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Abstract ———— Fractional motion estimation (FME) as a 

complement to integer motion estimation (IME) conducts 

higher compression rate in video coding.  Based on multiple 

reference frames and all modes of variable-block-size (VBS) 

motion search, the common FME algorithm and architecture 

generally causes high computational complexity. It consumes 

plenty of time and hardware resources to process the 

real-time (30fps) high definition (HD) video compression. In 

this paper, we propose an efficient FME algorithm and 

architecture that significantly reduce the number of the 

candidate sub-pixels by predicting quarter motion vector and 

cost less hardware by saltatory interpolation. Compared with 

the conventional FME architecture, the proposed method 

reduces resources significantly and accelerates the processing 

speed. 75% circuit area and 68% computational complexity 

are saved with only 0.1dB drop in performance and similar 

bit rate saving on average. Experiments of various sequences 

show that HD video (1920x1080) can be processed in 

real-time at frequency of 100MHz and it is verified in an AVS 

HD encoder on a Xilinx Virtex-6 FPGA prototype system.  
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I. INTRODUCTION 

The advanced audio video coding standard (AVS), one 
of the three international second generation source coding 
technologies, is independently developed by the Audio 
Video Coding Standard Work Group of china. AVS 
produces comparative performance as H.264/AVC with 
reduced implementation cost. Its block based hybrid 
framework is similar with the previous MPEG-x and 
H.26x series of standard. In the video compression coding, 
Motion Estimation (ME) is crucial to remove the temporal 
redundancy and achieve a high compression ratio and it is 
the most time and hardware consuming part. The common 
ME architecture consists of IME and FME: integer motion 
search over a large area and sub-pixel search around the 
best selected integer pixel. FME can improve 1~2dB Peak 
Signal-to-Noise Ratio (PSNR) by using quarter precision 
motion vector (MV) after integer motion search. 

Although FME reinforce the compression in an 
efficient way, it still takes considerable computing time 

and hardware resources. As many algorithms of IME 
[1][2][3] have been proposed in which only three to five 
integer pixels are used as candidates. The computation of 
typical 16-point fractional motion search strategy used in 
conventional encoder system thus becomes comparatively 
huge. Also the multiple reference frames and VBS modes 
need large circuit area demanding parallel processing to 
meet real-time HD encoding requirements.  

The classic FME motion full search (FS) contains two 
steps: first, interpolate the half pixels around the integer 
candidate point, find the optimal half pixel; second, 
execute the same operation to the half pixel candidate to 
get the best quarter pixel. This can be shown in Figure 1. 
There are eight half precision sub-pixels (a, b, c, d, e, f, g, 
h) need to be searched and the same for the quarter 
precision sub-pixels (1, 2, 3, 4, 5, 6, 7, 8). And that need to 
be done for each reference and every block size partition. 
So some previous researches focus on optimizing 
algorithm to reduce the search points, Jeong Jechang’s 
work was at the model using the parameters derived from 
the neighboring integer pixels’ sum of absolute difference 
(SAD) to estimate the sub-pixels SAD [9]. And in 
reference [10], a novel algorithm was proposed, which 
performs a “rough” sub-pixel search before the partition 
selection, and performs a “precise” sub-search for the best 
partition. 

The inter frame prediction technology of AVS is 
composed of four modes (forward prediction, backward 
prediction, direct prediction, bi-prediction) and four  
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Figure 1. FME Full Search 
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sub-block partition modes (16x16, 16x8, 8x16, 8x8). And 
the AVS’s bi-prediction has a special technique: 
Symmetric mode. The particular mode calculates the 
backward quarter precision MV instead of searching it 
according to the known forward MV [4]. So both of the 
direct prediction and the symmetric prediction in AVS can 
give out the quarter accurate MVs directly, this two modes' 
quarter pixels can be interpolated directly by using integer 
pixels in order to save the cost of half-pixel interpolation. 
Furthermore if we can predict the quarter precision MVs 
of the other two modes, the integer-to-quarter compute 
units could be shared efficiently. Based on this 
optimization algorithm we propose a novel compact 
framework that can achieve significant improvement both 
on processing speed and circuit resources. 

The following paper is organized as follows. In Section 
II we discuss the symmetric motion estimate strategy, the 
equation of integer-to-quarter and the algorithm to get 
quarter MVs in advance. In Section III the proposed 
architecture will be introduced. Section IV shows the 
experiments’ results. The final section concludes this 
paper. 

II. ALGORITHM ANALYSIS AND OPTIMIZATION 

1. Symmetric Mode 

In B frame all the four partition modes of one macro 
block (16x16, 16x8, 8x16, 8x8) are estimated in three 
directions: forward, backward and bi-direction. In 
conventional bi-prediction mode, both of the forward and 
backward MVs are coded for each block. In AVS, the 
unique Symmetric mode with single coded forward MV 
can efficiently save the bits coding MVs as a new 
bi-prediction mode. As shown in Figure 2, the 
corresponding backward MV is derived from forward MV 
depending on the temporal distance between the forward 
and backward reference frames and the current B frame 
[4]: 

MV�  �   
���

���
  	  MV
                (1) 

Where DBf denotes the distance between the current 
B frame and the forward reference frame, DBb demotes 
the distance between current B frame and the backward 
reference frame. If not considering the computation cost, 
every sub-pixel could be searched to get the best pair of 
symmetric MVs.  

 

Figure 2. Symmetric Prediction 

In the AVS reference software RM52K, a forward MV 
is derived from the neighboring blocks’ MVs, and all the 
surrounding sub-pixels and their corresponding backwards 
sub-pixels are estimated. The amount of calculation equals 
to that of forward prediction combined with backward 
prediction.  

We optimize the Symmetric mode by reusing the 
forward integer-pixel MVs that the IME provides, so the 
expected circuit of Symmetric mode’s forward FME is 
saved. And the derived symmetric backward MVs are of 
the quarter accuracy. The expected comparison 
computation is saved too. In all, for the proposed 
Symmetric mode’s algorithm we only need to interpolate 
the desired sub-pixels directly by integer pixels. And we 
will discuss the integer-to-quarter interpolation in section 
3. 

2. Optimization of Sub-pixel Estimation 

The classic quarter estimation is based on the half pixel 
search’s result. Eight quarter size pixels around the best 
half pixel (such as point 1, 2, 3, 4, 5, 6, 7, 8) in Figure 1 
are interpolated and their costs compared. In inter frame 
prediction it is often considered that there are three types 
of half pixels and twelve types of quarter pixels. As shown 
in Figure 3, point 1, 2, 3 are half pixels and point a, b, c, d, 
e, f, g, h, i, j, k, l are quarter pixels. Because the quarter 
candidates are different depending on different position of 
best half pixels, all the twelve types of quarter pixels’ 
processing units are required. As a result the quarter part 
of FME is much more complex than the half part. 

Now we suppose that the forward prediction’s quarter 
MV and backward prediction’s quarter MV can be 
pre-obtained, the quarter precision search of FME will be 
significant simplified without 8 interpolation and 
comparison. The integer-to-quarter interpolation units can 
be shared with the Symmetric mode which also saves the 
storage of a large quantity of half pixels used as the 
original pixels for quarter interpolation.  



 
Figure 3. Sub-pixels         Figure 4. Cross Search  

                                Pattern 

Now in order to find an effective way to get the quarter 
MV in advance, we turn to the monotonic error surface. As 
the sub-pixels are generated by the integer pixels, the 
correlation of the fractional search window is much higher 
than the integer search window. So the error surface is 
monotonic most cases of fractional pixels. Former studies 
of the error surface come up with three hints for us: 

a) The minimum error point can be found along the 
direction of the block error from the highest to the 
lowest point. As the error direction is known, 
only the points on the search path need to be 
calculated. This method is called Directional 
Asymmetric Search (DAS) [6]. 

b) The minimum fractional error point can be 
assumed to locate between the minimum and the 
second minimum error point [7]. That leads to a 
smaller number of candidates too. 

c) Based on the monotonic error surface, the 
statistical data show that the rectangular (the 
horizontal and vertical) sub-pixels and the search 
center almost cover 95% of the full search 
destinations [5]. So at the fractional level we just 
count the horizontal and vertical sub-pixels as 
candidates that the candidate points are reduced to 
50%. 

In the light of above a), b) and c) premises, we propose 
a novel fast FME algorithm with two steps: 

step 1) Interpolate the four rectangular half pixels, 
compare their cost and find out the maximum and 
minimum error half points. The cross search pattern is 
shown in Figure 4. 

step 2) Deduce the quarter point using the upper 
conclusion, and also only consider the four rectangular 
quarter points. There are four cases of the search 
pattern (Figure 5-8) and different pattern leads to 
different quarter candidate. 

case 1) The minimum point falls on the center of 
the cross so the maximum point is at the four ends. 
We assume the desired quarter point is the further 
quarter pixel, on the extension line of max and 
min point, next to the center integer pixel, as the 
red cube shown in Figure 5. 

 

  

Figure 5. Case 1            Figure 6. Case 2 

 

    

Figure 7. Case 3            Figure 8. Case 4 

case 2) The maximum point falls on the center of 
the cross so the minimum point is at the four ends. 
We assume the desired quarter point is the further 
quarter pixel, on the extension line of max and 
min point, beside the end half pixel, as the red 
cube shown in Figure 6. 

case 3) The maximum and minimum points are on 
the four ends and fall on a vertical or horizontal 
line. So the second minimum point must be one 
of the other three points on their perpendicular 
bisector. We assume the desired quarter point is 
the quarter pixel between the minimum point and 
the center point according to a) and b), as the red 
cube shown in Figure 7. 

case 4) The maximum and minimum points are on 
the four ends and not in a rectangular line. We 
assume the desired quarter point is the quarter 
pixel which is closer to the other three points of 
the two further points to the maximum point 
according to a) and b), as the red cube shown in 
Figure 8.  

This algorithm provides the forward mode and 
backward mode’s quarter accurate MVs without quarter 
scale motion search. On the other side the direct mode and 
the Symmetric mode also provide the quarter MV directly 
by calculating. So far all we need are integer-to-quarter 
interpolation units. 

3. Saltatory interpolation 

Normally the quarter pixels are dependent on the 
outcome of half interpolation. In order to take advantage 
of the vested quarter accurate MV, we propose to change  



 

Figure 9. Sub-pixel Interpolation 

the integer-half-quarter model to integer-to-quarter as a 
saltatory interpolation. The special interpolation units are 
for the Direct mode and Symmetric mode of AVS, because 
these two particular modes provide the quarter accuracy 
MVs that the interpolation units can use to achieve the 
quarter pixels without estimation. And the units also can 
be reused by the forward and backward reference modes 
which give out the quarter MVs using the algorithm 
proposed in chapter 2. In AVS the three types of 
sub-pixels are generated by 4-tap interpolation filter as 
shown in Figure 9. 

Three diagrams can be unified as: 

Sp = (W1*a + W2*b + W3*c + W4*d + W5)/W6   (2) 

The half and quarter interpolation can both be 
expressed as the above expression. The W* denotes the 
interpolation weight and the subscript denote the integer 
pixel positions. The half pixels take integer pixels as 
original and the quarters take half pixels as original. 
Replace the half pixels in the quarter interpolation formula 
with their integer expressions, the quarter pixels’ integer 
expressions are derived. They are expressed as below: 

Quarp = (W1*I1 + W2*I2 + ··· + Wm*Im)/Wn       (3) 

In expression (3), I* is for the integer pixel and W* is 
for the weight.  

We classify the quarter pixels into three types referring 
to Figure 3. Point a, b, c and i are the same type on the 
direct line with integer points. Point e, g, h and k are the 
same type that in the direct line only has half pixels. And d, 
f, j and l are the intersection ones. These three types 
instantiate the expression (3) with distinct integer pixels 
and weights: 

Qa,b,c,i = (WA1*IA1 + ··· + WA5*IA5 + WA6)/WA7     (4) 

Qe,g,h,k= (WB1*IB1 + ··· + WB20*IB20 + WB21)/WB22   (5) 

Qd,f,j,l =(WC1*IC1 + ··· + WC16*IC16 + WC16)/WC17    (6) 

So we only use three computation units in above 
equations to implement quarter interpolation which can 
cover all quarter positions. In some cases the Symmetric 
mode’s or Direct mode’s MVs point to the half or integer 
candidates, we can also obtain the half or integer pixels by 
giving the W* different values. The Saltatory Interpolation  

 

 

Figure 10. Four stages pipeline AVS encoder architecture 

 

Figure 11. Proposed FME architecture 

save the median half pixels’ storage and reduce the 
computation units from 12 to 3.  

III.  ALGORITHM AND ARCHITECTURE 

1. General Architecture 

Our FME architecture can be adopted in the typical 
AVS encoder architecture include four stages that include 
IME, FME, Rate-Distorition-Optimization (RDO) based 
Mode Decision and Variable Length Coding (VLC) as 
shown in Figure 10 [8]. 

FME is at the second stage of the pipeline, whose 
inputs include search window, current MB and integer 
MVs from IME and outputs contain best matched 
reference pixels and quarter accuracy MVs to be 
transferred to MD. And the proposed FME architecture is 
shown in Figure 11. To meet the requested processing 
speed we adopt the three stages pipeline architecture. 

The first stage contains the half-pixel interpolation 
units (IU) and the quarter MV prediction units. The 
forward section performs the FME with the forward 
reference frame for B frame and the first frame for the P 
frame. The backward section performs the FME with the 
backward reference frame for B frame and the second 
frame for the P frame. Each direction has three IUs of 
three different types of half pixels. And in the Pre-QMV 
unit the quarter MVs are predicted by the estimation of the 
cost of half candidates viewed as the optimal quarter MVs.  

The second stage has two groups of Saltatory Interpolation 
units (SIU), the unit that processes the Symmetric mode 



and Direct mode’s MVs (SDMV) and the cost compare 
units. The SIUs get MVs both from half ME and the 
SDMV. There are three computation units of three 
different types of quarter pixels in each SIU. The forward, 
backward, symmetric and direct mode’s quarter ME share 
the two groups of SIUs. Since in stage 1 we get the best 
error match cost of half pixel, we compared the quarter 
cost with the best half cost to improve the accuracy. The 
winner quarter pixels are provided to stage 3 to elect the 
better reference frame. 

The third stage performs the reference frame selection 
and chroma interpolation. Chroma IU contains half IU and 
quarter IU. They use 4x4 block level IUs to generate 
chrominance sub-pixels. Both of the best matched 
luminance sub-pixels, chrominance sub-pixels and the 
quarter accuracy MVs are sent to MD in this stage. 

2. Pipeline Workflow 

In full mode inter frame prediction of AVS, the 
Forward, Backward and Symmetric modes all have four 
partitions (16x16, 16x8, 8x16, 8x8) to process. The Direct 
mode has one partition (8x8). We take an 8x8 size 
sub-block as a computing unit. The Forward and 
Backward 32 units go through the entire pipeline. The 
Symmetric and Direct 20 units are just performed in stage 
2 and stage 3. 

As shown in Figure 12, the workflow of forward and 
backward pipeline are much alike, the difference is that 
they process different partitions of Symmetric mode. The 
Symmetric 16 blocks and the Direct 4 blocks are placed at 
the beginning of second and third stage since their MVs 
are available ahead, one derived from IMVs and the others 
derived from neighboring blocks’ MVs, and luma and 
chroma can be performed at the same time. Two reference 
frames of the Direct mode are performed separately in 
corresponding direction. 

As shown in the red units, The 16 Symmetric units’ have 
their own particularities. The Symmetric partitions only 
have backward quarter pixels to be estimated, so the 16 
units of four partitions are placed evenly in the procession 
of stage 2 and 3 to equalize the Forward and Backward 
time consumption.  

 

Figure 12. Pipeline Workflow 

In stage 1, one partition’s process time is 80 cycles in 
average. In stage 2 and 3 the time is 44 cycles in average. 
Because the four 8x8 units in partition 16x8, 8x16 and 8x8 
have different combination mode, the pipeline can run 
forward without waiting for the final completeness of all 
the four 8x8 units of each partition. Totally the average 
time of the whole FME flow of one macro block is 400 
cycles. So this FME architecture can perform real-time 
HD video compression at the frequency of 100MHz. 

IV. EXPERIMENTAL RESULT 

1. Algorithm Analysis 

We analyzed the new algorithm by modifying the 
reference software of AVS (RM52K). The MV search 
range is [�128, �96] and RDO is on. IBBP GOP structure 
is used and the tested QP is from 26 to 32. The original 
FME algorithm is adopted as reference. The test YUV 
sequences are Foreman, Akiyo, City, Blue sky and Crowd 
run. As shown in Fig. 13&14, the proposed algorithm has 
about 0.12dB PSNR drop compared with Full search for 
HD video@30f. From Table 1 and 2 we can see that 
compared with the full search, the proposed algorithm’s 
average PSNR drop is 0.12dB and the rate increase is 
2.6%, but with a reduced computational complexity by 
68%.  

 

Figure 13. Performance of different FME algorithm (Crowd run) 

  

Figure 14. Performance of different FME algorithm (Blue_sky) 
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Table 1.Performance Comparison 

     
Foreman cif City 720p 

26 28 30 32 26 28 30 32 

Full 39.82  38.61  37.60  36.80  41.01  40.11  41.11  39.39  

New 39.74  38.47  37.48  36.69  41.88  40.01  39.96  39.24  

drop 0.08  0.14  0.12  0.11  0.12  0.10  0.15  0.15  

     
Blue sky 1080p Crowd run 1080p 

26 28 30 32 26 28 30 32 

Full 42.84  42.05  41.28  40.61  38.09  36.79  35.70  34.79  

New 42.84  41.94  41.14  40.47  38.95  36.67  35.59  34.69  

drop 0.10  0.11  0.14  0.14  0.14  0.12  0.11  0.10  

Table 2.Rate-Distortion Comparison 

 Foreman City Blue sky Crowd run 

∆rate (%) 2.9 2.5 2.2 3.1 

 
Table 3.Circuit Units Comparison 

 Half  

IUs 

Quar. 

IUs 

Half-pel 

Storage units 

Quar-pel 

Storage units 

Full 18 72 48 18 

New 4 6 2 2 

 

2. Hardware Implementation 

Synthesis is made with TSMC 90nm technology, for 
real-time HD application, our design costs 300K logic gate 
with max frequency at 300MHz. The circuit 
implementation comparison between prior typical full 
search and 3-stage pipeline FME architecture and the new 
proposed architecture is shown in Table 3. It shows the 
crucial units’ differences in quantity. In the architecture all 
VBS modes including 16x18, 16x8, 8x16 and 8x8 and all 
four inter prediction modes containing Forward prediction, 
Backward prediction, Symmetric prediction and Direct 
prediction are supported. The design contains chroma 
interpolation to make it a complete FME module.  

The proposed algorithm and architecture is also 
embedded in an AVS HD encoder which is implemented 
on a Xilinx Virtex–XC6VLX760 FPGA prototyping 
system. It costs 18% slice LUTs and 18% slice registers to 
support 1080pHD@30fps, while the whole encoder takes 
82% slice LUTs and 84% slice registers. The frequency is 
110MHz for the encoder system including our proposed 
FME architecture to support real-time encoding of HD 
video. 

V. SUMMARY 

In summary, an efficient FME architecture for 
real-time HD video compression of AVS is proposed. The 
experimental results confirm that the novel algorithm and 
architecture saved 75% circuit area and 68% 
computational complexity with acceptable performance 
lose, and that successfully support the real-time HD 
coding @30fps with the frequency of 100Mhz. 
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