) (10)
n T Y exp(WiX)
where n is the number of training images, q is the number of iden-
tity and W is parameter of the prediction function for the training
identity k.

As described in the previous subsections, each intra-attention
network is trained separately using an independent loss. Addition-
ally, the inter-attention module also employs a loss to learn how
to fuse features for optimal person RelD. The overall loss is thus
defined as follows:

5 .
L=h Z li]ntra + linter (11)
j=1
where A controls the relative weights of the intra-attention loss
and the inter-attention loss which is empirically set at 0.5 in our
implemented system.

4. Experiments
4.1. Datasets and settings

4.1.1. Datasets

Our proposed method is evaluated over three widely used
datasets including CUHKO3 [18], Market-1501 [19] and DukeMTMC-
RelD [20] (Table 2). The CUHKO3 consists of 14,097 images of 1467
different identities, where 6 campus cameras were deployed for



E Yang et al./Pattern Recognition 86 (2019) 143-155 149

image collection and each identity is captured by 2 campus cam-
eras. This dataset provides two types of annotations, one by manu-
ally labeled bounding boxes and the other by bounding boxes pro-
duced by an automatic detector [60]. The dataset also provides 20
random train/test splits used in [18] which selects 100 identities
for testing and the rest for training. We select the first split and
use 100 identities for testing and the rest 1367 identities for train-
ing. The Market-1501 is collected using 6 cameras, which consists
of 32,668 images of 1501 identities as generated by an automatic
detector. We follow the training and evaluation protocol in [19],
which splits images into a training set with 12,936 images and
a testing set with 19,732 images. The DukeMTMC-RelD is a sub-
set of DukeMTMC which was collected using 8 cameras for the
study of cross camera tracking. It consists of images of 1404 iden-
tities where half is used for training and the other half for test-
ing. Specifically, there are 2228 queries, 17,661 galleries, and 16,522
training images, respectively. We follow the protocol in [20] for ex-
periments on this dataset.

4.1.2. Evaluation protocol

The performance of person RelD is evaluated by using the
widely used cumulative matching characteristic (CMC)[61] across
all three datasets. CMC is a widely used metric in person RelD
evaluation. Take the single-gallery-shot setting (each gallery iden-
tity has only one instance) as an example. For each query, all
gallery samples are ranked according to their distances to the
query, and the CMC top-k accuracy is evaluated by:

1 if top-k ranked gallery samples contain the query
identity,
0 otherwise

Accy, =

(12)

It is actually a shifted step function, and the CMC curve can be de-
rived by averaging the shifted step functions over all queries. Due
to the space limit and also for direct comparison with the state
of the arts, we only report the CMC accuracy at selected ranks
instead of plotting actual CMC curves. The mean Average Preci-
sion (mAP) score [19] is also reported for the Market-1501 and
DukeMTMC-RelD. But for the CUHKO03, the mAP is not reported as
in [18,37,46,47] because the gallery has only one image for each
identity. All experiments adopt the single-query evaluation mode,
and no re-ranking is performed for our method as well as com-
pared methods.

4.1.3. Implementation details

Our RelD model is implemented and trained on the Keras
[62], and Stochastic Gradient Descent (SGD) is used for optimiza-
tion. The model is first pre-trained on the ImageNet (ILSVRC2012)
[63] for 9 epochs, where the learning rate is initially set as 0.01
and further divided by 10 after every 3 epochs. It is then fine-
tuned on each of the three RelD datasets for 100 epochs, respec-
tively, where the learning rate is initially set as 0.01 and further
divided by 10 after every 40 epochs. The batch size is set at 32
for both pre-training and fine-tuning, and dropout is applied be-
fore every prediction layer with the dropout ratio empirically set
at 0.5. Further, all training and testing image are rescaled to a fixed
size of 384 x 192 and each of the four body parts has a fixed size
of 96 x 192. Each training image is first normalized by subtracting
its channel means and then fed to the network in a random order
for training.

4.2. Comparison with state of the arts

The proposed method is evaluated and benchmarked with
most state-of-the-art person Re-ID techniques over the three most

Table 3
Comparison with the state of the arts on the Market-1501.

Methods R1 R5 R10 R20 mAP
LOMO+XQDA [7] 4379 - - - 22.22
NFST [13] 5543 - - - 29.87
BoW-+Kissme [19] 4442 6390  72.18 78.95  20.76
HP-net [30] 7690 9130 9450 9670 -

Spindle [25] 7690 9150 9460 9670  64.67
MSCAN [47] 80.31 - - - 57.53
Part-Aligned [29] 81.00 9200 9470 - 63.40
SVDNet [41] 8230 - - - 62.10
PDC [37] 84.14 9273 9492 96.82 6341
APR [42] 8429 9320 9519 9700 6467
TriNet [39] 8490 - - - 69.10
JLML [46] 85.10 - - - 65.50
DPFL [64] 88.60 - - - 72.60
GLAD [26] 89.90 - - - 73.90
MLEN [51] 90.00 - - - 74.30
HA-CNN [31] 91.20 - - - 75.70
DuATM [50] 91.42 97.09 - - 76.62
Ours 9499 9825 9912 9938 86.47

Table 4

Comparison with the state of the arts on
the DukeMTMC-relD.

Methods Rank-1 mAP
LOMO+XQDA [7] 30.75 17.04
BoW-+Kissme [19] 2513 1217
GAN(R) [20] 67.68 4713
APR [42] 70.69 51.88
SVDNet [41] 76.70 56.80
DPFL [64] 79.20 60.60
HA-CNN [31] 80.50 63.80
MLEN [51] 81.00 62.80
DuATM [50] 81.16 67.73
Ours 86.04 74.57

widely used datasets including the Market-1501, the DukeMTMC-
relD and the CUHKO3.

For the Market-1501, the proposed method is compared with
17 state-of-the-art methods and Table 3 shows experimental re-
sults (the three methods above the horizontal line use traditional
‘shallow’ model and the rest uses deep models). As Table 3 shows,
our method achieves superior RelD accuracy and outperforms the
state of the arts by 3.57% in Rank-1 (94.99% versus 91.42% by Du-
ATM) and 9.85% in mAP (86.47% versus 76.62%). Specifically, our
method outperforms the pose-driven methods Spindle, PDC and
GLAD (without using attention) by 18.09%, 10.95% and 5.09%, re-
spectively in Rank-1 and 21.8%, 23.06% and 12.57%, respectively in
mAP. The outstanding performance demonstrates the importance
of using attention in feature learning. In addition, our method im-
proves Rank-1 by 13.99%, 4.99% and 3.79% and mAP by 23.07%,
12.17% and 10.77%, respectively, as compared to the Part-Aligned,
MLFN and HA-CNN which use the global attention only. The clear
performance gain is largely attributed to the intra-attention net-
works and inter-attention module that learn discriminative fea-
tures from both global whole-body images and local body-part im-
ages simultaneously. Further, our strategy of progressive feature se-
lection at multi-scale feature maps also helps to learn robust and
discriminative features.

For the larger and more recent dataset DukeMTMC-relD, the
proposed method is compared with 9 state-of-the-art methods and
Table 4 shows experimental results (the two methods above the
horizontal line use traditional ‘shallow’ model and the rest uses
deep models). As Table 4 shows, our method obtains superior ac-
curacy on a very different dataset, and it outperforms the state-
of-the-art by 4.88% in Rank-1 (86.04% versus 81.16% by DuATM)
and 6.84% in mAP (74.57% versus 67.73%), respectively. This further
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Table 5
Comparison with the state of the arts on the CUHKO3 (CUHKO3-L and
CUHKO3-D refer to the manually labeled boxes and auto-detected boxes).

Methods CUHKO03-L CUHK03-D
R1 R5 R10 R1 R5 R10

LOMO+XQDA [7] 5220 8223 9414 4625 7890  88.55
NFST [13] 5890 8560 9245 5370 83.05 93.00
GOG [8] 6730 9100 9600 6550 8840  93.70
MSCAN [47] 7421 9433 9754 6799 9104 9536
MuDeep [38] 7687 9612 9841 7564 9436 9746
Part-Aligned [29] 8540 9760 9940 8160 9730  98.40
JLML [46] 8320 98.00 9940 8060 9690  98.70
DPEL [64] 86.70 - - 8200 - -
PDC [37] 8870 9861 9924 7829 9483 9715
HP-net [30] 9180 9840 9910 - - -
MLEN [51] - - - 8280 - -
Ours 9643 9973 9991 9358 9891 9942

verifies the advantages of our attention-driven network that em-
ploys intra-attention and inter-attention to guide feature learning
and feature selection at multiple scales simultaneously. Note that
lower accuracy is obtained over the DukeMTMC-reID as compared
with the Market-1501, largely because images in the DukeMTMC-
relD have more variations in image background and scene layout.

For the CUHKO3, two types of annotations are provided for each
identity including manually labeled boxes and boxes produced by
automatic detector. This dataset thus allows a direct model bench-
marking in the presence of two types of most widely available
annotations with distinct annotation quality. Table 5 show exper-
imental results (the three methods above the horizontal line use
traditional ‘shallow’ model and the rest uses deep models). For the
manually labeled boxes, our method outperform the state of the
art by 4.63% in Rank-1 (96.43% versus 91.80% by HP-net). For the
auto-detected boxes, our method wins out more, with a 10.78% im-
provement in Rank-1 (93.58% versus 82.80% by MLFN). This fur-
ther shows the superior performance of our attention-driven net-
work. By taking a second look, it can be observed that our model
performs more consistently with respect to manually labeled and
auto-detected boxes. It just obtains a 2.85% improvement in Rank-1
for manually labeled boxes whereas most state-of-the-art methods
have much larger performance drops while working with lower-
quality boxes by automatic detector, e.g. 88.70% versus 78.29% by
PDC, 86.70% versus 82.00% by DPFL, 85.40% versus 81.60% by Part-
Aligned, etc.

4.3. Ablation study

Our proposed method learns discriminative person RelD fea-
tures by using both global whole-body images and local body-part
images. To tackle the misalignment and background clutters, pose
estimation is employed to align the whole-body images and ex-
tract body-part images automatically. In addition, five branches of
intra-attention networks are designed each of which learns atten-
tion of the whole body or one of four body parts, respectively. Fur-
ther, an inter-attention module is designed which fuses the outputs
of the five intra-attention networks according to their importance
to person RelD. To find out how each of these innovative compo-
nents help to achieve the outstanding person RelD performance in
Tables 3-5, we develop five networks for ablation analysis includ-
ing 1) a baseline model that implements the base multi-branch
network without using attention (body parts are derived using
predefined fixed horizontal strips [23,24]); 2) an aligned model
that uses pose estimation to extract the four body parts beyond
the baseline; 3) an intra-attention model that includes the intra-
attention network in each branch beyond the aligned model; 4) an
inter-attention model that includes the inter-attention module be-

yond the aligned model; and 5) an intra+inter model that include
the inter-attention module beyond the intra-attention model.

Table 6 show how the five networks perform over the three
datasets where only Rank-1 and mAP results are shown. As
Table 6 shows, the inclusion of pose estimation, intra-attention
and inter-attention all helps to improve the person RelD perfor-
mance clearly. The use of pose estimation consistently improves
the person RelD performance, largely because it helps for more
accurate person alignment and body part detection as compared
with the use of some fixed predefined partitioning in the baseline
model. In addition, either intra or inter model outperforms the
aligned model consistently across the three datasets, demonstrat-
ing the effectiveness of using intra-attention and inter-attention in
the person RelD problem. Furthermore, the concurrent inclusion of
intra-attention and inter-attention in the intra+inter outperforms
the use of either intra-attention or inter-attention alone, demon-
strating the complementariness of the two proposed attention net-
works.

Fig. 6 further illustrates how our proposed attention-driven net-
work improves the baseline model that does not include pose-
based alignment, intra-attention and inter-attention. Four sample
images are selected from the dataset Market-1501, DukeMTMC-
relD, CUHKO3 with manual human annotation and CUHKO3 with
automatic human detection. For each query image in the first col-
umn in Fig. 6, we compute its similarity to all gallery images and
rank the gallery images according to their similarity to the query
image. Fig. 6 shows the top five most similar gallery images as
ranked by the ‘Intra+inter’ and the ‘Baseline’, where the green-
color rectangles highlight person images which have the same ID
with the query image and red-color rectangles highlight person
images which have different ID from the query image. In addition,
the five images under both ‘Baseline’ and ‘Intra+Inter’ are five most
similar gallery images that are arranged according to the similarity
values from left to right. As Fig. 6 shows, the use of intra-attention
and inter-attention helps to improve the person Re-ID performance
significantly as compared with the baseline model.

4.4. Discussion

Beyond the ablation analysis, we also study three individual fac-
tors that could affect the person RelD performance including the
contributions of individual human regions with and without using
intra-attention, the decomposition of attention into spatial-wise at-
tention and channel-wise attention, and different combinations of
the local and global features.

4.4.1. Intra-attention analysis

We evaluate how the global feature from whole-body images
and local feature from body-part images contribute to the per-
son RelD performance with and without intra-attention. Table 7
shows experimental results over the Market-1501 dataset. As
Table 7 shows, global features from whole-body images have much
higher contributions than local features from any individual body
parts. In addition, the fusion of local features from the four body
parts can achieve comparable performance with the global fea-
tures. Furthermore, the combination of the global and local fea-
tures further improves the performance with or without using the
intra-attention. The different contributions of each body part also
show the necessity of learning adaptive weights for feature fusion.
The significance of using the intra-attention networks and inter-
attention module to capture the complementariness of global fea-
tures from whole-body images and local features from body-part
images is further illustrated in Fig. 7. For each example image, six
intra-attention maps are computed where the three in the first row
are computed from global whole-body images and the three in the
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Table 6

Ablation study on the datasets Market-1501, DukeMTMC-reID and CUHKO03 (CUHKO3-L and
CUHKO3-D refer to the manually labeled and auto-detected boxes). *The R1 and mAP are
evaluated by using optimal parameter 8 and XA to be discussed in the ensuing subsection

‘Parameter Setting’.

Models Market-1501 DukeMTMC-reID ~ CUHKO03-L CUHKO03-D
R1 mAP R1 mAP R1 mAP Rl mAP
Baseline 86.63 66.25 7598  57.23 8546 - 80.02 -
Aligned 8998 7246  76.71 60.67 89.15 - 84.47 -
Intra 92.04 7892  80.12 63.75 91.50 - 8838 -
Inter 92.07 7846  79.62  64.27 91.76 - 8953 -
Intra-+inter 94.65 8522 8478 7192 9496 - 9345 -
*Intra+inter 9499 8647 86.04 74.57 9643 - 9358 -

Table 7

Evaluations on how information from different human part contributes to the person RelD
with and without using intra-attention (over the Market-1501).

Market-1501 With intra-attention

Without intra-attention

R1 R5 R10 mAP R1 R5 R10 mAP
Global 90.11 96.05 97.33 75.23 85.75 94.54 96.79 68.24
Head 50.86 73.31 81.00 26.76 4317 67.37 76.00 21.83
Up-Body 48.96 70.57 78.06 25.55 43.37 64.87 72.74 21.96
Up-Leg 48.96 7141 79.54 28.54 42.66 66.15 75.38 23.54
Lower-Leg 36.22 58.07 67.51 18.08 30.58 51.92 61.01 14.23
Part Fusion 91.62 96.82 98.01 75.35 87.10 95.37 97.62 69.84
Global+Part 94.65 98.21 9896 85.22 92,07 97.35 98.51 78.46
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Fig. 5. Architecture of the proposed intra-attention network: multiple blocks are stacked to learn intra-attention at different scales. From the second block, an attention
branch is included which learns spatial-wise attention and channel-wise attention simultaneously.

second row are computed from four body-part images. Addition-
ally, each of the three intra-attention maps from left to right are
output of Blocks 2, 3, and 4 in Fig. 5, respectively, which are com-
puted progressively at different scales. As Fig. 7 shows, the intra-
attention of whole-body images and body-part images are com-
plementary which detects different regions for feature learning. In
particular, the intra-attention of whole-body images detects more
global structures whereas the intra-attention of body-part images
detects more local details within respective body parts. This fur-
ther shows the necessity and effectiveness of learning global and
local level attention simultaneously.

4.4.2. Spatial-wise and channel-wise attention

One key idea in the intra-attention networks is to first de-
compose the attention into spatial-wise attention and channel-
wise attention and then derive the overall attention by multiply-
ing the spatial-wise attention and channel-wise attention as de-

Table 8
Comparison of attention estimation with and without decomposing into spatial-
wise and channel-wise attention (over the Market-1501).

Market-1501 R1 R5 R10 R20 mAP
Without attention decomposition  93.26 97.92 98.90 99.17 82.47
With attention decomposition 94.65 9821 9896 99.38  85.22

scribed in Section 3.3. We study how this attention decomposition
approach helps to improve the person RelD performance as com-
pared with the traditional attention estimation without decompo-
sition. Table 8 shows experimental results over the Market-1501
dataset. As Table 8 shows, the attention decomposition scheme im-
proves the person RelD performance clearly, with a Rank-1 im-
provement by 1.39% and a mAP improvement by 2.75%, respec-
tively. This demonstrates the advantages and effectiveness of learn-
ing spatial-wise and channel-wise attention separately.



152 E Yang et al./Pattern Recognition 86 (2019) 143-155

Baseline

Intra+Inter

Fig. 6. Illustration of person RelD improvement using the proposed intra-attention and inter-attention: For the four sample images selected from the dataset Market-1501,
DukeMTMC-relD, CUHKO3-labeled and CUHKO03-detected from top to bottom. For each query image in the first column, we compute its similarity to all gallery images and
rank the gallery images according to their similarity to the query image. The second column and third column show the top five most similar gallery images as ranked by
the ‘Baseline’ and ‘Intra+Inter’, where the green-color rectangles highlight person images which have the same ID with the query image and red-color rectangles highlight
person images which have different ID from the query image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Table 9
Comparison of different feature combination strategies over the
Market-1501 (FC: fully-connected).

Market-1501 R1 R5 R10 R20 mAP

Concatenation 89.98 96.31 97.68 98.49 72.46
FC fusion 90.94 96.58  97.89 98.93 77.11
Inter-attention ~ 92.07  97.35 98.51 99.02 78.46

4.4.3. Inter-attention analysis

We also study the effectiveness of the proposed inter-attention
module by testing three feature fusion variants including: 1) di-
rect concatenation of global and local features in testing stage; 2)
conventional fully-connected fusion of global and local features in
both training and testing stages; and 3) inter-attention fusion that
learns adaptive feature weights. Table 9 shows experimental results
over the Market-1501. As Table 9 shows, fusing features across
global and local regions in training stage generally outperforms
fusing features in testing stage only. In addition, fusing features
using learned adaptive weights further improves the person RelD
accuracy, which validates the rational of our inter-attention design
that learning the relative importance of local features is beneficial
to person RelD.

4.4.4. Parameter setting

We first studied how A in loss function affects the person RelD
performance over three datasets. The results are shown in Table 10,
where two points can be observed: 1) a moderate A can bring ex-

Table 10

Evaluation on influence of parameter A.
A Market-1501 DukeMTMC-reID  CUHKO3-L CUHKO03-D

R1 mAP R1 mAP R1 mAP Rl mAP

0 83.64 63.70 7217 54.35 8022 - 7483 -
0.1 9498 8645 8590 74.10 9499 - 93.51 -
02 9492 86.19 85.63 7340 9591 - 9356 -
03 9484 8558 8556  72.83 9574 - 9353 -
04 9473 8536 8493 7227 95.41 - 9349 -
05 9465 8522 8478 7192 9496 - 9345 -
0.6 9450 84.82 8371 70.27 9488 - 9299 -
0.7 9426 8474 8358 6942 9474 - 9257 -
0.8 9409 84.61 83.21 69.10 9440 - 91.99 -
09 9400 8413 8249 6814 9416 - 91.65 -
1.0 9397 8402 8146 6732 9356 - 91.19 -

tra supervision that helps to enhance the feature discriminability
as learned by intra-attention networks; 2) the RelD performance
is sensitive to A when person images have more occlusion and
background clutters. The first point can be observed by the clearly
higher person RelD accuracy when A becomes non-zero. The sec-
ond point can be seen from the DukeMTMC-reID images that have
wider camera views and more complex scene layout (as compared
with Market-1501 and CUHKO3 images) and so experience larger
performance degradation when A becomes larger.

We also studied the impact of S, the height of the overlap-
ping between two neighboring regions, over the Market-1501 and
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Fig. 7. Intra-attention of global whole-body images and local body-part images is complementary in feature selection: For each example image, the first row and the second
row show three attention maps that are generated by global whole-body images and local body-part images, respectively. From left to right, (a) the original image, (b) the
attention map from Block 2 in Fig. 5, (c) the attention map from Block 3, (d) the attention map from Block 4. Note the attention maps from images of four body parts are
fused for better visualization.

Table 11
Evaluation on influence of parameter S.

B Market-1501 DukeMTMC-relD
R1 R5 R10 mAP R1 R5 R10 mAP
0 94.28 98.14 98.91 85.19 84.42 92.23 94.28 71.26

H/48 9435 98.18 98.81 8522  84.87 9281 94.66  71.62
2H/48 9436  98.18 98.78 8553 8541 92.63 9485 7187
3H/48 9495 9845 9899 8585 8542 92.68 9448 7232
4H[48 9477  98.12 9887 8557 8514 9228 9432 7196
5H/48  94.65 98.21 9896 8522 8478 9210 9430  71.92
6H/48 9453 9830 9890 8513 84.41 92.68 9479 7142

Table 12
Comparisons of model size and complexity. FLOPs: the
number of FLoating-point OPerations; PN: Parameter

Number.
Model FLOPs PN (million)  Stream
AlexNet 1.07 x 10° 58.3 1
VGG 2.28 x 1010 134.2 1
ResNet50 5.58 x 10° 23.5 1
GoogleNet  2.31 x 10° 6.0 1
Basemodel  2.26 x 10° 6.8 5
Full model ~ 2.69 x 10° 104 5

the DukeMTMC-relID. Experimental results are shown in Table 11,
where we can see that the person RelD is not very sensitive to .

In addition, the new studies also show that our proposed
method achieves the best performance when 8 and A are set at
(0.1, 3H/48), (0.1, 3H/48) and (0.2, 3H/48), for the Market-1501,
DukeMTMC-reID and CUHKO3 as shown in the last row of Table 6.
The small variations of the optimal parameter settings across three
very different datasets also demonstrate the robustness of our pro-
posed technique.

4.4.5. Model complexity

We compared the proposed model with four seminal clas-
sification CNN architectures (Alexnet [65], VGG [66], GoogLeNet
[67], and ResNet50 [57]) in model size and complexity. As the
Table 12 shows, our base network has the 2nd smallest model size
and the 2nd smallest FLOPs, though it consists of five branches that
share the first conv layer only. The fair model size and computa-
tional complexity is largely due to the simpler and smaller network
model as presented in Table 1. Additionally, the intra-attention and

inter-attention are both computational light and do not introduce
much computational overhead.

5. Conclusion

This paper proposes an end-to-end trainable network frame-
work that learns a multi-branch attention-driven network model
for accurate and robust person RelD. Different from most existing
RelD methods that either ignore the matching misalignment prob-
lem or exploit global attention learning methods, the proposed
intra-attention network is designed to detect informative regions
within whole-body images and body-part images independently at
multiple resolutions. This is achieved by the intra-attention mod-
ule design in combination with a five-branch CNN architecture. In
addition, a novel inter-attention module is designed which learns
adaptive weights to fuse different intra-attention features for the
optimal person RelD. Experiments over three widely used bench-
marking datasets show that the proposed technique achieves su-
perior person RelD performance as compared with the state of the
art.

An ablation analysis is also performed to provide more insight
of the designed network model. Leveraging our unique exploitation
of local features of body-part images with inter and intra attention,
we will continue to investigate more accurate and robust person
RelD by incorporating trainable pose estimation and even semantic
human part parsing in our future work.
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