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Rate-adaptive Compact Fisher Codes
for Mobile Visual Search

Jie Lin, Ling-Yu Duan, Yaping Huang, Siwei Luo, Tiejun Huang, and Wen Gao

Abstract—Extraction and transmission of compact descrip-
tors are of great importance for next-generation mobile visual
search applications. Existing visual descriptor techniques mainly
compress visual features into compact codes of fixed bit rate,
which is not adaptive to the bandwidth fluctuation in wireless
environment. In this letter, we propose a Rate-adaptive Compact
Fisher Codes (RCFC) to produce a bit rate scalable image signa-
ture. In particular, RCFC supports fast matching of descriptors
based on Hamming distance; meanwhile, low memory footprint
is offered. Extensive evaluation over benchmark databases shows
that RCFC significantly outperforms the state-of-the-art and
provides a promising descriptor scalability in terms of bit rates
versus desired search performance.

Index Terms—Compact descriptors, compression, Fisher vector,
mobile visual search, rate adaptation.

I. INTRODUCTION

C AMERA equipped mobile devices are becoming ubiq-
uitous platforms which facilitate mobile visual search

(MVS) applications like Google Goggles. Existing MVS appli-
cations may search rich objects, such as CD/book cover, poster,
logo, landmark, product, etc. A system usually transmits query
images from a mobile client to a remote server, then performs
visual query over a reference image database hosted on the
server. In wireless environment, the query response latency
depends on the network bandwidth. It often takes a few seconds
to transmit a JPEG image ( kB) as a query over a slow
link [1]. An alternate approach is to extract visual features
directly on a mobile client, compress the features and send
compact descriptors to the server over the network [2], [3]. This
alternative is expected to significantly reduce network latency
and improve user experience. On the other hand, compact de-
scriptors allow fast descriptor matching as well as light storage
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Fig. 1. Framework of rate-adaptive compact Fisher codes.

of visual descriptors extracted from reference database images
at the server end. In particular, this topic relates to an ongoing
MPEG standardization, namely, Compact Descriptors for Visual
Search (CDVS) [4].
The development of compact descriptors in MPEG CDVS has

to address a key issue of scalability. Generally speaking, existing
state-of-the-art compact descriptors [5], [6], [7], [8] follow a typ-
ical pipeline: statistics of local invariant features (such as SIFT
[9] and SURF [10]) are aggregated to form a fixed-length vector
representation, which is subsequently compressed into compact
codes for efficient and effective matching, transmission, as well
as for significantly reduced memory complexity. These methods
encode a high dimensional signature to a short descriptor at hun-
dreds of bytes. However, these methods produce compact image
signatures in a fixed bit rate, which is not adaptive to the band-
width variation in wireless network. Ideally, a small image sig-
nature is desirable over a low bandwidth connection (like 2G or
2.5G), while the bit rate of an image signature can be moderately
increased to fulfill more discriminative power when more band-
width is available (like 3G or WiFi). For instance, six operating
points kB kB kB kB kB kB are defined in the
ongoing MPEG CDVS standardization [11].
To accommodate the bandwidth variation, a compact image

signature is required to support bit rate scalability. In this letter,
we formulate the bit rate scalable descriptor coding as a rate-con-
strained feature compression problem. We develop a Rate-adap-
tive Compact Fisher Codes (RCFC) [12]1. Specifically, a rate-
adaptive scalar quantization is proposed to compress a fixed-
length Fisher vector (FV) representation [5] into binary codes of
variable size (see Fig. 1). RCFC supports fast matching between
compact descriptors encoded at different bit rates, in which the
features of Hamming distance computing and light memory foot-
print are hardware friendly. To evaluate RCFC, we first study
the retrieval performance by using the RCFC signatures com-
pressed at a range of different bit rates. In addition, we employ
the evaluation framework of MPEG CDVS, in which the RCFC
is combined with geometric verification to improve the retrieval
performance. Comprehensive results show that the RCFC not
only outperforms the state-of-the-art, but also addresses a bal-
ance issue between descriptor bit rates and search accuracy.
Related Work. The Bag-of-Words (BoW) [13], [14] is the

most widely adopted image signature for visual search, which

1The proposed RCFC has been adopted as the compact global descriptor in
the Committee Draft of the emerging MPEG CDVS standard.
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counts the number of local features being assigned to quantized
visual words in a visual vocabulary. Recently, the FV represen-
tation [5] has extended the BoW by computing higher-order sta-
tistics of the distribution of local features. Jegou et al. [6], [8]
proposed the Vector of Locally Aggregated Descriptors (VLAD)
to aggregate the visual word residuals, which can be regarded as
a non-probabilistic version of FV. Compared to the BoW, both
FV and VLAD have achieved better retrieval performance at a
much smaller visual vocabulary.
Compression schemes [5], [6], [7], [8] have been proposed

to reduce the bit rate of image signatures. Hashing techniques
like locality sensitive hashing (LSH) perform worse at low bit
rates [5]. Vector quantization (e.g., product quantizer [6], [8])
and dimensionality reduction (e.g., PCA) based schemes require
large codebooks or projection matrices, which may not favor
memory-constrained mobile devices. Perronnin et al. [5] pre-
sented the compressed Fisher vector (CFV) by quantizing each
dimension of the FV into a single bit based on a sign func-
tion, which outperforms LSH at low bit rates. Chen et al. [7] in-
troduced the Residual Enhanced Visual Vector (REVV), where
linear discriminant analysis (LDA) is employed to reduce the
dimensionality of VLAD, followed by sign binarization to gen-
erate compact codes. However, neither CFV nor REVV can ad-
dress the scalability issues; that is, the code size is fixed and not
adaptive to the variable bit budget.

II. PROBLEM STATEMENT

In general, higher dimensional image signatures often bring
about more discriminative power at the risk of expensive storage
and/or transmission cost. Our goal is to compress raw signatures
into small codes, without incurring considerable loss of retrieval
accuracy. In addition, the encoder allows the code size of com-
pact signatures to be scalable with respect to different operating
points. Finally, to fit the hardware design, the encoding process
should incur small memory footprint and less computational
complexity. Hence, we formulate the bit rate scalable descriptor
coding as a rate-constrained feature compression problem. For-
mally speaking, given a fixed-length signature for an image
and a compression function (e.g., a quantizer), we aim

to generate the compressed descriptors , with distortion
(e.g., mean square error) and bit rate . Accordingly, the

objective is to minimize the distortion between the raw
signature and the compressed descriptors , subject
to the constraint that the bit rate approaches a target rate

:

(1)

As the bit rate is varied with respect to the target rate ,
we have to address a challenging issue of matching descriptors
across different code sizes. That is, for a query and a data-
base image , if the code sizes of their compressed descriptors

and are different (i.e., ),
and cannot be compared directly using standard metrics
(e.g. Hamming distance). Therefore, the compression function
is supposed to not only fulfill the bit rate scalability, but also

allow the similarity measurement between compressed descrip-
tors of different code sizes. For simplicity, we define the simi-
larity between images and as:

(2)

where is a distance function to measure the similarity be-
tween compressed descriptors.

III. RATE-ADAPTIVE COMPACT FISHER CODES

To address the objective stated in (1), we employ a FV repre-
sentation, followed by a rate-adaptive scalar quantization to gen-
erate bit rate scalable compact Fisher codes RCFC. Furthermore,
the RCFC supports Hamming distance based fast matching be-
tween compact descriptors of different code sizes.

A. Brief Review of Fisher Vector

Let be a set of -dimensional local features ex-
tracted from image . Let with parameters be a probability
density function that models the generation process of local fea-
tures. Jaakkola et al. [15] proposed to describe by the gradient
vector of the log-likelihood of the image:

(3)

The gradient describes how to update the parameters for
better fitting the image . A natural kernel on this gradient
is the Fisher kernel [15]: , where

is the Fisher information matrix [15] of
. is positive semi-definite, and can be decomposed as

. may be considered as a normalization matrix.
Hence, can be rewritten in the form of dot product
between normalized gradient vectors with:

(4)

We refer to as the Fisher Vector (FV) of image .
Specifically, Perronnin et al. [5] chose to be a

Gaussian Mixture Model (GMM) with centroids:
, , where , and are the

weight, mean vector and variance vector of the th Gaussian (We
assume diagonal covariance), respectively. The GMM param-
eters are estimated over a training set of local features using
the Expectation-Maximization (EM) algorithm. Assuming that
the local features are i.i.d., let be the -dimensional gradient
vector w.r.t. the mean of the th Gaussian, we have:

(5)

where denotes the probability
of local descriptor being generated by the th Gaussian. Fi-
nally, the FV is formed by concatenating the Fisher sub-vectors

of all Gaussians and is therefore -dimensional.
Readers are referred to [5] for more details.

B. Scalar Quantization

In this work, we choose an one-bit scalar quantizer to bina-
rize the high dimensional FV , so that superior retrieval per-
formance with nearly zero memory footprint can be achieved.
The goal is to encode the FV using a binary vector

, each element of the FV is projected to 1 if
; otherwise, -1. is a threshold. The quantizer is sup-

posed to minimize the quantization error2:

(6)

2In the formulation, each entry of FV is quantized to . In practice, we
use for the convenience of Hamming distance computation.
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Through expanding (6), we obtain the following form:

(7)

Thus, minimizing (7) can be solved by maximizing . Note
that the normalized FV representation is nearly zero-centered,
i.e., . To maximize , we simply set the binarized
code whenever ; otherwise, . Accordingly,
we derive the quantizer in the form as:

if
otherwise

(8)

For a vector, denotes the element-wise results by (8).

C. Rate Adaptation

With the scalar quantizer , bits are required to encode
the FV . If , we opt to quantize Fisher sub-vec-
tors via per Gaussian basis to meet rate constraints.
Our empirical observation has shown that the original FV signal
presents a sort of Gaussian basis sparsity. Indeed, if none of local
feature was assigned to Gaussian , then all the elements of the
corresponding Fisher sub-vector in (5) are zero. Obviously,
the sparse vector is less informative but contributes to the
quantization error in (6). To save bit budget, those sparse Fisher
sub-vectors can be discarded.
We propose to encode Fisher sub-vectors in a progressive

manner to generate binary codes of the FV , till the bit budget
has been fully occupied. Specifically, we have if the
Fisher sub-vector of the th Gaussian is selected; otherwise,

. If , the quantization error by is .
The number of selected Gaussian functions equals to the number
of non-zero entries of 0/1 vector , i.e., , thereby yielding
bit rate . Given the quantizer , the rate-constrained
optimization in (1) can be rewritten by extending (6) as follows:

(9)

Given a fixed dimension , actually determines .
The optimization in (9) can be done efficiently by applying a
sorting algorithm to the set . In
other words, the Fisher sub-vector with the smallest quanti-
zation error is first selected to generate Fisher codes, followed
by the with the second smallest quantization error, and so on.
The stop criteria is that the bit rate has reached the target
rate . The rate-adaptive signature is referred to as RCFC.
Accordingly, the resulting RCFC bitstream has an overhead of
bits to keep track of the role of each Gaussian function [12].
Discussion. The memory footprint of RCFC equals to CFV,

e.g., parameters for the GMM. When we remove the
rate constraint in (1), the proposed RCFC degenerates to CFV.
Experiments show that RCFC not only reduces the bit rate of
CFV, but also significantly improves the performance, especially
in the context of CDVS Core Experiments [16].

D. Hamming Distance Matching

The proposed RCFC elegantly supports the similarity
matching of compact Fisher codes compressed at different code
sizes. Given a query and a database image with bit rates

and respectively, the similarity in (2) is
specified as a normalized cosine similarity score:

(10)

TABLE I
THE BIT RATE OF REVV, CFV AND THE PROPOSED RCFC

where is the Hamming distance between binarized Fisher
sub-vectors. If the code sizes of image and are different
( ), is computed based on the overlapping Gaus-
sians between and .

IV. EXPERIMENTS

Datasets and Evaluation Metrics. To evaluate the perfor-
mance of the proposed RCFC, we carry out retrieval experiments
over public available datasets [11]: (1) Graphics dataset depicts
CD/DVD/book cover, text document and business card. There
are 1,500 queries and 1,000 database images; (2) Painting
dataset contains 400 queries and 100 database images of paint-
ings (say history, portraits, etc.). (3) Frame dataset contains 400
queries and 100 database images of video frames captured from
a range of video contents like movies and news. (4) Landmark
dataset contains 3,499 queries and 9,599 database images from
building benchmarks, including the ZuBuD dataset, the Turin
buildings, the PKUbench, etc. (5) UKbench dataset contains
2,550 objects, each containing 4 images taken from different
viewpoints. (6) Holidays dataset is a collection of 1,491 holiday
photos, there are 500 image groups where the first image of each
group is used as a query. To fairly evaluate the performance
over a large-scale dataset, we use FLICKR1M as the distractor
dataset [11], containing 1 million distractor images collected
from Flickr.
The retrieval performance is measured by mean Average Pre-

cision (mAP) and Recall@ ( ), i.e., the relevant images
in top returns. For UKbench, we report the average number
of relevant images in top 4 returns as well, which is the most

common measure over this dataset [14].
Implementation details. All the images are resized with re-

duced resolutions (max side pixels). SIFT features are ex-
tracted by the VLFeat library. The dimensionality of raw SIFT
is reduced from 128 to using Principal Compo-
nent Analysis (PCA) [5], [8]. We evaluate the performance of
RCFC with the number of Gaussians .
The Oxford building and the Caltech building datasets are em-
ployed as the independent dataset in all training stages to learn
GMM models and PCA projection matrices.
Bit rate scalable descriptors. Table I lists the bit rates of

REVV, CFV and the proposed RCFC for query images. Both
REVV and CFV employ the fixed-length codes in 512 bytes.
In contrast, the code size of RCFC is varied with respect to the
target rate , e.g., ranging from 256 bytes (60 Gaussian
functions are selected) to 436 bytes when and .
However, we fix the code size of RCFC for database images, i.e.,
105 and 300 Gaussian functions are selected in which
and , respectively.
Fig. 2 shows the retrieval results in terms of Recall@500

vs. different bit rates over different datasets. Firstly, the RCFC
significantly outperforms the fixed-size CFV and REVV over
all datasets at all code sizes (except CFV for the Painting
dataset). For , CFV and REVV yield Recall@500
82.31% and 79.73% on average over all datasets, while the
RCFC has achieved better Recall@500 84.2% at lower bit
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Fig. 2. Recall@500 vs. different bit rates over the various types of datasets, combined with the distractor set FLICKR1M.

TABLE II
COMPARISON OF THE RCFC WITH THE STATE-OF-THE-ART [6], [8]

ON UKBENCH ( ) AND HOLIDAYS (MAP).
DENOTES THE NUMBER OF CENTROIDS

TABLE III
MEMORY FOOTPRINT OF REVV, CFV AND THE PROPOSED RCFC

rates ( bytes). This gain may be attributed to the
fact that RCFC discards less informative Gaussian functions.
Secondly, with more bits, RCFC can improve the performance
progressively. For example, Recall@500 is increased from
87.91% at 305 bytes to 94.23% at 865 bytes on Painting dataset
when . The results have demonstrated the promising
scalability of RCFC in seeking a desirable balance between
code size and search accuracy.
Comparison with the state-of-the-art. Table II compares the

performance of the RCFC with BoW [8], VLAD [6] and FV
[8] on two typical benchmark datasets: UKbench and Holidays.
The proposed RCFC significantly outperforms BoW. Compared
to VLAD [6] and FV [8] with product quantization, the RCFC
obtains better search performance with comparable number of
centroids. For instance, when , the RCFC achieves a much
better mAP 60.4% on Holidays, while VLAD [6] reports 49.5%
and FV [8] 50.6%.
Combined with geometric verification.We further evaluate

the RCFC performance within the MPEG CDVS evaluation
framework [11]: a weak geometric verification (GV) is applied
to verify the geometric consistency within a shortlist of 500
database images returned by the RCFC based retrieval. Note that
GV works on compressed local features [17], which are hosted
by using the remaining bit budget of each operating point (e.g.,
subtract the RCFC with size bytes from the lowest
operating point 0.5 kB). The results show that RCFC+GV yields
much better performance than CFV+GV and REVV+GV. For
example, RCFC+GV achieves an average mAP 81.47% versus
REVV+GV 77.04% over all datasets. Readers are referred to the
MPEG CDVS Input Contribution [12] for more comprehensive
results.
Complexity analysis. Table III compares the memory com-

plexity of REVV, CFV and the proposed RCFC. For RCFC and
CFV, the SIFT PCA projection matrix size is , plus
a 128-dimensional mean vector, in the format of floating point

(4 bytes), yielding the cost of kB. The GMM
parameters involve a set of for Gaussian , resulting
in kB. Compared with REVV,
both RCFC and CFV incur much less memory.

V. CONCLUSION

We have proposed a discriminative and compact descriptor
RCFC by bit rate scalable descriptor coding. RCFC exhibits
low computational complexity, and supports fast similarity
matching of descriptors encoded at different bit rates. Over
extensive benchmarks, RCFC has shown promising search
performance. A full-fledged search pipeline involving RCFC
based retrieval and fast geometric verification has been vali-
dated. Particularly, RCFC has been adopted in the Committee
Draft of the ongoing MPEG CDVS standard as a compact
global descriptor. More research work on the interoperability of
state-of-the-art global descriptors will be included in our future
work. In addition, how to incorporate feature selection into
more informative aggregation and how to distribute the RCFC
indexing structure for scalable visual search [18] are promising
research topics.
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