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Abstract—The widespread use of surveillance cameras toward
smart and safe cities poses the critical but challenging problem
of vehicle reidentification (Re-ID). The state-of-the-art research
work performed vehicle Re-ID relying on deep metric learning
with a triplet network. However, most existing methods basically
ignore the impact of intraclass variance-incorporated embedding
on the performance of vehicle reidentification, in which robust fine-
grained features for large-scale vehicle Re-ID have not been fully
studied. In this paper, we propose a deep metric learning method,
group-sensitive-triplet embedding (GS-TRE), to recognize and
retrieve vehicles, in which intraclass variance is elegantly modeled
by incorporating an intermediate representation “group” between
samples and each individual vehicle in the triplet network learning.
To capture the intraclass variance attributes of each individual
vehicle, we utilize an online grouping method to partition samples
within each vehicle ID into a few groups, and build up the triplet
samples at multiple granularities across different vehicle IDs as
well as different groups within the same vehicle ID to learn
fine-grained features. In particular, we construct a large-scale
vehicle database “PKU-Vehicle,” consisting of 10 million vehicle
images captured by different surveillance cameras in several cities,
to evaluate the vehicle Re-ID performance in real-world video
surveillance applications. Extensive experiments over benchmark
datasets VehicleID, VeRI, and CompCar have shown that the
proposed GS-TRE significantly outperforms the state-of-the-art
approaches for vehicle Re-ID.

Index Terms—Vehicle re-identification, metric learning,
intra-class variance, embedding, retrieval, surveillance.
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I. INTRODUCTION

TOWARDS the major strategic needs of the social public
security, how to address the grand challenge on video big

data is an emerging research area. Cross-view correlation and
recognition of objects and events in images/videos big surveil-
lance data is becoming a crucial but challenging research prob-
lem. In this work, we focus on the large-scale recognition and
retrieval of vehicles in images, which is expected to facilitate
the spatial-temporal object recognition and behavior analysis
in wide video surveillance networks. Vehicle re-identification
(Re-ID) aims to quickly search, locate and track the target ve-
hicles across surveillance camera networks, which plays key
roles in maintaining social public security and serves as a core
module in the large-scale vehicle recognition, intelligent trans-
portation, surveillance video analytic platforms [1]–[6]. Vehicle
Re-ID refers to the problem of identifying the same vehicle in
a large scale vehicle database given a probe vehicle image. In
particular, vehicle re-identification can be regarded as a fine-
grained recognition task [7]–[10] that aims at recognizing the
subordinate category of a given class. A typical example is on
the fine-grained recognition of a specific vehicle model, such as
“Buick Regal 2011 model.” However, the granularity of vehi-
cle re-identification task is much finer since the ideal target is to
search a specific vehicle rather than a model, in which the image
instances of the same vehicle are formed as a separate category.
As illustrated in Fig. 1, given two vehicle images of “Buick
Regal 2011 model,” they should be assigned to different classes
with different IDs although they come from the same vehicle
model. Hence, discriminative visual features that are capable of
representing the subtle characteristic differences, such as spe-
cific marks like annual inspection, tissue boxes, ornaments, etc,
are required.

The straightforward vehicle re-identification approaches re-
sort to robust license plate recognition [11]–[13], as license plate
provides the unique identity information of vehicles. However,
license plate recognition often fails in unconstrained surveil-
lance environments. On one hand, various viewpoints, illumi-
nations and imaging resolutions may significantly degrade the
license plate recognition accuracy. On the other hand, there exist
many hard cases where the license plates of problematic vehi-
cles are actually occluded, removed, or even deliberately faked.
To alleviate the limitation of license plate recognition meth-
ods, we focus on the effective matching and retrieval of visual
features for vehicle re-identification based on discriminative
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Fig. 1. Illustrations of the coarse-to-fine concept of vehicle recognition at
different granularity. The vehicle model recognition aims at recognizing vehicles
with a specific vehicle model, while vehicle re-identification is to search out
the same vehicle as the query vehicle. The intra-class variance and inter-class
similarity present the very natural challenges to vehicle re-identification.

visual appearance, which is crucial for the full-fledged vehicle
re-identification systems.

To this end, robust vehicle re-identification has to tackle the is-
sue of extracting discriminative features to distinguish different
vehicles. Basically, there exist three challenges. (1) The captured
image samples of a vehicle from different cameras may produce
large variance in appearance, as shown in Fig. 2(a). This is re-
garded as intra-class variance, and robust feature representation
is crucial. (2) Different vehicles may exhibit fairly similar visual
appearance, especially when those different vehicle IDs come
from the same model. To tackle the problem of considerable
inter-class similarity, the visual features are required to capture
and represent the subtle characteristic differences, as shown in
Fig. 2(b). (3) In real-world scenarios, the city-scale surveillance
systems usually involves millions vehicles while the available
well-annotated training images are very limited. A desired ap-
proach should be capable of scaling up to deal with large-scale
datasets through learning effective feature representation over
limited data.

Recently, deep metric learning has achieved great success
in various tasks, such as face recognition [14]–[17], visual
search [18]–[21], person/vehicle re-identification [22]–[26],
fine-grained image recognition [15], [27], [28]. Deep metric
learning in these various tasks aims to learn and strengthen fea-
ture space embedding that pulls the similar images closer and
pushes the dissimilar images far away. In this work, the embed-
ding space is implemented by a deep convolutional neural net-
work optimized by a triplet loss function. To adequately address
the above three issues for vehicle re-identification, we propose
a group sensitive triplet embedding (GS-TRE) method. Specif-
ically, the deep metric learning is employed to learn a feature
embedding space by optimizing the similarity distances between
sample features. By introducing an intermediate representation
“group” between samples and vehicle IDs, GS-TRE attempts
to build up a sort of “similar attribute, closer distance” feature

embedding. In particular, for the high intra-class variance, the
grouping process is adopted to incorporate the intra-class vari-
ance into the metric learning. Given a vehicle ID, samples of
the vehicle are clustered into a set of groups, such that in each
group the samples have similar attributes. Regarding the inter-
class similarity, we treat each vehicle ID as a separate class and
jointly optimize the multi-task objective of classification and
metric learning, with an aim of constraining the samples of the
same vehicle IDs together and pushing the samples of differ-
ent vehicles away for feature level discrimination. Moreover,
the scalability in large-scale re-identification can be resolved
by deriving discriminative features via a deep network trained
from a small scale training set, and subsequently performing
retrieval task in large-scale database instead of classification so
as to avoid the curse of excessively large number of classes.
Extensive experiments over benchmark vehicle datasets show
that the proposed GS-TRE method significantly outperforms
the state-of-the-art fine-grained visual recognition approaches.

In summary, the contributions of this paper are three-fold.
� First, we propose a group sensitive triplet embedding ap-

proach to modeling the inter-class dissimilarity as well as
the intra-class invariance in triplet network learning. The
GS-TRE can significantly mitigate the negative impact of
inter-class similarity and intra-class variance on the fine-
grained recognition, which has been well demonstrated in
vehicle re-identification.

� Second, we propose to leverage multi-task learning to gen-
erate discriminative feature representation by the joint op-
timization of group sensitive triplet loss and softmax loss,
which can be well applied to accomplish large scale vehicle
re-identification towards real applications.

� Third, we construct a large-scale vehicle dataset “PKU-
Vehicle” containing 10 millions vehicle images, which
are collected from different real-world surveillance cam-
eras in several cities. This dataset may contribute to the
comprehensive evaluation of the vehicle re-identification
methods, and is expected to push forward the research on
fine-grained object recognition. The dataset including fine-
grained features is available at http://59.110.216.11/html/

The remainder of this paper is organized as follows:
Section II reviews the relevant works, and Section III gives
the problem statement of vehicle re-identification from the per-
spective of metric learning. We introduce the proposed group
sensitive triplet embedding in Section IV. Extensive experimen-
tal results are presented and analyzed in Section V, and finally
the paper is concluded in Section VI.

II. RELATED WORK

As an emerging research topic, vehicle re-identification has
attracted great efforts [3]–[5], [24], [29]–[32]. In this section,
we will review the relevant works from three aspects: vehi-
cle re-identification, fine-grained recognition, and deep metric
learning.

Vehicle Re-Identification: In recent years, the success of Con-
volutional Neural Network (CNN) [33]–[35] has greatly facil-
itated research topics on vehicle recognition, such as vehicle
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Fig. 2. Examples of illustrating the intra-class variance and inter-class similarity. (a) The same vehicle captured by different cameras produces the significant
intra-class variance due to the different shotting angles or illuminations. (b) Different vehicles of the same model exhibits strong inter-class similarity, in which
their subtle characteristic regions marked by red circles are useful to generate discriminative features for fine-grained vehicle recognition.

classification [1], [36], verification [1], [3], and attributes pre-
diction [37], [38]. For analyzing traffic surveillance big video
data, high performance vehicle re-identification is becoming a
challenging topic. Many vehicle re-identification methods are
proposed to retrieve vehicles by the characteristics and attributes
of vehicles, such as license plate identification, spatial-temporal
property and color. Feris et al. [39] proposed a vehicle detec-
tion and retrieval system to identify the attributes and colors of
vehicles, and performed further retrieval based on the recog-
nized vehicle attributes. Liu et al. [24] proposed a vehicle re-
identification system to fulfill the coarse-to-fine vehicle search in
the feature space, followed by context assisted search in the real-
world spatial-temporal environment. Different from the above
methods, some research works focus on hybrid features to en-
hance the recognition of vehicle characteristics. For example,
Cormier et al. [29] presented a descriptor that combines local
binary patterns and local variance, to solve the problem of low
resolution vehicle re-identification. Liu et al. [3] introduced a
mixed difference network for vehicle re-identification, in which
the vehicle model features and the metric learning feature are
both incorporated into a single network. Despite of the above-
mentioned progress on vehicle re-identification, the impact of
intra-class variance and inter-class similarity have not been well
investigated, which can significantly influence vehicle recogni-
tion performance.

Fine-grained visual recognition: As mentioned before,
vehicle re-identification is a typical example of fine-grained
recognition. There are two typical topics in fine-grained vehicle
recognition, i.e., part-based model and representation learning
model. Many methods [40]–[43] employ part-localization and
alignment to extract the features of key parts of the objects and

perform detailed comparison on parts. Xiao et al. [44] intro-
duced reinforcement learning to adaptively find discriminative
regions in fine-grained domains in a weakly-supervised way.
Moreover, Zhao et al. also came up with a diversified visual
attention network to relieve the dependency strongly supervised
information for learning to localize key regions. In practice, the
dramatically variant shooting angles may result in significantly
different visible parts. Hence, several representative works pre-
fer the representation learning approaches instead. Lin et al.
[45] proposed a bilinear architecture to obtain the local pairwise
features where the output features of two separate networks are
fused in an invariant manner. Krause et al. [46] leveraged noisy
data from the web and adopted simple but generic represen-
tation learning methods to achieve the state-of-the-art results
on several fine-grained benchmarks. Similarly, our method also
focuses on representation learning, which emphasizes the opti-
mization of distance metric of samples from the perspective of
incorporating the modeling of sample distribution into metric
learning. The key idea is to leverage the intra-class structure to
model a so-called group sensitive feature distribution, which is
able to enhance the fine-grained feature representation.

Deep Metric Learning: The inter-class similarity and intra-
class variance relate to two basic challenges in feature learning.
To resolve these issues, many promising methods [16], [47],
[48] leverage deep networks to learn a feature embedding space
to maximize inter-class distances and minimize the intra-class
distances simultaneously. In particular, a sort of triplet con-
straint in [47] was introduced to learn a feature embedding
based on the principle “the samples belonging to the same ve-
hicle ID are closer than those samples belonging to different
IDs.” Such triplet constraint has been widely used in pedestrian
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re-identification [49]–[52] and face recognition [16] tasks.
Based on triplet, a quadruplet network is also proposed by Chen
et al. [50] to improve the generalization capability of feature rep-
resentation. In [51], Yang et al. leveraged privileged information
and unlabeled samples as auxiliary data to construct discrimi-
nant metric. In [53], Zhang et al. proposed to employ multiple
labels to inject hierarchical inter-class relationship (different
models, brands, manufactured years, etc) as prior knowledge
into learning feature representation, while the effects of intra-
class variance in feature distribution are not investigated. Lin
et al. [54] utilized bipartite-graph labels to model rich inter-
class relationships based on multiple sub-category components,
which can be elegantly incorporated into convolutional neural
network. Wen et al. [15] proposed to learn an optimal center
for deep features of each class and penalize the distances be-
tween the deep features and their corresponding class centers.
Moreover, some related works devoted to bring the semantic
knowledge to metric learning. Cui et al. [55] designed a gen-
eral knowledge graph to capture the relations of concepts in
image representation, then a regularized regression model is
leveraged to jointly optmize the image representation learning
and graph embedding. Li et al. [56] explored how to utilize
the user-provided tags to learn a distance metric, which can re-
flect the semantic information and improve the performance of
tag-based image retrieval.

Most of efforts are devoted to optimizing the inter-class dis-
tance, while the constraints of local structure of feature space
within a class are seldomly studied, which is useful for dealing
with large intra-class variance. Accordingly, our approach aims
to impose the local structure constraints at the fine granularity
within a class into deep metric learning, which is shown to be
effective in generating discriminative features.

III. PROBLEM STATEMENT

The vehicle images acquired from urban surveillance cam-
era networks pose dramatic appearance changes from different
angles, occlusions, lighting illuminations and cluttered back-
grounds. In particular, as shooting angles or backgrounds in traf-
fic surveillance scenes are diverse but still limited, the inherent
appearance variance within each vehicle ID needs proper mod-
eling, which is expected to impact the performance of feature
matching of between different vehicles. Therefore, we attempt to
group vehicle images to represent the intra-class variance (e.g.,
angle, color, background), and thereby form a group sensitive
structure, in which the vehicle images of each specific group
are supposed to share similar attributes. As such, the intra-class
variance can be well modeled, which is useful to discriminate
the subtle visual appearance differences between vehicles.

Moreover, another critical issue of re-identifying vehicles
arises from the big and fast growing scale of vehicles. The num-
ber of vehicles in a typical city-scale surveillance system usually
reaches up to millions scale. It is infeasible to develop million-
scale classifiers to realize vehicle re-identification from the clas-
sification point of view. Moreover, it is difficult to collect large-
scale well-annotated vehicle datasets. For example, the Vehi-
cleID dataset [6], which is the largest vehicle re-identification

benchmark dataset to the best of our knowledge, contains 26,267
vehicle IDs. To deal with large-scale vehicle re-identification,
we resort to the retrieval solution. Then the remaining issue is
to develop discriminative features for representing vehicles at a
fine granularity.

Here, we propose to structure the image samples for each ve-
hicle IDs. Let Sp denote a set of samples of a specific vehicle ID
p and Sn represents the samples of other vehicle IDs (p �= n).
Assume that the instances of each vehicle are divided into G
groups, we have Sp,g (g ∈ {1, 2, ..., G}) to denote a set of in-
stances in group g for the vehicle p. Clearly, multiple distinct
groups within each vehicle ID are expected to represent intra-
class variance. Our aim is to model intra-class structure in each
vehicle’s feature distribution, and then minimize the distances
of samples in the same group for each vehicle ID while keeping
the samples apart away from different vehicle IDs with a min-
imum margin α. The optimization objective can be formulated
as follows:

min
M

G∑

g=1

∑

xi ,xj ∈S p , g

‖xi − xj‖2
M

s.t.
∑

xi ∈S p ,xn ∈S n

‖xi − xn‖2
M ≥ α

M � 0, (1)

where xi and xj denote the samples from the vehicle p falling
into the same group g, and xn denotes other vehicles. M is a
metric matrix, and α is the minimum margin constraint under
M between the samples from different vehicles. In this work
deep metric learning is applied to model the intra-class variance
in feature space to generate robust and discriminative feature
representation.

IV. GSTE APPROACH

With the prior of the intra-class variance attributes, a group-
level finer representation within each vehicle ID can be char-
acterized and the intra-class variance is presented by a set of
groups. To mitigate the negative effects of the intra-class vari-
ance and inter-class similarity, GSTE leverages inter-class triplet
embedding as well as intra-class triplet embedding over the
course of feature learning. With the joint optimization of the
improved triplet loss and softmax loss, the multi-task learning
is employed to generate more discriminative representation of
vehicles. To characterize the intra-class variance, an ideal solu-
tion is to adopt exact intrinsic attributes of vehicle images, such
as viewpoints, illumination intensity, backgrounds and captured
cameras ID. However, it is difficult to explicitly recover these
attributes. Alternatively, we resort to clustering to derive group
labels, and in particular online clustering method is employed.
Moreover, we propose a mean-valued triplet loss [32] to fur-
ther enhance the learning of discriminative features. Instead of
randomly sampling the anchor points, we estimate the positive
center of positive samples, such that the impact of improper
anchor selection can be eliminated.
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A. Injecting Intra-Class Variance Into the Triplet Loss

1) Intra-Class Variance Loss: High inter-class similarity or
intra-class variance render learnt features less discriminative.
Hence, we propose to inject intra-class variance into triplet em-
bedding to optimize the feature distances between inter-class
and intra-class samples via deep metric learning. The design
of the loss function is critical. In this work, we employ triplet
based deep learning to fulfill metric learning. Specifically, the
input is a batch of triplet units {< ap, xp , xn >}, where ap is
an anchor sample, xp is a sample belonging to the same vehicle
ID with ap , and xn belongs to the other vehicle ID. The triplet
network is to project samples into a feature space where those
sample pairs belonging to the same vehicle ID are supposed to
be located closer than those from different ones.

To enforce the preservation of relative distances associated
with the intrinsic attributes of the instances of each vehicle ID,
we incorporate the intra-class variance into the triplet loss (i.e.,
ICV triplet loss). Specifically, let ap denote an anchor sample in
vehicle p’s sample set Sp and ap,g the anchor sample of a group
anchor g derived from the vehicle p’s sample set Sp,g . For each
vehicle ID, there are one class anchor sample ap and G group
anchors ap,g , as illustrated in Fig. 3(b).

For the inter-class relationship, xp
∗ ∈ Sp are positive samples

(belonging to the vehicle p), and xn
∗ /∈ Sp are negative samples

(not in the vehicle p). In terms of intra-class variance, xp
g and

xp
i denote samples from different groups in vehicle p. Then, the

inter-class constraint can be formulated as

‖f(ap) − f(xp
∗)‖2 + α1 ≤ ‖f(ap) − f(xn

∗ )‖2 , (2)

where α1 is the minimum margin between the samples from
different vehicles, f(x) denotes the deep network’s feature rep-
resentation of image x. To incorporate the intra-class variance
into triplet embedding, the intra-class constraint is further im-
posed as follows,

‖f(ap,g ) − f(xp
g )‖2 + α2 ≤ ‖f(ap,g ) − f(xp

i )‖2 , (3)

where α2 is the minimum margin between the samples from dif-
ferent groups within the same vehicle, xp

g ∈ Sp,g and xp
i /∈ Sp,g .

Amongst the instances with a similar attribute of the same vehi-
cle ID, we set a stronger constraint. Accordingly, we formulate
the ICV triplet loss as follows:

LICV Triplet = Linter(ap , xp
∗ , x

n
∗ ) +

G∑

g=1

Lintra(ap,g , xp
g , x

p
i )

=
∑

xp
∗ ∈S p

1
2

max{‖f(ap) − f(xp
∗)‖2 + α1 − ‖f(ap)

− f(xn
∗ )‖2 , 0} +

G∑

g=1

∑

xp
g ∈S p , g

1
2

max{‖f(ap,g ) − f(xp
g )‖2

+ α2 − ‖f(ap,g ) − f(xp
i )‖2 , 0}, (4)

where Np and Np,g are the total number of samples in Sp and
Sp,g , respectively. The joint supervision of both intra-class loss
(Linter) and inter-class loss (Lintra) builds up the group sensitive
structure. As such the inter-class constraint as well as intra-class

constraint are both incorporated, and the relationship among
multiple groups is simultaneously characterized. As illustrated
in Fig. 3(b), compared to the original distributions of intra-class
samples, with the import of group-wise intra-class constraint,
the intra-class samples with similar attributes tend to become
more coherent and compact.

2) Mean-valued Triplet Loss: The loss function in (4) is sen-
sitive to the selection of anchor ap , and thus choosing improper
anchor has a significant influence on the network training. There-
fore, instead of randomly selecting anchors from positives in
triplet units, we propose the mean-valued triplet loss, to miti-
gate the impact of the improper anchor selection. Given a pos-
itive set Sp = {xp

1 , · · · , xp
N p } containing Np positive samples

of vehicle p, the mean-valued anchor cp can be formulated as

cp =
1

Np

N p∑

n=1

f(xp
n ). (5)

Then the mean-valued triplet loss function is defined:

L(cp , Sp , Sn )

=
N p∑

k=1

1
2

max{‖f(xp
k ) − cp‖2 + α − ‖f(xn

∗ ) − cp‖2 , 0}, (6)

where xn
∗ is the negative assigned to the closest anchor cp .

If the triplet < cp, xp
k , xn

∗ > does not satisfy the constraints
‖f(xp

k ) − cp‖2 + α ≤ ‖f(xn
∗ ) − cp‖2 , all the positive samples

involving mean value computing are enforced to perform the
backward propagation. The partial derivative of positive sample
xp

k with respect to L(cp , Sp , Sn ) is

∂L

∂f(xp
k )

= f(xp
k ) − cp +

1
Np

(f(xn
∗ ) − f(xp

k )). (7)

The partial derivative of other positives xp
j (j! = k) is

∂L

∂f(xp
j )

=
1

Np
(f(xn

∗ ) − f(xp
k )). (8)

The partial derivative of negative samples is:

∂L

∂f(xn∗ )
= cp − f(xn

∗ ). (9)

It is worth mentioning that our work is related to the center
loss [15] and coupled cluster loss [3]. However, the center loss
only considers intra-class sample distance, while the coupled
cluster loss does not follow that all the positives sampled in
computing the center point, should be propagated backwards. By
contrast, our mean-valued triplet loss investigates the inter-class
distance and intra-class distance simultaneously. To implement
the ICV loss, the class anchor ap and group anchor ap,g in
(4) are replaced by class center cp and the group center cp,g ,
respectively. The class center cp is the mean value of the total
samples of each vehicle ID, and the group center cp,g is the
mean value of each group in class p. As illustrated in Fig. 3(b),
there are one class center and three group centers.
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Fig. 3. (a) Illustration of the distance metric optimization process by using the traditional triplet loss and (b) the intra-class variance (ICV) incorporated triplet
loss. By grouping the samples by attributes as indicated in different colors in (b), the ICV triplet loss further enforces that the samples of the same group come
closer. By contrast, the traditional triplet loss in (a) deals with each category as a whole, and setups the coarse constraints of embedding all the samples into a local
space while ignoring the intra-class structure. (better viewed in color).

B. Online Group Generation

As the feature distribution changes with the network weights
updating, we propose to perform online grouping to better char-
acterize the intra-class variance. The group labels are periodi-
cally updated online in the training process.

We alternatively update the weights of the network and group
labels on the intra-class samples. At the t-th iteration, given the
vehicle IDs of I1 , I2 , ...IN and their corresponding sample sets
S1, S2, ...SN, the group labels are generated. The group label
assignment is given by,

G(t) = {S(t)
p,g |g = 1, 2, ...G,

G⋃

g=1

S(t)
p,g = Sp},

where S
(t)
p,g is the g-th group for vehicle ID p in the t-th iteration.

When each round of updating groups labels is completed, we fix
G = G(t) and update the network. Accordingly, the ICV triplet
loss function can be further represented as follows:

LICV Triplet(ft)=Linter(ap , xp
∗ , x

n
∗ ) +

G∑

g=1

Lintra(ap,g , xg
p , x

p
i )

=
∑

xp
∗ ∈S p

1
2

max{‖f(ap) − f(xp
∗)‖2 + α1 − ‖f(ap)

− f(xn
∗ )‖2 , 0} +

G∑

g=1

∑

xp
g ∈S

( t )
p , g

1
2

max{‖ft(ap,g )

− ft(xp
g )‖2 + α2 − ‖ft(ap,g ) − ft(xp

i )‖2 , 0}, (10)

Then we update group label G using the k-means clustering

G(t+1) = arg min
G

G∑

g=1

∑

x∈S
( t + 1 )
p , g

‖f (t)(x) − μg‖2 . (11)

where μg is the g-th group center. We fix the t-th iteration’s
network parameters, and generate the t + 1-th iteration’s group
labels. As that updating labels may cause extra computational
cost and frequent updating may lead to slower convergence, we
empirically update once every 2 epochs (traverse training data
twice). As illustrated in Fig. 5, the vehicles in each resulting

group exhibit similar viewpoints (attributes) in the training
stage.

C. Joint Optimization of Multiple Loss

The optimization of the ICV triplet loss alone is inefficient
and less effective. First, the ICV triplet loss suffers from the
issue of dramatic data expansion. Given a dataset of N images,
the number of triplet units is O(N 3), while each iteration takes
dozens of triplet units, but only a minority may violate the con-
straints. As such the convergence for minimizing triplet loss is
much slower than other loss constraint (e.g., softmax loss). Sec-
ond, the triplet loss focuses on similarity distance learning rather
than hyperplane decision. Hence, the discriminative power of
features are yet to be improved by adding the softmax loss to the
loss function. The softmax loss imposes a strong constraint on
distinguishing different vehicle IDs. Hence, we employ multi-
loss learning to jointly optimize both the ICV triplet loss and
softmax loss. By using a hyper parameter ω to balance two types
of loss, the final loss function can be formulated as

LGSTE = ωLsoftmax + (1 − ω)LICV trplet . (12)

Regarding the hyper parameter, ω = 0.75 works well and is
used in our experiments. Fig. 4 illustrates the structure of the
deep network with the proposed multi-loss function. In this
work VGG_CNN_M_1024 is employed as a base network. It
contains 5 convolutional layers and 2 fully-connected layers.
The multi-loss works on the last fully-connected layer “fc7”
with the dimension of 1024. In particular, for the ICV triplet
loss, the input feature is L2 normalized.

Algorithm 1 shows the optimization pipeline. Given a set
of training data, we use mini-batch SGD to optimize the loss
function in (6).

V. EXPERIMENTAL RESULTS

A. Evaluation Metrics

We adopt two evaluation metrics, mean average precision
(mAP) and cumulative match curve (CMC) in our experiments.

Mean Average Precision: The mAP metric evaluates the
overall performance for re-identification. Average precision is
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Fig. 4. Illustration of a triplet network by incorporating intra-class variance into triplet embedding, in which the joint learning objective is to minimize the
combination of the softmax loss and the triplet loss (consisting of inter-class and intra-class triplet loss).

Algorithm 1: Group Sensitive Triplet Embedding
Input: Initialized parameters θ in network layers. Training

set {Sp |i = 1, 2, ..., N}, group number G, learning rate
μ group label update interval m, training iteration T .

Output: Learned weights.
1: Group label initial assignment by K-means
2: for t = 1 to T do
3: Sample a mini-batch of training images
4: for all Sp in S do
5: Compute class center cp for Sp

6: for g = 1 to k in Sg do
7: Compute group center cp,g

8: end for
9: Compute joint loss by LGSTE

10: end for
11: Compute total loss Lt in minibatch
12: Compute the backpropagation error ∂Lt

∂f (xt ) for each

f(xt)
13: Update the θ by θt+1 = θt − μ ∂Lt

∂f (xt ) · ∂f (xt )
∂θt

14: if t%m = 0 then
15: online cluster and update group labels
16: end if
17: end for

calculated for each query image as follows:

AP =
∑n

k=1 P (k) × gt(k)
Ngt

, (13)

where k is the rank in the sequence of retrieved vehicles, n is
the number of retrieved vehicles, Ngt is the number of relevant
vehicles. P (k) is the precision at cut-off k in the recall list and
gt(k) indicates whether the k-th recall image is correct or not.
Therefore, the mAP is defined as follows:

mAP =

∑Q
q=1 AP (q)

Q
, (14)

where Q is the number of total query images. Moreover, Top K
match rate is also reported in the experiments.

Fig. 5. Exemplar car images from different groups as listed in different
columns, which are obtained by applying online clustering (K = 5) to the
images of a specific car model in VeRI-776 dataset. Each group is with same or
similar viewpoints.

Cumulative Match Characteristics: The CMC curve shows
the probability that a query identity appears in different-sized
candidate lists. The cumulate match characteristics at rank k can
be calculated as:

CMC@k =

∑Q
q=1 gt(q, k)

Q
, (15)

where gt(q, k) equals 1 when the groundtruth of q image appears
before rank k. The CMC evaluation is valid only if there is only
one groundtruth match for a given query.

B. Datasets

The scale in existing vehicle re-identification datasets can-
not provide a sufficient evaluation towards real-world surveil-
lance applications. For example, in Guangdong Province, China,
there are more than 30K cameras deployed on the main road.
These cameras capture about 43 million vehicle images per
day. By contrast, the available well-annotated training set (e.g.,
VeRI-776 and VehicleID dataset) is terrifically limited. The re-
identification methods developed with these databases may not
answer the question on the generalization capability.
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To meet the emerging demand on large-scale vehicle re-
identification, we construct a dataset, namely PKU-Vehicle,
which contains tens of millions of vehicle images captured
by real-world surveillance cameras in several cities in China.
The PKU-Vehicle dataset contains 10 million vehicle images
captured from multiple real video surveillance systems across
several cities, which in this work serves as a distractor dataset
to test the large-scale retrieval performance. Various locations
(e.g., highways, streets, intersections), weather conditions (e.g.,
sunny, rainy, foggy), illuminations (e.g., daytime and evening),
shooting angles (e.g., front, side, rear), different resolutions
(e.g., 480 P, 640 P, 720 P, 1080 P, 2 K) and hundreds of vehi-
cle brands are involved in PKU-Vehicle dataset. Fig. 7 presents
some typical examples from PKU-Vehicle.

Experiments are carried out over four datasets VehicleID [25],
VeRI-776 [24], CompCar [1] and PKU-Vehicle. For fair com-
parison with existing methods, we follow a standard protocol of
train/test split.

� VehicleID dataset consists of 221,763 images of 26,267
vehicles (about 250 vehicle models) captured by different
surveillance cameras in a city. There are 110,178 images of
13,134 vehicles for training and 111,585 images of 13,133
vehicles for testing. Exactly following the settings in [25],
we use three test subsets of different sizes, i.e., 7,332 im-
ages of 800 vehicles in small size, 12,995 images of 1600
vehicles in medium size and 20,038 images of 24,000 ve-
hicles in large size.

� VeRI-776 dataset consists of vehicle images captured in a
real-word unconstrained traffic scenario, containing about
50,000 images of 776 vehicles, in which each vehicle is
captured by 2–18 cameras in different viewpoints, illu-
minations, resolutions and occlusions. The vehicles are
labeled with Bounding Boxes, types, colors, brands and
cross-camera relations.

� CompCar dataset, which is a fine-grained vehicle dataset, is
mostly collected from Internet. It contains 136,727 vehicle
images of 1687 different vehicle models. We select the
Part-I subset for training that contains 16,016 images of
431 vehicle models and the remaining 14,939 images for
test. It is worth noting that the vehicle images of CompCar
used in our experiment are not cropped, and a vehicle
occupies about 50 ∼ 70% in an image.

� PKU-Vehicle dataset is collected from different surveil-
lance cameras with 10 millions images. The vehicle
objects in images are cropped out, such that each image
contains one vehicle. In order to thoroughly evaluate the re-
identification methods at different scales, we further split
the database into eight subsets, i.e., 10 thousands, 50 thou-
sands, 100 thousands, 500 thousands, 1 million, 2 millions,
5 millions, 10 millions.

C. Experiment Setup

We select the output of L2 Normalization layer as the feature
representation for re-identification and retrieval tasks. For fair
comparison, we use the VGG_CNN_M_1024 (VGGM) [58] as
the base network structure, which was also adopted in [25]. In

TABLE I
RESULTS OF MATCH RATE IN VEHICLE Re-ID TASK

IN VehicleID DATASET

Method Small Medium Large

Triplet Loss VGGM [57] Top 1 0.404 0.354 0.319
CCL VGGM [25] 0.436 0.370 0.329
Mixed Diff + CCL VGGM [25] 0.490 0.428 0.382
ICV triplet loss VGGM 0.472 0.446 0.406
Triplet + Softmax Loss VGGM [48] 0.683 0.674 0.653
GS-TRE loss W/O mean VGGM 0.740 0.732 0.715
GS-TRE loss W/ mean VGGM 0.759 0.748 0.740

Triplet Loss VGGM [57] Top 5 0.617 0.546 0.503
CCL VGGM [25] 0.642 0.571 0.533
Mixed Diff + CCL [25] 0.735 0.668 0.616
ICV triplet loss VGGM 0.738 0.713 0.665
Triplet + Softmax Loss VGGM [48] 0.771 0.765 0.751
GS-TRE loss W/O mean VGGM 0.828 0.817 0.799
GS-TRE loss W/ mean VGGM 0.842 0.836 0.827

addition, the performance on three other networks Googlenet
[35], VGG16 [34], ResNet50 [59] are also reported. All of these
networks are initialized with the models pretrained on Imagenet
dataset. Regarding the hyper parameters, we set α = 0.4 in
triplet, and α1 = 0.4, α2 = 0.1 in ICV. Note that the weight
ω in LGS-TRE is 0.75. The numbers of intra-class groups in
CompCar, VeRI-776 and VehicleID are empirically set to be
5, 5 and 2, respectively. Learning rate starts from 0.001 and is
divided by 10 every 15 epoches (one forward and backward pass
of all the training examples), and the models are trained for 50
epoches. The size of mini-batch, momentum and weight decay
is set to 60, 0.9 and 0.0002, respectively. All of the experiments
are based on Caffe [60].

To comprehensively evaluate the performance, we provide
the baseline and comparison methods as follows: (1) triplet loss
[16], (2) triplet + softmax loss [48], (3) mixed Diff + CCL
[25], (4) HDC + Contrastive [61], (5) FACT + Plate-SNN +
STR [24], (6) GS-TRE loss without a mean-valued anchor for
each group, i.e., a randomly selected anchor (GS-TRE loss W/O
mean), (6) GS-TRE loss with a mean-valued anchor for each
group (GS-TRE loss W/mean).

In the following subsections, we first present and analyze the
performance on three different datasets. Subsequently, we dis-
cuss the impacts of offline and online grouping in feature learn-
ing. Finally, the performance with large-scale distactor dataset
PKU-Vehicle is investigated.

D. Performance Comparisons on VehicleID Dataset

Re-identification: Table I presents performance comparisons
of the vehicle Re-ID task. The results show that the ICV triplet
loss performance generally better as the size of dataset expands.
Besides, although ICV triplet loss is worse than Mixes Diff +
CCL loss in the top 1 match rate on the small dataset, it achieves a
better performance on the top 5 match rate, implying better recall
capability benifiting from the intra-class model. The proposed
method GS-TRE loss with mean-valued anchors achieves +30%
improvements over Mixed Diff + CCL in the large test set. Such
significant improvements can be attributed to two aspects. First,
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Fig. 6. The CMC curves on (a) VehicleID, (b) VeRI, (c) CompCar datasets. The numbers in the legend of curves are the Top1 value of CMC.

Fig. 7. Samples from the PKU-Vehicle dataset. (a) Vehicles exhibit various
shooting angles; (b) Vehicles captured by similar visual appearances; (c) The
same vehicle models with different colors; (d) Vehicles with various types; (e)
Vehicles captured with occluded and blurred conditions.

we extend the softmax classification to the granularity level of
vehicle ID, rather than the vehicle model in [25]. Second, we
improve feature learning by introducing the intra-class variance
structure and its relevant loss function to triplet embedding.
Moreover, as to the Top 1 and Top 5 match rate, our GS-TRE
yields significant performance gains compared to the baselines.
CMC curves of different methods from Top 1 to 50 on the small
test set are given in Fig. 6(a), from which we can observe that
GS-TRE shows obvious advantages.

Retrieval: Table II lists the retrieval performance compar-
isons. Note that during the training stage, unlike the methods in
[57] and [25] that treat each vehicle model as a category, we treat
each vehicle ID as a class (i.e., 13,134 vehicles classes). From
Table II, we can observe that simply combining softmax and
triplet loss has outperformed Mixed Diff + CCL [25] with sig-
nificant mAP gain of 19.5% in the large test set. Furthermore, the
GS-TRE without mean-valued anchors can further achieve sig-
nificant improvements across three subsets with different scales.
In particular, the mAP improvement on large test set reaches up

TABLE II
mAP RESULTS OF VEHICLE RETRIEVAL TASK IN VehicleID DATASET

Methods Small Medium Large

Triplet Loss VGGM [57] 0.444 0.391 0.373
CCL VGGM [25] 0.492 0.448 0.386
Mixed Diff + CCL VGGM [25] 0.546 0.481 0.455
ICV triplet loss VGGM 0.531 0.509 0.474
Softmax Loss VGGM 0.625 0.609 0.580
HDC + Contrastive [61] 0.655 0.631 0.575
Triplet + Softmax Loss VGGM [48] 0.695 0.674 0.650
GS-TRE loss W/O mean VGGM 0.742 0.729 0.708
GS-TRE loss W/ mean VGGM 0.754 0.743 0.724

to 5.8%. Compared to [25], remarkable mAP improvements on
large set are observed, i.e., up to 25.3%. It is worth noting that
the mean-valued triplet loss in GS-TRE can further obtain about
1.6% mAP gains since the mean values of positives from mul-
tiple groups within a vehicle ID yield more reliable anchors,
which contributes to better triplet embedding. Fig. 8 shows the
feature distribution by t-SNE [62], which demonstrates signifi-
cantly improved separability brought by GS-TRE learnt feature
presentation.

E. Performance Comparisons on VeRI-776 Dataset

Retrieval: We further compare the proposed GS-TRE method
with color based feature (BOW-CN), texture feature (LOMO),
semantic feature extracted by CNN network (GooleNet, fine-
tuned on the CompCars dataset), fusion of attributes and
color feature (FACT), Plate recognition trained by SNN model
(Plate-SNN), and appearance based coarse filtering (FACT fea-
ture), Plate based accurate search (Plate-SNN, Plate-REC), and
Spatio-temporal property Based Re-Ranking (STR) mechanism
on VeRI-776 dataset.

Table III lists the mAP results on VeRI dataset. The exper-
imental results show that the VGGM network performance by
fine training on the VeRI-776 train set (37,781 images of 576 ve-
hicles) significantly outperforms the GoogleNet (much deeper
than VGGM) trained with the CompCars dataset (30,955 for
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Fig. 8. Visualization of feature distribution by t-SNE on VehicleID test dataset. Different colors represents different vehicle IDs. We randomly chose 1500
samples from 20 vehicle IDs. The learnt representation by triplet loss can better separate vehicles in feature space than softmax. GS-TRE loss provides an much
better feature representation, benefited from the embedding of group structure, and the combination of triplet loss and softmax loss. (a) Softmax, (b) Triplet,
(c) GSTE.

Fig. 9. The visualization of “pool5” feature maps extracted from the VGGM network trained over VehicleID dataset by using the proposed GS-TRE. The
vehicle image pairs listed in each subfigure from (a)–(e) are from different vehicle IDs. Noted that there do exist strong response values at the regions containing
characteristic details such as headlights, windscreen, decorations, etc. In particular, the annual inspections signs pasted on the top-left corner of the windscreen
produce strong responses which helps to distinguish those different IDs of the same vehicle model in practice.

TABLE III
RESULTS OF mAP AND MATCH RATE IN VeRI-776 DATASET

Methods mAP HIT@1 HIT@5

BOW-CN [63] 12.2 33.91 53.69
LOMO [64] 9.64 25.33 46.48
GoogLeNet [1] 17.04 49.82 71.16
FACT [4] 18.49 50.95 73.48
Plate-SNN [24] 15.74 36.29 46.6
FACT + Plate-REC [24] 18.62 51.19 73.6
FACT + Plate-SNN [24] 25.88 61.08 77.41
FACT + Plate-SNN + STR [24] 27.77 61.44 78.78
Softmax Loss VGGM [57] 34.32 83.85 92.35
Triplet + softmax loss VGGM [48] 55.83 86.87 95.79
GS-TRE loss W/O mean VGGM 57.76 95.79 96.45
GS-TRE loss W/ mean VGGM 59.47 96.24 98.97

the 431 vehicle model). Moreover, we can observe that treating
each vehicle ID as the granularity of categorization rather than
each vehicle model, can ensure more effective network train-
ing, and generate more discriminative feature representation for
fine-grained recognition. Fig. 9 visualizes the “pool5” feature
maps of examplar vehicles. In Fig. 9 (a)–(c), the extremely sim-
ilar vehicle pairs belong to different models, but GS-TRE learnt
network can generate effective feature maps to distinguish them.
In Fig. 9(d) and (e), we present the images of different vehicle
ID with the same model, and the feature maps can still produce
good responses at characteristic regions (such as windscreen,
marks, decorations, etc.), which are effective to distinguish dif-
ferent vehicle.

The FACT feature combines low-level features including
color and texture. Liu et al. in [24] employs the FACT based
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Fig. 10. Exemplar Top 5 retrieval results on VeRi-776 dataset. The images with red box are the wrong results. For each query, the three rows of results from top
to down are from the methods of FACT + Plate-SNN + STR [24], Triplet + softmax loss VGGM, and GS-TRE loss W/ mean VGGM.

Fig. 11. Performance curves with the increasing scale of distactor images from PKU-Vehilce. The X axes is in log.

coarse filtering, license plate features based search and spatio-
temporal property based re-ranking in vehicle re-identification.
In particular, the license plate features in [24] are learnt in deep
network with triplet loss. Compared with FACT + Plate-SNN
+ STR method, we achieve 24.7% mAP improvement which
has demonstrated the superiority of the proposed GS-TRE.

Fig. 10 lists Top 5 exemplar retrieval results of FACT + Plate-
SNN + STR [24], Triplet + softmax loss VGGM, and GS-TRE
loss W/ mean VGGM over VeRI dataset. GS-TRE tends to
top rank the recalled images with similar attributes as query
images, which is useful to improve the retrieval performance in
practice. In view of the comparison results, our method achieve
the better mAP and recall performance. In Fig. 12, we provide
more results of the Top 10 recall of Triplet + softmax and GS-
TRE W/ mean loss VGGM on VeRI dataset. We observe that
when the input query is in small resolution (e.g., 180 * 80), the

performance would drop due to the difficulties in identifying
the characteristics of vehicles. In this scenario, the influence
of viewpoint variation on the retrieval performance will also
become significant.

Re-identification: Fig. 6(b) shows the CMC curve on the VeRI
dataset. Note that there is only one groundtruth in reference
database as defined in Section VI-A, while in Table III the
evaluations of mAP, HIT@1 and HIT@5 are measured with
all of the groundtruth of the given query in reference database.
From Fig. 6(b) our method achieves consistent improvements
over comparison methods (the numbers in legend indicate the
CMC value at Top1).

F. Performance Comparisons on CompCar Dataset

Furthermore, we study the effectiveness of our method in
CompCar dataset, in which the recognition task is performed
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Fig. 12. The visualization of Top 10 retrieval results of a given vehicle. The
upper rows are return results by using triplet + softmax VGGM and the bottom
rows are our GS-TRE loss W/ mean VGGM method.

TABLE IV
MEAN PRECISION @ K ON CompCars RETRIEVAL TASK

mean precision @ K 1 50 500 All (mAP)

Triplet Loss [57] 0.502 0.371 0.198 0.122
Softmax Loss 0.456 0.282 0.167 0.091
Triplet + Softmax Loss [48] 0.719 0.586 0.419 0.349
GS-TRE loss W/O mean 0.749 0.615 0.486 0.384
GS-TRE loss W/ mean 0.769 0.631 0.503 0.402

at a coarse granularity, i.e., specifying the vehicle model rather
than different vehicle IDs.

Retrieval: Table IV presents the Top K precision comparisons
on CompCar dataset. From the results, the incorporation of
intra-class variance into triplet embedding can achieve more
than 8.4% precision gains at Top 500 compared with triplet +
softmax loss. Overall, the modeling of intra-class variance and
its injection into triplet network can significantly improve the
discriminative power of feature representation, which plays a
significant role in high performance vehicle retrieval.

Re-identification: In Fig. 6(c), the triplet loss alone achieves
17.58% match rate at Top-1, and our method brings about 22.5%
improvements. Compared with the triplet + softmax method, the
proposed method achieves 3.2% higher precision at Top-1 match
rate and 5.2% higher at Top-50 match rate, which validates the
effectiveness of the GS-TRE.

Classification: We also evaluate our method in the classifica-
tion task. The VGGM network is trained with softmax loss with
learning rate 0.001 for 40 epoches on ComparCar train set. It
yields 78.24% classification accuracy on test set. Further fine-
tuning with triplet + softmax loss can bring about 0.7% classi-
fication accuracy improvements, while using GS-TRE loss with
mean-valued anchors can yield more improvements about 1.7%
(i.e., 79.95%). The improvements are less significant compared
with re-identification, since the optimization objective mainly
works on the feature distance of samples, from which retrieval
based tasks can benefit more. Nevertheless, the improvements
still demonstrate the effectiveness of preserving intra-class vari-
ance that is beneficial in feature learning.

TABLE V
mAP RESULTS OF VEHICLE RETRIEVAL TASK IN VeRI DATASET

VeRI dataset mAP

GS-TRE W/O mean (attribute) 0.560
GS-TRE W/ mean (attribute) 0.576
GS-TRE W/O mean (offline) [32] 0.564
GS-TRE W/ mean (offline) [32] 0.579
GS-TRE W/O mean (online) 0.578
GS-TRE W/ mean (online) 0.594

TABLE VI
mAP RESULTS OF VEHICLE RETRIEVAL TASK IN VehicleID DATASET

VehicleID Dataset Small Medium Large

GS-TRE W/O mean (attribute) 0.735 0.723 0.702
GS-TRE W/ mean (attribute) 0.750 0.740 0.722
GS-TRE W/O mean (offline) [32] 0.731 0.718 0.696
GS-TRE W/ mean (offline) [32] 0.746 0.734 0.715
GS-TRE W/O mean (online) 0.742 0.729 0.708
GS-TRE W/ mean (online) 0.754 0.743 0.724

G. Comparisons Over Different Grouping Methods

We thoroughly evaluate the impact of the grouping forms that
online versus offline and attributes assignment on the GS-TRE
performance. For offline grouping in [32], the images of each
vehicle ID are fed into a deep network (VGG_CNN_M_1024)
pre-trained on the ImageNet dataset. Then the output of the last
fully-connected layer is extracted to perform clustering by K-
means. Regarding the attributes assignment, we use the camera
IDs in VeRI dataset and viewpoint labels in VehicleID.

Tables V and VI present the comparison results of differ-
ent grouping methods. The online grouping outperforms the
offline method for both with/without mean-valued center meth-
ods, since the group labels are periodically updated with the
change of feature distributions. Besides, attribute assignment
method is better than offline method on VehicleID dataset but
worse on VeRi-776 dataset. Since images are captured by 2–18
cameras in VeRI-776 dataset, similar viewpoints for different
cameras may exist. Moreover, the performance gain on VeRI
dataset are more obvious than VehicleID dataset due to higher
intra-class variance on VeRI-776 dataset.

H. Large Scale Vehicle Retrieval

To extensively investigate the performance in large-scale
re-identification task, we conduct experiments with different
scales of distractors from the PKU-Vehicle dataset. We select
the query and groundtruth from Vehicle ID dataset, which are
combined with the distractors from PKU-Vehicle dataset. Eight
datasets with the distractor scales of 10 thousands, 50 thousands,
100 thousands, 500 thousands, 1 million, 2 millions, 5 millions,
10 millions are constructed. The mAP performance curves are
shown in Fig. 11. The retrieval performance starts to drop from
the scale of 100 thousands, and consistently degrades with the
increasing scale of distractors. With the 10 million scale of
distractors, our method can still achieve 69 % retrieval mAP
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Fig. 13. Performance of GS-TRE W/ mean online on the VehicleID dataset
with the variations of ω in LGS-TRE

TABLE VII
mAP RESULTS OF VEHICLE RETRIEVAL TASK

USING DIFFERENT NETWORKS

Methods Small Medium Large

VGGM Softmax [57] 0.625 0.609 0.580
VGG16 Softmax [25] 0.642 0.627 0.602
GoogleNet Softmax [61] 0.647 0.624 0.603
Resnet Softmax 0.790 0.753 0.720
VGGM GS-TRE W/ mean [25] 0.754 0.743 0.724
VGG16 GS-TRE W/ mean 0.768 0.752 0.733
GoogleNet GS-TRE W/ mean 0.772 0.764 0.746
Resnet GS-TRE W/ mean 0.871 0.820 0.788

with the drop of 6% mAP compared to the original perfor-
mance with reference database of size 10,000. To the best of our
knowledge, this is the first time that the performance evaluation
of vehicle re-identification method is carried out over such a
large scale dataset, such that the effectiveness of the proposed
GS-TRE can be better verified.

I. Balance in the Joint Optimization

The optimization object LGS-TRE consists of two parts, soft-
max and ICV triplet loss. When ω equals to 0, the final loss
degenerates as the softmax loss, and on the other extreme when
ω is 1, it turns out to be the ICV triplet loss. More specifically,
we provide more results by varying the ω in Fig. 13. Generally
speaking, the combined method is superior to either of these two
loss. The hyperparameter α in the margin control also affects
the loss convergence. In our experimental results, when ω is set
to be 0.75, the optimal performance can be achieved.

J. Comparisons Over Different Networks

The gains of retrieval performance originate from the pro-
posed GS-TRE loss function, such that GS-TRE should be able
to generalize to other network structures. To comprehensively
present the superiority of GS-TRE, we extend experiments to
the more sophisticated networks. Table VII lists the performance
of VGG16, GoogleNet, ResNet50 with GS-TRE loss. Undoubt-
edly, deeper networks learn better feature representation. From
the comparison, the GS-TRE loss based network outperforms
the baseline significantly. The improvements across networks

suggest that GS-TRE is generic work with the state-of-the-art
deep network structure to achieve consistently better perfor-
mance in vehicle re-identification task.

VI. CONCLUSION

We present an effective approach to learning discriminative
feature representation for vehicle re-identification. In particu-
lar, we propose a group sensitive triplet embedding for CNNs
to deal with the intra-class variance in learning representation.
Moreover, we propose the mean-valued triplet loss to alleviate
the negative impact of improper triplet sampling during training
stage. Extensive experiments on several benchmarks including
VeRI, Vehicle ID, CompCars show that our method can achieve
the stage-of-the-art performance. Furthermore, the large-scale
vehicle retrieval experiment further demonstrates the effective-
ness and robustness of the GS-TRE.

There remain several open issues. Regarding the group gen-
eration, it is meaningful to adapt the partition of groups with
respect to different iDs, rather than applying a uniform number
of clusters. Besides, we may further improve the loss function
for vehicle Re-ID, not limited to the global view of vehicle
images, which means the discriminative local regions can be
located and enhanced feature learning can be done over local
regions in a weakly supervised way. It is expected that the com-
bination of the part loss of discriminative regions and the global
loss of whole vehicle images may contribute to more effective
feature learning.
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