
AN EFFICIENT FRACTIONAL MOTION

ESTIMATION ARCHITECTURE FOR AVS

REAL-TIME FULL HD VIDEO ENCODER
Fei Wang, Yuan Li, Huizhu Jia, Xiaodong Xie, Wen Gao

National Engineering Laboratory for Video Technology

Peking University

Beijing, 100871, P. R. China

Abstract ———— Fractional motion estimation (FME) as a

complement to integer motion estimation (IME) conducts

higher compression rate in video coding. Based on multiple

reference frames and all modes of variable-block-size (VBS)

motion search, the common FME algorithm and architecture

generally causes high computational complexity. It consumes

plenty of time and hardware resources to process the

real-time (30fps) high definition (HD) video compression. In

this paper, we propose an efficient FME algorithm and

architecture that significantly reduce the number of the

candidate sub-pixels by predicting quarter motion vector and

cost less hardware by saltatory interpolation. Compared with

the conventional FME architecture, the proposed method

reduces resources significantly and accelerates the processing

speed. 75% circuit area and 68% computational complexity

are saved with only 0.1dB drop in performance and similar

bit rate saving on average. Experiments of various sequences

show that HD video (1920x1080) can be processed in

real-time at frequency of 100MHz and it is verified in an AVS

HD encoder on a Xilinx Virtex-6 FPGA prototype system.

Keywords-FME; HD; Real-time; AVS

I. INTRODUCTION

The advanced audio video coding standard (AVS), one
of the three international second generation source coding
technologies, is independently developed by the Audio
Video Coding Standard Work Group of china. AVS
produces comparative performance as H.264/AVC with
reduced implementation cost. Its block based hybrid
framework is similar with the previous MPEG-x and
H.26x series of standard. In the video compression coding,
Motion Estimation (ME) is crucial to remove the temporal
redundancy and achieve a high compression ratio and it is
the most time and hardware consuming part. The common
ME architecture consists of IME and FME: integer motion
search over a large area and sub-pixel search around the
best selected integer pixel. FME can improve 1~2dB Peak
Signal-to-Noise Ratio (PSNR) by using quarter precision
motion vector (MV) after integer motion search.

Although FME reinforce the compression in an
efficient way, it still takes considerable computing time

and hardware resources. As many algorithms of IME
[1][2][3] have been proposed in which only three to five
integer pixels are used as candidates. The computation of
typical 16-point fractional motion search strategy used in
conventional encoder system thus becomes comparatively
huge. Also the multiple reference frames and VBS modes
need large circuit area demanding parallel processing to
meet real-time HD encoding requirements.

The classic FME motion full search (FS) contains two
steps: first, interpolate the half pixels around the integer
candidate point, find the optimal half pixel; second,
execute the same operation to the half pixel candidate to
get the best quarter pixel. This can be shown in Figure 1.
There are eight half precision sub-pixels (a, b, c, d, e, f, g,
h) need to be searched and the same for the quarter
precision sub-pixels (1, 2, 3, 4, 5, 6, 7, 8). And that need to
be done for each reference and every block size partition.
So some previous researches focus on optimizing
algorithm to reduce the search points, Jeong Jechang’s
work was at the model using the parameters derived from
the neighboring integer pixels’ sum of absolute difference
(SAD) to estimate the sub-pixels SAD [9]. And in
reference [10], a novel algorithm was proposed, which
performs a “rough” sub-pixel search before the partition
selection, and performs a “precise” sub-search for the best
partition.

The inter frame prediction technology of AVS is
composed of four modes (forward prediction, backward
prediction, direct prediction, bi-prediction) and four

A

a

1 2 3

4

6 7 8

5

B C D

E F

G H I

cb

g

e

h

d

f

Figure 1. FME Full Search

978-1-4577-1775-8/12/$26.00 ©2012 IEEE

sub-block partition modes (16x16, 16x8, 8x16, 8x8). And
the AVS’s bi-prediction has a special technique:
Symmetric mode. The particular mode calculates the
backward quarter precision MV instead of searching it
according to the known forward MV [4]. So both of the
direct prediction and the symmetric prediction in AVS can
give out the quarter accurate MVs directly, this two modes'
quarter pixels can be interpolated directly by using integer
pixels in order to save the cost of half-pixel interpolation.
Furthermore if we can predict the quarter precision MVs
of the other two modes, the integer-to-quarter compute
units could be shared efficiently. Based on this
optimization algorithm we propose a novel compact
framework that can achieve significant improvement both
on processing speed and circuit resources.

The following paper is organized as follows. In Section
II we discuss the symmetric motion estimate strategy, the
equation of integer-to-quarter and the algorithm to get
quarter MVs in advance. In Section III the proposed
architecture will be introduced. Section IV shows the
experiments’ results. The final section concludes this
paper.

II. ALGORITHM ANALYSIS AND OPTIMIZATION

1. Symmetric Mode

In B frame all the four partition modes of one macro
block (16x16, 16x8, 8x16, 8x8) are estimated in three
directions: forward, backward and bi-direction. In
conventional bi-prediction mode, both of the forward and
backward MVs are coded for each block. In AVS, the
unique Symmetric mode with single coded forward MV
can efficiently save the bits coding MVs as a new
bi-prediction mode. As shown in Figure 2, the
corresponding backward MV is derived from forward MV
depending on the temporal distance between the forward
and backward reference frames and the current B frame
[4]:

MV� �
���

���
 	 MV
 (1)

Where DBf denotes the distance between the current
B frame and the forward reference frame, DBb demotes
the distance between current B frame and the backward
reference frame. If not considering the computation cost,
every sub-pixel could be searched to get the best pair of
symmetric MVs.

Figure 2. Symmetric Prediction

In the AVS reference software RM52K, a forward MV
is derived from the neighboring blocks’ MVs, and all the
surrounding sub-pixels and their corresponding backwards
sub-pixels are estimated. The amount of calculation equals
to that of forward prediction combined with backward
prediction.

We optimize the Symmetric mode by reusing the
forward integer-pixel MVs that the IME provides, so the
expected circuit of Symmetric mode’s forward FME is
saved. And the derived symmetric backward MVs are of
the quarter accuracy. The expected comparison
computation is saved too. In all, for the proposed
Symmetric mode’s algorithm we only need to interpolate
the desired sub-pixels directly by integer pixels. And we
will discuss the integer-to-quarter interpolation in section
3.

2. Optimization of Sub-pixel Estimation

The classic quarter estimation is based on the half pixel
search’s result. Eight quarter size pixels around the best
half pixel (such as point 1, 2, 3, 4, 5, 6, 7, 8) in Figure 1
are interpolated and their costs compared. In inter frame
prediction it is often considered that there are three types
of half pixels and twelve types of quarter pixels. As shown
in Figure 3, point 1, 2, 3 are half pixels and point a, b, c, d,
e, f, g, h, i, j, k, l are quarter pixels. Because the quarter
candidates are different depending on different position of
best half pixels, all the twelve types of quarter pixels’
processing units are required. As a result the quarter part
of FME is much more complex than the half part.

Now we suppose that the forward prediction’s quarter
MV and backward prediction’s quarter MV can be
pre-obtained, the quarter precision search of FME will be
significant simplified without 8 interpolation and
comparison. The integer-to-quarter interpolation units can
be shared with the Symmetric mode which also saves the
storage of a large quantity of half pixels used as the
original pixels for quarter interpolation.

Figure 3. Sub-pixels Figure 4. Cross Search

 Pattern

Now in order to find an effective way to get the quarter
MV in advance, we turn to the monotonic error surface. As
the sub-pixels are generated by the integer pixels, the
correlation of the fractional search window is much higher
than the integer search window. So the error surface is
monotonic most cases of fractional pixels. Former studies
of the error surface come up with three hints for us:

a) The minimum error point can be found along the
direction of the block error from the highest to the
lowest point. As the error direction is known,
only the points on the search path need to be
calculated. This method is called Directional
Asymmetric Search (DAS) [6].

b) The minimum fractional error point can be
assumed to locate between the minimum and the
second minimum error point [7]. That leads to a
smaller number of candidates too.

c) Based on the monotonic error surface, the
statistical data show that the rectangular (the
horizontal and vertical) sub-pixels and the search
center almost cover 95% of the full search
destinations [5]. So at the fractional level we just
count the horizontal and vertical sub-pixels as
candidates that the candidate points are reduced to
50%.

In the light of above a), b) and c) premises, we propose
a novel fast FME algorithm with two steps:

step 1) Interpolate the four rectangular half pixels,
compare their cost and find out the maximum and
minimum error half points. The cross search pattern is
shown in Figure 4.

step 2) Deduce the quarter point using the upper
conclusion, and also only consider the four rectangular
quarter points. There are four cases of the search
pattern (Figure 5-8) and different pattern leads to
different quarter candidate.

case 1) The minimum point falls on the center of
the cross so the maximum point is at the four ends.
We assume the desired quarter point is the further
quarter pixel, on the extension line of max and
min point, next to the center integer pixel, as the
red cube shown in Figure 5.

Figure 5. Case 1 Figure 6. Case 2

Figure 7. Case 3 Figure 8. Case 4

case 2) The maximum point falls on the center of
the cross so the minimum point is at the four ends.
We assume the desired quarter point is the further
quarter pixel, on the extension line of max and
min point, beside the end half pixel, as the red
cube shown in Figure 6.

case 3) The maximum and minimum points are on
the four ends and fall on a vertical or horizontal
line. So the second minimum point must be one
of the other three points on their perpendicular
bisector. We assume the desired quarter point is
the quarter pixel between the minimum point and
the center point according to a) and b), as the red
cube shown in Figure 7.

case 4) The maximum and minimum points are on
the four ends and not in a rectangular line. We
assume the desired quarter point is the quarter
pixel which is closer to the other three points of
the two further points to the maximum point
according to a) and b), as the red cube shown in
Figure 8.

This algorithm provides the forward mode and
backward mode’s quarter accurate MVs without quarter
scale motion search. On the other side the direct mode and
the Symmetric mode also provide the quarter MV directly
by calculating. So far all we need are integer-to-quarter
interpolation units.

3. Saltatory interpolation

Normally the quarter pixels are dependent on the
outcome of half interpolation. In order to take advantage
of the vested quarter accurate MV, we propose to change

Figure 9. Sub-pixel Interpolation

the integer-half-quarter model to integer-to-quarter as a
saltatory interpolation. The special interpolation units are
for the Direct mode and Symmetric mode of AVS, because
these two particular modes provide the quarter accuracy
MVs that the interpolation units can use to achieve the
quarter pixels without estimation. And the units also can
be reused by the forward and backward reference modes
which give out the quarter MVs using the algorithm
proposed in chapter 2. In AVS the three types of
sub-pixels are generated by 4-tap interpolation filter as
shown in Figure 9.

Three diagrams can be unified as:

Sp = (W1*a + W2*b + W3*c + W4*d + W5)/W6 (2)

The half and quarter interpolation can both be
expressed as the above expression. The W* denotes the
interpolation weight and the subscript denote the integer
pixel positions. The half pixels take integer pixels as
original and the quarters take half pixels as original.
Replace the half pixels in the quarter interpolation formula
with their integer expressions, the quarter pixels’ integer
expressions are derived. They are expressed as below:

Quarp = (W1*I1 + W2*I2 + ··· + Wm*Im)/Wn (3)

In expression (3), I* is for the integer pixel and W* is
for the weight.

We classify the quarter pixels into three types referring
to Figure 3. Point a, b, c and i are the same type on the
direct line with integer points. Point e, g, h and k are the
same type that in the direct line only has half pixels. And d,
f, j and l are the intersection ones. These three types
instantiate the expression (3) with distinct integer pixels
and weights:

Qa,b,c,i = (WA1*IA1 + ··· + WA5*IA5 + WA6)/WA7 (4)

Qe,g,h,k= (WB1*IB1 + ··· + WB20*IB20 + WB21)/WB22 (5)

Qd,f,j,l =(WC1*IC1 + ··· + WC16*IC16 + WC16)/WC17 (6)

So we only use three computation units in above
equations to implement quarter interpolation which can
cover all quarter positions. In some cases the Symmetric
mode’s or Direct mode’s MVs point to the half or integer
candidates, we can also obtain the half or integer pixels by
giving the W* different values. The Saltatory Interpolation

Figure 10. Four stages pipeline AVS encoder architecture

Figure 11. Proposed FME architecture

save the median half pixels’ storage and reduce the
computation units from 12 to 3.

III. ALGORITHM AND ARCHITECTURE

1. General Architecture

Our FME architecture can be adopted in the typical
AVS encoder architecture include four stages that include
IME, FME, Rate-Distorition-Optimization (RDO) based
Mode Decision and Variable Length Coding (VLC) as
shown in Figure 10 [8].

FME is at the second stage of the pipeline, whose
inputs include search window, current MB and integer
MVs from IME and outputs contain best matched
reference pixels and quarter accuracy MVs to be
transferred to MD. And the proposed FME architecture is
shown in Figure 11. To meet the requested processing
speed we adopt the three stages pipeline architecture.

The first stage contains the half-pixel interpolation
units (IU) and the quarter MV prediction units. The
forward section performs the FME with the forward
reference frame for B frame and the first frame for the P
frame. The backward section performs the FME with the
backward reference frame for B frame and the second
frame for the P frame. Each direction has three IUs of
three different types of half pixels. And in the Pre-QMV
unit the quarter MVs are predicted by the estimation of the
cost of half candidates viewed as the optimal quarter MVs.

The second stage has two groups of Saltatory Interpolation
units (SIU), the unit that processes the Symmetric mode

and Direct mode’s MVs (SDMV) and the cost compare
units. The SIUs get MVs both from half ME and the
SDMV. There are three computation units of three
different types of quarter pixels in each SIU. The forward,
backward, symmetric and direct mode’s quarter ME share
the two groups of SIUs. Since in stage 1 we get the best
error match cost of half pixel, we compared the quarter
cost with the best half cost to improve the accuracy. The
winner quarter pixels are provided to stage 3 to elect the
better reference frame.

The third stage performs the reference frame selection
and chroma interpolation. Chroma IU contains half IU and
quarter IU. They use 4x4 block level IUs to generate
chrominance sub-pixels. Both of the best matched
luminance sub-pixels, chrominance sub-pixels and the
quarter accuracy MVs are sent to MD in this stage.

2. Pipeline Workflow

In full mode inter frame prediction of AVS, the
Forward, Backward and Symmetric modes all have four
partitions (16x16, 16x8, 8x16, 8x8) to process. The Direct
mode has one partition (8x8). We take an 8x8 size
sub-block as a computing unit. The Forward and
Backward 32 units go through the entire pipeline. The
Symmetric and Direct 20 units are just performed in stage
2 and stage 3.

As shown in Figure 12, the workflow of forward and
backward pipeline are much alike, the difference is that
they process different partitions of Symmetric mode. The
Symmetric 16 blocks and the Direct 4 blocks are placed at
the beginning of second and third stage since their MVs
are available ahead, one derived from IMVs and the others
derived from neighboring blocks’ MVs, and luma and
chroma can be performed at the same time. Two reference
frames of the Direct mode are performed separately in
corresponding direction.

As shown in the red units, The 16 Symmetric units’ have
their own particularities. The Symmetric partitions only
have backward quarter pixels to be estimated, so the 16
units of four partitions are placed evenly in the procession
of stage 2 and 3 to equalize the Forward and Backward
time consumption.

Figure 12. Pipeline Workflow

In stage 1, one partition’s process time is 80 cycles in
average. In stage 2 and 3 the time is 44 cycles in average.
Because the four 8x8 units in partition 16x8, 8x16 and 8x8
have different combination mode, the pipeline can run
forward without waiting for the final completeness of all
the four 8x8 units of each partition. Totally the average
time of the whole FME flow of one macro block is 400
cycles. So this FME architecture can perform real-time
HD video compression at the frequency of 100MHz.

IV. EXPERIMENTAL RESULT

1. Algorithm Analysis

We analyzed the new algorithm by modifying the
reference software of AVS (RM52K). The MV search
range is [�128, �96] and RDO is on. IBBP GOP structure
is used and the tested QP is from 26 to 32. The original
FME algorithm is adopted as reference. The test YUV
sequences are Foreman, Akiyo, City, Blue sky and Crowd
run. As shown in Fig. 13&14, the proposed algorithm has
about 0.12dB PSNR drop compared with Full search for
HD video@30f. From Table 1 and 2 we can see that
compared with the full search, the proposed algorithm’s
average PSNR drop is 0.12dB and the rate increase is
2.6%, but with a reduced computational complexity by
68%.

Figure 13. Performance of different FME algorithm (Crowd run)

Figure 14. Performance of different FME algorithm (Blue_sky)

33

34

35

36

37

38

39

40

6800 11800 16800

FS

proposed

crowdrun 1080p@30pfs

P
S
N
R
(d
B
)

bitrate(kbps)

38

39

40

41

42

43

44

45

1200 1700 2200 2700 3200

FS

proposed

blue_sky 1080p@30pfs

P
S
N
R
(d
B
)

bitrate(kbps)

Table 1.Performance Comparison

Foreman cif City 720p

26 28 30 32 26 28 30 32

Full 39.82 38.61 37.60 36.80 41.01 40.11 41.11 39.39

New 39.74 38.47 37.48 36.69 41.88 40.01 39.96 39.24

drop 0.08 0.14 0.12 0.11 0.12 0.10 0.15 0.15

Blue sky 1080p Crowd run 1080p

26 28 30 32 26 28 30 32

Full 42.84 42.05 41.28 40.61 38.09 36.79 35.70 34.79

New 42.84 41.94 41.14 40.47 38.95 36.67 35.59 34.69

drop 0.10 0.11 0.14 0.14 0.14 0.12 0.11 0.10

Table 2.Rate-Distortion Comparison

 Foreman City Blue sky Crowd run

∆rate (%) 2.9 2.5 2.2 3.1

Table 3.Circuit Units Comparison

 Half

IUs

Quar.

IUs

Half-pel

Storage units

Quar-pel

Storage units

Full 18 72 48 18

New 4 6 2 2

2. Hardware Implementation

Synthesis is made with TSMC 90nm technology, for
real-time HD application, our design costs 300K logic gate
with max frequency at 300MHz. The circuit
implementation comparison between prior typical full
search and 3-stage pipeline FME architecture and the new
proposed architecture is shown in Table 3. It shows the
crucial units’ differences in quantity. In the architecture all
VBS modes including 16x18, 16x8, 8x16 and 8x8 and all
four inter prediction modes containing Forward prediction,
Backward prediction, Symmetric prediction and Direct
prediction are supported. The design contains chroma
interpolation to make it a complete FME module.

The proposed algorithm and architecture is also
embedded in an AVS HD encoder which is implemented
on a Xilinx Virtex–XC6VLX760 FPGA prototyping
system. It costs 18% slice LUTs and 18% slice registers to
support 1080pHD@30fps, while the whole encoder takes
82% slice LUTs and 84% slice registers. The frequency is
110MHz for the encoder system including our proposed
FME architecture to support real-time encoding of HD
video.

V. SUMMARY

In summary, an efficient FME architecture for
real-time HD video compression of AVS is proposed. The
experimental results confirm that the novel algorithm and
architecture saved 75% circuit area and 68%
computational complexity with acceptable performance
lose, and that successfully support the real-time HD
coding @30fps with the frequency of 100Mhz.

REFERENCES

[1] Z. Zhou and M. T. Sun, “Fast macro block inter mode decision and
motion estimation for H. 264/MPEG-4 AVC,” in Proc. Int. Conf.
Image Process., vol. 2. 2004, pp. 789–792.

[2] W. Lin, K. Panusopone, D. M. Baylon, and M.-T. Sun “A new class
based early termination method for fast motion estimation in video
coding,” in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp.
625–628.

[3] H.-Y. C. Tourapis and A. M. Tourapis, “Fast motion estimation
within the H.264 codec,” in Proc. Int. Conf. Multimedia Expo, vol. 3.
2003, pp. 517–520.

[4] Xiangyung Ji, Debin Zhao, Wen Gao, Qingmin Huang, Siwei Ma.
Yun Lu, “New Bi-Prediction Techniques for B Pictures Coding” in
ICME, 2004, 101−104.

[5] Yu-Jen Wang, Chao-Chung Cheng, and Tian-Sheuan Chang, “A Fast
Algorithm and Its VLSI Architecture for Fractional Motion
Estimation for H.264/MPEG-4 AVC Video Coding” in IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 17,
No. 5, May 2007.

[6] Chung-Ming Kuo, Yu-Hsin Kuan, Chaur-Heh Hsieh, and Yi-Hui
Lee, “A Novel Prediction-Based Directional Asymmetric Search
Algorithm for Fast Block-Matching Motion Estimation” in IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 19,
No. 6, June 2009.

[7] Liu Ying and Zhang Rui, “Optimization on Motion Estimation and
DSP Algorithm Based On AVS Encoding” in Computer
Applications and Software Vol. 27, No.12, Dec 2010.

[8] H. B. Yin, H. G. Qi, H. Z. Jia, D. Xie, W. Gao, “Efficient macro
block pipeline structure in high definition AVS video encoder VLSI
architecture” in Proc. ISCAS, 2010, pp. 669-672.

[9] Jeong Jechang, “Fast sub-pixel motion estimation having lower
complexity” in IEEE International Conference on Consumer
Electronics, 2003. ICCE. 17-19. June 2003.174-175.

[10] Weiyao Lin, Krit Panusopone, David M. Baylon, Ming-Ting Sun,
Zhenzhong Chen and Hongxiang Li, “A Fast Sub-Pixel Motion
Estimation Algorithm for H.264/AVC Video Coding” in IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 21,
No. 2, February 2011.

