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Group-Based Sparse Representation
for Image Restoration
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Abstract— Traditional patch-based sparse representation mod-
eling of natural images usually suffer from two problems. First,
it has to solve a large-scale optimization problem with high com-
putational complexity in dictionary learning. Second, each patch
is considered independently in dictionary learning and sparse
coding, which ignores the relationship among patches, resulting
in inaccurate sparse coding coefficients. In this paper, instead of
using patch as the basic unit of sparse representation, we exploit
the concept of group as the basic unit of sparse representation,
which is composed of nonlocal patches with similar structures,
and establish a novel sparse representation modeling of natural
images, called group-based sparse representation (GSR). The
proposed GSR is able to sparsely represent natural images in
the domain of group, which enforces the intrinsic local sparsity
and nonlocal self-similarity of images simultaneously in a unified
framework. In addition, an effective self-adaptive dictionary
learning method for each group with low complexity is designed,
rather than dictionary learning from natural images. To make
GSR tractable and robust, a split Bregman-based technique is
developed to solve the proposed GSR-driven �0 minimization
problem for image restoration efficiently. Extensive experiments
on image inpainting, image deblurring and image compressive
sensing recovery manifest that the proposed GSR modeling
outperforms many current state-of-the-art schemes in both peak
signal-to-noise ratio and visual perception.

Index Terms— Image restoration, sparse representation, non-
local self-similarity, deblurring, inpainting, compressive sensing.

I. INTRODUCTION

IMAGE restoration has been extensively studied in the past
two decades [1]–[20], whose purpose is to reconstruct the

original high quality image x from its degraded observed
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version y. It is a typical ill-posed linear inverse problem and
can be generally formulated as:

y = H x + n (1)

where x, y are lexicographically stacked representations of
the original image and the degraded image, respectively,
H is a matrix representing a non-invertible linear degradation
operator and n is usually additive Gaussian white noise. When
H is a mask, that is, H is a diagonal matrix whose diagonal
entries are either 1 or 0, keeping or killing the corresponding-
pixels, the problem (1) becomes image inpainting [5], [6];
when H is a blur operator, the problem (1) becomes image
deblurring [9], [18]; when H is a set of random projections,
the problem (1) becomes compressive sensing (CS) [19], [42].

To cope with the ill-posed nature of image restoration,
image prior knowledge is usually employed for regularizing
the solution to the following minimization problem [8]–[18]:

arg min x
1
2 ‖H x − y‖2

2 + λ�(x) (2)

where 1
2 ‖H x − y‖2

2 is �2 data-fidelity term, �(x) is called
the regularization term denoting image prior and λ is the
regularization parameter. Many optimization approaches for
the above regularization-based image inverse problems have
been developed [16]–[18], [43].

Due to that image prior knowledge plays a critical role
in the performance of image restoration algorithms, design-
ing effective regularization terms to reflect the image priors
is at the core of image restoration. Classical regularization
terms, such as half quadrature formulation [21], Mumford-
Shah (MS) model [22], and total variation (TV) models
[1], [4], utilize local structural patterns and are built on the
assumption that images are locally smooth except at edges.
These regularization terms demonstrate high effectiveness in
preserving edges and recovering smooth regions. However,
they usually smear out image details and cannot deal well
with fine structures. In the past several years, sparsity has
been emerging as one of the most significant properties of
natural images [23], [24] and the sparsity-based regulariza-
tion has achieved great success in various image process-
ing applications, such as denoising [25], deblurring [11],
and super-resolution [26]. The sparse model assumes that
each patch of an image can be accurately represented by
a few elements from a basis set called a dictionary, which
is learned from natural images. Compared with traditional
analytically-designed dictionaries, such as wavelets, curvelets,
and bandlets, the learned dictionary enjoys the ad-vantage of
being better adapted to the images, thereby enhancing the
sparsity and showing impressive performance improvement.
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However, there exist two main problems in the current patch-
based sparse representation model. First, dictionary learning
is a large-scale and highly non-convex problem, which often
requires high computational complexity [24], [27]. Second,
patch is the unit of sparse representation, and each patch is
usually considered independently in dictionary learning and
sparse coding, which ignores the relationships between similar
patches in essence, such as self-similarity. Moreover, with the
learned dictionary, the actual sparse coding process is always
calculated with relatively expensive nonlinear estimations,
such as match pursuits [28], [38], which also may be unstable
and imprecise due to the coherence of the dictionary [37].
Another alternative significant property exhibited in natural
images is the well-known nonlocal self-similarity, which de-
picts the repetitiveness of higher level patterns (e.g., textures
and structures) globally positioned in images. Inspired by
the success of nonlocal means (NLM) denoising filter [8], a
series of nonlocal regularization terms for inverse problems
exploiting nonlocal self-similarity property of natural images
are emerging [32]–[36]. Due to the utilization of self-similarity
prior by adaptive nonlocal graph, nonlocal regularization terms
produce superior results over the local ones, with sharper
image edges and more image details [33], [36]. Nonetheless,
there are still plenty of image details and structures that
cannot be recovered accurately. One of the reasons is that the
weighted graphs adopted by the above nonlocal regularization
terms inevitably give rise to disturbance and inaccuracy, due
to the inaccurate weights [35].

In recent works, the sparsity and the self-similarity of
natural images are usually combined to achieve better per-
formance. In [11], sparsity and self-similarity are separately
characterized by two regularization terms, which are incorpo-
rated together into the final cost functional of image restoration
solution to enhance the image quality. In [12], simultaneous
sparse coding is utilized to impose that similar patches should
share the same dictionary elements in their sparse decomposi-
tion, which acquires impressive denoising and demosaicking
results. In [15], a nonlocally centralized sparse representation
(NCSR) model is proposed, which first obtains good estimates
of the sparse coding coefficients of the original image by the
principle of NLM in the domain of sparse coding coefficients,
and then centralizes the sparse coding coefficients of the
observed image to those estimates to improve the performance
of sparse representation based image restoration.

Lately, low-rank modeling based approaches have also
achieved great success in image or video restoration. To
remove the defects in a video, unreliable pixels in the video
are first detected and labeled as missing. Similar patches are
grouped such that the patches in each group share similar
underlying structure and form a low-rank matrix approxi-
mately. Finally, the matrix completion is carried out on each
patch group to restore the image [50], [51]. In [5], a low-
rank approach toward modeling nonlocal similarity denoted by
SAIST is proposed, which not only provides a conceptually
simple interpretation for simultaneous sparse coding [12] from
a bilateral variance estimation perspective, but also achieves
highly competent performance to several state-of-the-art meth-
ods.

In this paper, instead of using patch as the basic unit of
sparse representation, we exploit the concept of group as the
basic unit of sparse representation, and establish a novel sparse
representation modeling of natural images, called group-based
sparse representation (GSR). Compared with traditional patch-
based sparse representation, the contributions of our proposed
GSR modeling are mainly three folds. First, GSR explicitly
and effectively characterizes the intrinsic local sparsity and
nonlocal self-similarity of natural images simultaneously in
a unified framework, which adaptively sparsifies the natural
image in the domain of group. Second, an effective self-
adaptive group dictionary learning method with low com-
plexity is designed, rather than dictionary learning from nat-
ural images. Third, an efficient split Bregman based iterative
algorithm is developed to solve the proposed GSR-driven
�0 minimization problem for image restoration. Experimental
results on three applications: image inpainting, deblurring and
image CS recovery have shown that the proposed GSR model
outperforms many current state-of-the-art schemes.Part of our
previous work for image CS recovery via GSR has been
presented in [47].

The remainder of this paper is organized as follows.
Traditional patch-based sparse representation is introduced
in Section II. Section III elaborates the design of group-
based sparse representation (GSR) modeling, and discusses the
close relationships among the GSR model, the group sparsity
model and the low rank model. Section IV proposes a new
objective functional formed by our proposed GSR, and gives
the implementation details of solving optimization problem.
Extensive experimental results are reported in Section V.
In Section VI, we summarize this paper.

II. TRADITIONAL PATCH-BASED

SPARSE REPRESENTATION

In literature, the basic unit of sparse representation for
natural images is patch [24]–[26]. Mathematically, denote by
x ∈ R

N and xk ∈ R
Bs the vector representations of the original

image and an image patch of size
√

Bs × √
Bs at location

k, k = 1, 2, . . . , n, where N and Bs are the size of the whole
image vector and each image patch vector, respectively, and n
is the number of image patches. Then we have

xk = Rk(x), (3)

where Rk(·) is an operator that extracts the patch xk from
the image x, and its transpose, denoted by RT

k (·), is able to
put back a patch into the k-th position in the reconstructed
image, padded with zeros elsewhere. Considering that patches
are usually overlapped, the recovery of x from {xk} becomes

x =
∑n

k=1
RT

k (xk).
/∑n

k=1
RT

k (1Bs ), (4)

where the notation ./ stands for the element-wise division of
two vectors, and 1Bs is a vector of size Bs with all its elements
being 1. Eq. (4) indicates nothing but an abstraction strategy
of averaging all the overlapped patches.

For a given dictionary D ∈ R
Bs×M (M is the number of

atoms in D), the sparse coding process of each patch xk

over D is to find a sparse vector αk ∈ R
M (i.e., most of
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Fig. 1. Illustrations for the group construction. Extract each patch vector xk from image x. For each xk , denote Sxk the set composed of its c best matched
patches. Stack all the patches in Sxk in the form of matrix to construct the group, denoted by xGk .

the coefficients in αk are zero or close to zero) such that
xk ≈ Dαk . Then the entire image can be sparsely represented
by the set of sparse codes {αk}. In practice, the sparse coding
problem of xk over D is usually cast as

αk = argminα

1

2
‖xk − Dα‖2

2 + λ‖α‖p (5)

where λ is a constant, and p is 0 or 1. If p = 0, that
means the sparsity is strictly measured by the �0-norm of
αk , which counts the nonzero elements in αk . Nonetheless,
since the problem of �0-norm optimization is non-convex and
usually NP-hard, it is often sub-optionally solved by greedy
algorithms, e.g., orthogonal matching pursuit (OMP) [28].
Alternatively, if p = 1, the �0 -norm minimization is approxi-
mated by the convex �1 -norm, which can be efficiently solved
by some recent large-scale tools [16]–[18], [38], [43].

Similar to Eq. (4), reconstructing x from its sparse codes
{αk} is formulated:

x = D ◦ α
def=

n∑

k=1

RT
k (Dαk).

/ n∑

k=1

RT
k (1Bs ), (6)

where α denotes the concatenation of all αk , that is, α =
[αT

1 ,αT
2 , . . . ,αT

n ]T . The purpose of introducing the nota-
tion ◦ is to exploit D ◦ α to make the expression of∑n

k=1 RT
k (Dαk).

/ ∑n
k=1 RT

k (1Bs ) more convenient.
Now, considering the degraded version in Eq. (1),

the regularization-based image restoration scheme utilizing
traditional patch-based sparse representation model is
formulated as

α̂ = argminα
1
2 ‖H D ◦ α − y‖2

2 + λ‖α‖p, (7)

where λ is the regularization parameter, and p is 0 or 1. With
α̂, the reconstructed image can be expressed by x̂ = D ◦ α̂.

The heart of the sparse representation modeling lies in the
choice of dictionary D. In other words, how to seek the best
domain to sparsify a given image? Much effort has been de-
voted to learning a redundant dictionary from a set of training
example image patches. To be concrete, given a set of training
image patches X = [x1, x2, . . . , xJ ], where J is the number
of training image patches, the goal of dictionary learning is
to jointly optimize the dictionary D and the representation
coefficients matrix � = [α1,α2, . . . ,α J ] such that xk ≈ Dαk

and ‖αk‖p � L, where p is 0 or 1. This can be formulated

by the following minimization problem:

( D̂, �̂)=argmin
D,�

∑J

k=1
‖xk− Dαk‖2

2 s.t. ‖αk‖p � L, ∀k.

(8)

Apparently, the above minimization problem in Eq. (8) is
large-scale and highly non-convex even when p is 1. To make
it tractable and solvable, some approximation approaches,
including MOD [27] and K-SVD [24], have been proposed to
optimize D and � alternatively, leading to many state-of-the-
art results in image processing. However, these approximation
approaches for dictionary learning inevitably require high
computational complexity.

Apart from high computational complexity, from Eq. (5) and
Eq. (8), it can be noticed that each patch is actually considered
independently in dictionary learning and sparse coding, which
ignores the relationships between similar patches in essence,
such as self-similarity [4], [11].

III. GROUP-BASED SPARSE REPRESENTATION (GSR)

In this paper, to rectify the above problems of traditional
patch-based sparse representation, we propose a novel sparse
representation modeling in the unit of group instead of patch,
aiming to exploit the local sparsity and the nonlocal self-
similarity of natural images simultaneously in a unified frame-
work. Each group is represented by the form of matrix,
which is composed of nonlocal patches with similar structures.
Thus, the proposed sparse representation modeling is named
as group-based sparse representation (GSR). Moreover, an
effective self-adaptive dictionary learning method for each
group with low complexity is designed rather than dictionary
learning from natural images, enabling the proposed GSR
more efficient and effective. This section will give detailed
description of GSR modeling, and elaborate the self-adaptive
dictionary learning technique.

A. Group Construction

Since the unit of our proposed sparse representation model
is group, this subsection will give details to show how to
construct it.

As shown in Fig. 1, first, divide the image x with size N
into n overlapped patches of size

√
Bs × √

Bs and each patch
is denoted by the vector xk ∈ R

Bs , i.e., k = 1, 2, . . . , n.
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Fig. 2. Comparison between patch xk and group xGk .

Then, for each patch xk , denoted by small red square in
Fig. 1, in the L × L training window (big blue square),
search its c best matched patches, which comprise the set Sxk .
Here, Euclidean distance is selected as the similarity criterion
between different patches.

Next, all the patches in Sxk are stacked into a matrix of size
Bs ×c, denoted by xGk

∈ R
Bs×c, which includes every patch in

Sxk as its columns, i.e., xGk
= {xGk⊗1, xGk⊗2, . . . , xGk⊗c}.

The matrix xGk containing all the patches with similar struc-
tures is named as a group. Analogous to Eq. (3), we define

xGk
= RGk

(x), (9)

where RGk
(·) is actually an operator that extracts the group

xGk from x, and its transpose, denoted by RT
Gk

(·), can put
back a group into the k-th position in the reconstructed image,
padded with zeros elsewhere.

By averaging all the groups, the recovery of the whole
image x from {xGk

} becomes

x =
∑n

k=1
RT

Gk
(xGk ).

/∑n

k=1
RT

Gk
(1Bs×c) (10)

where ./ stands for the element-wise division of two vectors
and 1Bs×c is a matrix of size Bs × c with all the elements
being 1.

Note that, in our paper, each patch xk is represented as a
vector, while each group is represented as a matrix, as illus-
trated in Fig. 2. According to above definition, it is obvious to
observe that each patch xk corresponds to a group xGk . One
can also see that the construction of xGk explicitly exploits
the self-similarity of natural images.

B. Group-Based Sparse Representation Modeling

To enforce the local sparsity and the nonlocal self-similarity
of natural images simultaneously in a unified framework, we
propose to sparsify natural images in the domain of group.
Therefore, our proposed model is named as group-based sparse
representation (GSR). The proposed GSR model assumes that
each group xGk can be accurately represented by a few atoms
of a self-adaptive learning dictionary DGk.

In this subsection, DGk = [dGk⊗1, dGk⊗2, . . . , dGk⊗m ] is
supposed to be known. Note that each atom dGk⊗i ∈ R

Bs×c

is a matrix of the same size as the group xGk , and m is the
number of atoms in DGk. Different from the dictionary in
patch-based sparse representation, here DGk is of size (BS ×
c) × m, that is, DGk ∈ R

(BS×c)×m. How to learn DGk with
low complexity will be given in the next subsection.

Thus, some notations about GSR can be readily extended
from patch-based sparse representation. Specifically, the sparse
coding process of each group xGk over DGk is to seek a sparse
vector αGk

= [αGk⊗1,αGk⊗2, . . . ,αGk⊗m ] such that xGk
≈

∑m
i=1 αGk⊗i dGk⊗i . For simplicity, we utilize the expression

DGk αGk to represent
∑m

i=1 αGk⊗i dGk⊗i without confusion.
Note that DGk αGk is not a strict matrix-vector multiplication.
It is also worth emphasizing that the sparse coding process of
each group under our proposed DGk is quite efficient without
iteration, which will be seen in the following section. Then the
entire image can be sparsely represented by the set of sparse
codes {αGk

} in the group domain. Reconstructing x from the
sparse codes {αGk

} is expressed as:

x =DG ◦αG
def=∑n

k=1
RT

Gk
(DGk αGk ).

/∑n

k=1
RT

Gk
(1Bs×c),

(11)

where DG denotes the concatenation of all αGk , and denotes
the concatenation of all αGk .

Accordingly, by considering the degraded version in Eq. (1),
the proposed regularization-based image restoration scheme
via GSR is formulated as

α̂G = argminαG

1

2
‖H DG ◦ αG − y‖2

2 + λ‖αG‖0. (12)

With α̂G , the reconstructed image can be expressed by x̂ =
DG ◦ α̂G . Note that, in this paper, �0 -norm is exploited to
measure the real sparsity of αG in the group domain in order
to enhance the image restoration quality. Nonetheless, Eq. (12)
is usually hard to solve owing that �0-norm optimization is
non-convex. Thus, solving Eq. (12) efficiently and effectively
is one of our main contributions, which will be seen in the
following.

To understand GSR model more clearly, here, we make
a comparison between Eq. (12) and previous patch-based
sparse representation for image restoration in Eq. (7). We
can see the differences between Eq. (12) and Eq. (7) lie
in the dictionary and the unit of sparse representation. The
advantages of Eq. (12) are mainly three-folds. First, GSR
adopts group as the unit of sparse representation and sparsely
represents the entire image in the group domain. Since the
group is composed of patches with similar structures, GSR
exploits self-similarity explicitly in dictionary learning and
sparse coding, which is more robust and effectual. Second,
rather than learning a general dictionary D for all patches
in Eq. (7), a self-adaptive dictionary D is designed for each
xGk , which is more effective. Third, as will be seen below,
the proposed self-adaptive dictionary learning of DGk is with
low complexity, which doesn’t require high computational
complexity to solve large-scale optimizations.

C. Self-Adaptive Group Dictionary Learning

In this subsection, we will show how to learn the adaptive
dictionary DGk for each group xGk . Note that, on one hand,
we hope that each xGk can be faithfully represented by DGk.
On the other hand, it is expected that the representation
coefficient vector of xGk over DGk is as sparse as possible.
Like traditional patch-based dictionary learning algorithm in
Eq. (8), the adaptive dictionary learning of group can be
intuitively formulated as:

arg min
DxαGk

n∑

k=1

‖xGk − DxαGk ‖2
2 + λ

n∑

k=1

‖αGk‖p, (13)
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where p is 0 or 1. Eq. (13) is a joint optimization problem of
Dx and {αGk }, which can be solved by alternatively optimizing
Dx and {αGk }.

Nevertheless, we do not directly utilize Eq. (13) to learn
the dictionary for each group xGk based on the following
three considerations. First, solving the joint optimization in
Eq. (13) requires much computational cost, especially in the
unit of group. Second, the learnt dictionary from Eq. (13) is
actually adaptive for a given image x, not adaptive for a group
xGk , which means that all the groups {xGk

} are represented
by the same dictionary Dx . That’s why the dictionary learnt
by Eq. (13) here is denoted by Dx , rather than {DGk }.
Finally, the dictionary learning process in Eq. (13) neglects
the characteristics of each group xGk , which contains patches
with similar patterns. That is to say it is not necessary to learn
an over-complete dictionary, and it is even possible to learn a
dictionary by a more efficient and effective manner.

Similar to the idea of dictionary learning strategy using
similar patches in [3], we propose to learn the adaptive
dictionary DGk for each group xGk directly from its estimate
r Gk , because in practice the original image x is not available
for learning all the groups’ dictionaries {DGk}. The estimate
r Gk will be naturally selected in the process of optimization,
which will be explained in the following sections.

After obtaining rGk , we then apply SVD to it, that is,

rGk
= U Gk �Gk V T

Gk
=

∑m

i=1
γrGk⊗i (uGk⊗ivGk⊗iT ), (14)

where γrGk
= [γrGk⊗1; γrGk⊗2; · · · γrGk ⊗m ] �Gk = diag(γrGk

)
is a diagonal matrix with the elements of on its main diag-
onal, and uGk⊗i , vGk⊗i are the columns of U Gk and V Gk ,
separately. Each atom in DGk for group xGk , is defined as

dGk⊗i = uGk⊗iv
T
Gk⊗i , i = 1, 2, . . . , m, (15)

where dGk⊗i ∈ R
Bs×c. Therefore, the ultimate adaptively

learned dictionary for xGk is defined as

DGk = [dGk⊗1, d Gk⊗2, . . . , dGk⊗m ]. (16)

According to the above definitions, the main difference be-
tween [3] and this paper for dictionary learning is that we
utilize SVD to learn an adaptive dictionary for each group,
while [3] utilizes PCA to learn an adaptive dictionary for each
patch. The advantage of our proposed dictionary learning for
each group is that it can guarantee all the patches in each
group use the same dictionary and share the same dictionary
atoms, which is more effective and robust, while [3] just
trained the dictionary for each patch independently using its
similar patches. It is clear to see that the proposed group
dictionary learning is self-adaptive to each group xGk and
is quite efficient, requiring only one SVD for each group.
In addition, owing to unitary property of DGk , the sparse
coding process is not only efficient, but also stable and precise,
which will be seen in the next section.

D. Discussions

This subsection will provide the detailed discussions about
the close relationships among the proposed GSR model,
the group sparsity model, and the low rank model. In

fact, all the three models are involved with a set of
similar patches to exploit the self-similarity of natural
images.

As illustrated in Fig. 1, the proposed GSR model aims to
adaptively seek the sparse representation of natural images in
the unit of the group xGk . The group sparsity model imposes
that similar patches in xGk should share the same dictionary
elements in their sparse decomposition. The low rank model
hopes to find a low rank approximation of xGk in order to
find the robust estimate. These three models seem different at
first glance, since they start from different views. However,
interestingly, with the aid of the particular dictionary learning
method by SVD, one type of the group sparsity model, and
one type of the low rank model can be derived from our
proposed GSR model, respectively. That means these three
models are equivalent to some extent, which is of great help to
understand these three models integrally. The details are given
below.

As shown in Fig. 1, for each group xGk , given its noisy
estimate rGk , the proposed GSR model to estimate xGk such
that xGk = DGkαGk is formulated as

α̂Gk = argminαGk

1
2

∥∥rGk − DGk αGk

∥∥2
F + λ

∥∥αGk

∥∥
0 . (17)

With α̂Gk , the reconstructed group is then expressed by
x̂Gk = DGk α̂Gk.

Assume xGk = DA, where D ∈ R
Bs×m is the dictionary

to sparsely represent all the patches in xGk , and A ∈ R
m×c

denotes the coefficient matrix. Here, set D to be U Gk in
Eq. (14), and in the light of all the definitions above, Eq. (17)
is equivalent to the following form:

Â = argminA
1
2

∥∥rGk − DA
∥∥2

F + λ ‖A‖0,∞ , (18)

where || · ||0,∞ denotes the number of the nonzero rows of
a matrix and is a pseudo norm [12], [29]. With Â, we get
x̂Gk = D Â.

Due to the definition of the group sparsity model [5], [12],
[29], one can see that Eq. (18) is just the special case of the
group sparsity model with the constraint of the �0,∞ matrix
norm, which differs from the previous group sparsity models
with the constraint of the matrix norm [5], [12].

Similarly, define γ xGk
the vector composed of all the singu-

lar values of xGk , i.e., γ xGk
= [γxGk⊗1; γxGk⊗2; . . . ; γxGk⊗m ].

Due to xGk
= DGk αGk and the definitions of DGk , we obtain

||γxGk
||0 = rank(xGk

) = ||αGk
||0, (19)

where rank(·) represents the rank of a matrix. Therefore, the
following equation can be derived from Eq. (17):

x̂Gk
= argminxGk

1
2

∥∥∥xGk
− r Gk

∥∥∥
2

F
+ λ||γ xGk

||0, (20)

which is just the low rank model with the �0 norm of the vector
composed of all the singular values of xGk and differs from
previous low rank models with the �1 norm of the singular
values vector [50], [51].
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IV. OPTIMIZATION FOR GSR-DRIVEN �0 MINIMIZATION

In this section, an efficient approach is developed to solve
the proposed GSR-driven �0 minimization for image restora-
tion in Eq. (12), which is one of our main contributions.

Since �0 minimization is non-convex and NP-hard, the usual
routine is to solve its optimal convex approximation, i.e.,
�1 minimization, which has been proved that, under some
conditions, �1 minimization is equivalent to �0 minimization
in a technical sense. The �1 minimization can be solved
efficiently by some recent convex optimization algorithms,
such as iterative shrinkage/thresholding [16], [17], split Breg-
man algorithms [43]. Therefore, the straightforward method to
solve Eq. (12) is translated into solving its �1 convex form,
that is

α̂G = argminαG
1
2

∥∥H DG ◦ αG − y
∥∥2

2 + λ
∥∥αG

∥∥
1. (21)

However, a fact that is often neglected is, for some practical
problems including image inverse problems, the conditions
describing the equivalence of �0 minimization and minimiza-
tion are not necessarily satisfied. Therefore, this paper attempts
to exploit the framework of convex optimization algorithms
to solve the �0 minimization. Experimental results demon-
strate the effectiveness and the convergence of our proposed
approach. The superiority of solving Eq. (12) over solving
Eq. (21) is further discussed in the experimental section.

In this paper, we adopt the framework of split Bregman
iteration (SBI) [43] to solve Eq. (12), which is verified to be
more effective than iterative shrinkage/thresholding (IST) [16]
in our experiments (See Section V for more details).

First of all, let’s make a brief review of SBI. The SBI
algorithm was first proposed in [43] and was shown to be
powerful in for solving various variational models [43], [44],
[49]. Consider a constrained optimization problem

min u∈RN ,v∈RM f (u) + g(v), s.t. u = Gv, (22)

where G ∈ R
M×N and f : R

N → R, g: R
M → R are convex

functions. The SBI to address problem (22) works as follows.
In SBI, the parameter μ is fixed to avoid the problem

of numerical instabilities instead of choosing a predefined
sequence that tends to infinity as done in [30]. According
to SBI, the original minimization (22) is split into two sub-
problems. The rationale behind is that each sub-problem min-
imization may be much easier than the original problem (22).

Now, let us go back to Eq. (12) and point out how to apply
the framework of SBI to solve it. By introducing a variable
u, we first transform Eq. (12) into an equivalent constrained
form,

min
αG ,u

1
2 ‖Hu − y‖2

2 + λ‖αG‖0, s.t. u = DG ◦ αG (23)

Define f (u) = 1
2 ‖Hu − y‖2

2, g(αG) = λ‖αG‖0. Then,
invoking SBI, Line 3 in Algorithm 1 becomes:

u(t+1) = argmin
u

1
2

∥∥Hu − y
∥∥2

2 + μ
2

∥∥u − DG ◦ α
(t)
G − b(t)

∥∥2
2.

(24)

Next, Line 4 in Algorithm 1 becomes:

α
(t+1)
G =argminαG λ

∥∥αG
∥∥

0 + μ
2

∥∥u(t+1)− DG ◦ αG −b(t)
∥∥2

2.

(25)

Algorithm 1 Split Bregman Iteration (SBI)

According to Line 5 in Algorithm 1, the update of b(t) is

b(t+1) = b(t) − (
u(t+1) − DG ◦ α

(t+1)
G

)
. (26)

Thus, by SBI, the minimization for Eq. (12) is transformed
into solving two sub-problems, namely, u, αG sub-problems.
In the following, we will provide the implementation details
to obtain the efficient solutions to each separated sub-problem.
For simplicity, the subscript t is omitted without confusion.

A. μ Sub-Problem

Given αG , the u sub-problem denoted by Eq. (24) is
essentially a minimization problem of strictly convex quadratic
function, that is

min
u

Q1(u) = min
u

1
2 ‖Hu − y‖2

2 + μ
2

∥∥u − DG ◦ αG − b
∥∥2

2 .

(27)

Setting the gradient of Q1(u) to be zero gives a closed
solution for Eq. (27), which can be expressed as

û = (HT H + μI)−1q, (28)

where q = HT y + μ(DG ◦ αG + b), I is identity matrix.
As for image inpainting and image deblurring, due to the

special structure of H , Eq. (28) can be computed efficiently
without computing the matrix inverse (more details can be
found in [18]).

As for image compressive sensing (CS) recovery, H is a
random projection matrix without special structure. Thus, it is
too costly to solve Eq. (27) directly by Eq. (28). Here, to avoid
computing the matrix inverse, the gradient descent method is
utilized to solve Eq. (27) by applying

û = u − ηd, (29)

where d is the gradient direction of the objective function
Q1(u) and η represents the optimal step. Therefore, solving
u sub-problem for image CS recovery only requires computing
the following equation iteratively

û = u − η
(
H T H u − H T y + μ

(
u − DG ◦ αG − b

))
, (30)

where HT H and HT y can be calculated before, making above
computation more efficient.
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Fig. 3. The distribution of e(t) and its corresponding variance Var(e(t)) for image Parrots in the case of image deblurring at different iterations. (a) t = 3
and Var(e(3)) = 25.70; (b) t = 5 and Var(e(5)) = 23.40; (c) t = 7 and Var(e(7)) = 23.16.

B. αG Sub-Problem

Given u, according to Eq. (25), the αG sub-problem can be
formulated as

min αG Q2(αG) = min αG
1
2

∥∥DG ◦ αG − r
∥∥2

2 + λ
μ

∥∥αG

∥∥
0, (31)

where r = u − b.
Note that it is difficult to solve Eq. (31) directly due to

the complicated definition of αG . Instead, we make some
transformation. Let x = DG ◦ αG , then Eq. (31) equally
becomes

min αG
1
2 ‖x − r‖2

2 + λ
μ
‖αG‖0. (32)

By viewing r as some type of noisy observation of x,
we perform some experiments to investigate the statistics of
e = x − r. Here, we use image Parrots as an example in
the case of image deblurring, where the original image is first
blurred by uniform blur kernel and then is added by Gaussian
white noise of standard deviation 0.5. At each iteration t ,
we can obtain r(t) by r(t) = u(t) − b(t−1). Since the exact
minimizer of Eq. (32) is not available, we then approximate
x(t) by the original image without generality. Therefore, we
are able to acquire the histogram of e(t) = x(t) − r(t) at each
iteration t. Fig. 3 shows the distributions of e(t) when t equals
to 3, 5 and 7, respectively.

From Fig. 3, it is obvious to observe that the distribution of
e(t) at each iteration is quite suitable to be characterized by
generalized Gaussian distribution (GGD) [39] with zero-mean
and variance . The variance Var(e(t)) can be estimated by

Var(e(t)) = 1
N

∥∥∥x(t) − r(t)
∥∥∥

2

2
. (33)

Fig. 3 also gives the corresponding estimated variances at
different iterations. Furthermore, owing that the residual of
images is usually de-correlated, each element of e(t) can be
modeled independently.

Accordingly, to enable solving Eq. (32) tractable, in this
paper, a reasonable assumption is made, with which even a
closed-form solution of Eq. (32) can be obtained. We suppose
that each element of e(t) follows an independent zero-mean
distribution with variance Var(e(t)). It is worth emphasizing
that the above assumption does not need to be Gaussian,or
Laplacian, or GGD process, which is more general. By this
assumption, we can prove the following conclusion.

Theorem 1: Let x, r ∈ R
N , xGk

, r Gk
∈ R

Bs×c, and denote
the error vector by e = x − r and each element of e by e( j),
j = 1, . . . , N . Assume that e( j) is independent and comes
from a distribution with zero mean and variance σ 2. Then,
for any ε > 0, we have the following property to describe

the relationship between ‖x − r‖2
2 and

∑n
k=1

∥∥∥xGk
− r Gk

∥∥∥
2

F
,

that is,

lim
N → ∞
K → ∞

P
{| 1

N ‖x − r‖2
2 − 1

K

∑n

k=1

∥∥∥xGk
−rGk

∥∥∥
2

F
| < ε

}=1,

(34)

where P(·) represents the probability and K = Bs × c × n
(See Appendix A for detailed proof).

According to Theorem 1, there exists the following equation
with very large probability (limited to 1) at each iteration t:

1
N

∥∥∥x(t) − r(t)
∥∥∥

2

2
= 1

K

∑n

k=1

∥∥∥x(t)
Gk

− r(t)
Gk

∥∥∥
2

F
. (35)

Now let’s verify Eq. (35) by the above case of image deblur-
ring. We can clearly see that the left hand of Eq. (35) is
just Var(e(t)) defined in Eq. (33), with Var(e(3)) = 25.70,
Var(e(5)) = 23.40, and Var(e(7)) = 23.16, which is shown
in Fig. 3. At the same time, we can calculate the corresponding
right hand of Eq. (35), denoted by Var(e(t)

G ), with the same
values of t, leading to Var(e(3)

G ) = 25.21, Var(e(5)
G ) = 23.15,

and Var(e(7)
G ) = 23.07. Apparently, at each iteration, Var(e(t))

is very close to V ar(e(t)), especially when t is larger, which
sufficiently illustrates the validity of our assumption.

Next, by incorporating Eq. (35) into Eq. (32), it yields

min αG
1
2

∑n

k=1

∥∥∥xGk
− r Gk

∥∥∥
2

F
+ λK

μN

∥∥αG

∥∥
0

= min αG
1
2

∑n

k=1

∥∥∥xGk
− r Gk

∥∥∥
2

F
+ λK

μN

∑n

k=1

∥∥∥αGk

∥∥∥
0

= min αG

∑n

k=1

(
1
2

∥∥∥xGk
− r Gk

∥∥∥
2

F
+ τ

∥∥∥αGk

∥∥∥
0

)
, (36)

where τ = (λK )
/
(μN).

It is obvious to see that Eq. (36) can be efficiently minimized
by solving n sub-problems for all the groups xGk . Each group
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Fig. 4. All experimental test images.

based sub-problem is formulated as:

argminαGk

1
2

∥∥∥xGk
− r Gk

∥∥∥
2

F
+ τ

∥∥∥αGk

∥∥∥
0

= argminαGk

1
2

∥∥∥DGkαGk
− rGk

∥∥∥
2

F
+ τ

∥∥∥αGk

∥∥∥
0

(37)

where DGk is the self-adaptive learned dictionary from r Gk

using our proposed scheme described in subsection III.C.
Obviously, Eq. (37) can also be considered as the sparse
coding problem. Now we will show that the accurate solution
of Eq. (37) can be achieved efficiently. With the definitions of
{αGk } and {γ Grk

}, we get xGk
= DGk αGk , rGk

= DGk γGrk .
Due to the unitary property of DGk , we have

∥∥∥DGk αGk
− DGk γrGk

∥∥∥
2

F
=

∥∥∥αGk
− γrGk

∥∥∥
2

2
. (38)

With Eq. (38), the sub-problem (37) is equivalent to

argminαGk

1
2

∥∥∥αGk
− γrGk

∥∥∥
2

2
+ τ

∥∥∥αGk

∥∥∥
0
. (39)

Therefore, the closed-form solution of (39) is expressed as

α̂Gk
= hard(γrGk

,
√

2τ) = γrGk
� 1(abs(γ rGk

) − √
2τ), (40)

where denotes the operator of hard thresholding and � stands
for the element-wise product of two vectors. This process is
applied for all n groups to achieve α̂G , which is the final
solution for αG sub-problem in Eq. (31).

C. Summary of Proposed Algorithm

So far, all issues in the process of handing the above
two sub-problems have been solved. In fact, we acquire
the efficient solution for each separated sub-problem, which
enables the whole algorithm more efficient and effective.
In light of all derivations above, a detailed description of
the proposed algorithm for image restoration using GSR is
provided in Table I.

V. EXPERIMENTAL RESULTS

In this section, extensive experimental results are con-
ducted to verify the performance of the proposed GSR for
image restoration applications, which include image inpaint-
ing, image deblurring and image compressive sensing recov-
ery. The parameter setting of GSR is as follows: the size of a
group is set to be 64 × 60, with Bs being 64 and c being
60. The width of overlapping between adjacent patches is
4 pixels, leading to the relationship K = 240N . The range
of training window for constructing group, i.e., L × L is set to
be 40 × 40. The parameters μ and λ are set accordingly for

TABLE I

COMPLETE DESCRIPTION OF PROPOSED GSR MODELING

FOR IMAGE RESTORATION

different image restoration applications, which will be given
below. All the experiments are performed in Matlab 7.12.0
on a Dell OPTIPLEX computer with Intel(R) Core(TM)2
Duo CPU E8400 processor (3.00 GHz), 3.25G memory, and
Windows XP operating system.

To evaluate the quality of there constructed image, in addi-
tion to PSNR (Peak Signal to Noise Ratio, unit: dB), which
is used to evaluate the objective image quality, a recently
proposed powerful perceptual quality metric FSIM [45] is
calculated to evaluate the visual quality. The higher FSIM
value means the better visual quality. For color images, image
restoration operations are only applied to the luminance com-
ponent. All the experimental test images are given in Fig. 4.
Due to the limit of space, only parts of the experimental results
are shown in this paper. Please enlarge and view the figures
on the screen for better comparison. Our Matlab code and all
the experimental results can be downloaded at the website:
http://idm.pku.edu.cn/staff/zhangjian/GSR/.

A. Image Inpainting

In this subsection, two interesting cases of image inpainting
with different masks are considered, i.e., image restoration
from partial random samples and text removal. For image in-
painting application, μ = 0.0025 and λ = 0.082.

The proposed GSR is compared with five recent
representative methods for image inpainting: SKR (steering
kernel regression) [6], NLTV [35], BPFA [48], HSR [10]
and SAIST [5]. SKR [6] is a classic method that utilizes a
steering kernel regression framework to characterize local
structures for image restoration. NLTV [35] is an extension
of traditional total variation (TV) with a nonlocal weight
function. BPFA [48] em-ploys a truncated beta-Bernoulli
process to infer an appropriate dictionary for image recovery
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Fig. 5. Visual quality comparison of image restoration from partial
random samples for color image Barbara. From left to right and top to
bottom: the degraded image with only 20% random samples available,
original image, the recovered images by SKR [6] (PSNR = 21.92dB;
FSIM = 0.8607), NLTV [35] (PSNR = 23.46dB; FSIM = 0.8372),
BPFA [48] (PSNR=25.70dB; FSIM=0.8926), HSR [10] (PSNR = 28.83dB;
FSIM = 0.9273), SAIST [5] (PSNR = 29.68dB; FSIM = 0.9485) and the
proposed GSR (PSNR = 31.32dB; FSIM = 0.9598).

Fig. 6. Visual quality comparison of image restoration from partial
random samples for color image House. From left to right and top to
bottom: the degraded image with only 20% random samples available,
original image, the recovered images by SKR [6] (PSNR = 30.40dB;
FSIM = 0.9198), NLTV [35] (PSNR = 31.19dB; FSIM = 0.9093), BPFA
[48] (PSNR = 30.89dB; FSIM=0.9111), HSR [10] (PSNR = 32.35dB;
FSIM = 0.9255), SAIST [5] (PSNR = 35.73dB; FSIM = 0.9615) and the
proposed GSR (PSNR = 35.61dB; FSIM = 0.9594).

Fig. 7. Visual quality comparison in the case of text removal for color
image Barbara. From left to right and top to bottom: the masked image,
original image, the recovered images by SKR [6] (PSNR = 30.81dB;
FSIM = 0.9747), NLTV [35] (PSNR = 32.60dB; FSIM = 0.9749), BPFA
[48] (PSNR = 34.28dB; FSIM = 0.9790), HSR [10] (PSNR = 38.86dB;
FSIM = 0.9901), SAIST [5] (PSNR = 39.00dB; FSIM = 0.9915) and the
proposed GSR (PSNR = 40.86dB; FSIM = 0.9936).

and exploits the spatial inter-relationships within imagery
through the use of the Dirichlet and probit stick-breaking
processes. HSR [10] combines the strength of local and
nonlocal sparse representations under a systematic framework

Fig. 8. Visual quality comparison in the case of text removal for color
image House. From left to right and top to bottom: the masked image,
original image, the recovered images by SKR [6] (PSNR = 38.65dB;
FSIM = 0.9850), NLTV [35] (PSNR = 38.44dB; FSIM = 0.9820), BPFA
[48] (PSNR = 39.01dB; FSIM = 0.9818), HSR [10] (PSNR = 42.06dB;
FSIM = 0.9913), SAIST [5] (PSNR = 41.20dB; FSIM = 0.9893) and the
proposed GSR (PSNR = 42.51dB; FSIM = 0.9916).

TABLE II

PSNR AND FSIM RESULTS BY GSR FOR IMAGE RESTORATION

FROM PARTIAL RANDOM SAMPLES AT DIFFERENT

PERCENTAGES OF RANDOM SAMPLES

called Bayesian model averaging, characterizing local
smoothness and nonlocal self-similarity simultaneously.

The visual quality comparisons in the case of image restora-
tion from only 20% random samples and in the case of text
removal for two standard color test images are provided in
Figs. 5–8. It is obvious to see that SKR and NLTV are
good at capturing contour structures, but fail in recovering
textures and produce blurred effects. BPFA is able to recover
some textures, while generating some incorrect textures and
some blurred effects due to less robustness with so small
percentage of retaining samples for dictionary learning. HSR
usually restores better textures than SKR, NLTV and BPFA.
However, it often produces noticeable striped artifacts. We
can observe that SAIST and the proposed GSR modeling can
provide better restoration on both edges and textures than other
competing methods. Concretely, for image Barbara which is
full of textures, GSR achieves much better PSNR and FSIM
than SAIST, with more image details and textures in both cases
as shown in Fig. 5 and Fig. 7. For image House which is rich
of edges, GSR achieves almost the same performance with
SAIST in the case of image restoration from only 20% random
sample (see Fig. 6), and achieves better result than SAIST in
the case of text removal (see Fig. 8). Additional qualitative
PSNR and FSIM results by our proposed GSR for image
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TABLE III

SIX TYPICAL DEBLURRING EXPERIMENTS WITH VARIOUS BLUR

PSFs AND NOISE VARIANCES IN THE SECOND SET

Fig. 9. Visual quality comparison of image deblurring on gray image Barbara
(256 × 256). From left to right and top to bottom: noisy and blurred image
(uniform kernel: 9 × 9, σ = √

2 ), the deblurred images by TVMM [9]
(PSNR = 26.00dB; FSIM = 0.8538), L0_ABS [46] (PSNR = 26.41dB;
FSIM = 0.8692), NCSR [15] (PSNR = 28.10dB; FSIM = 0.9117),
IDDBM3D [14] (PSNR = 27.98dB; FSIM = 0.9014) and the proposed GSR
(PSNR = 28.95dB; FSIM = 0.9227).

restoration from partial random samples on eight standard
color images at different percentages of random samples are
shown in Table II.

B. Image Deblurring

In this subsection, two sets of experiments are conducted to
verify the performance of the proposed GSR method for image
deblurring. In the first set, two types of blur kernels, including
a 9 × 9 uniform kernel and a Gaussian blur kernel, are
exploited for simulation, with standard deviation of additive
Gaussian noise σ = √

2 (see Table IV). In the second set,
six typical deblurring experiments (as shown in Table III)
with respect to four standard gray images, which have been
presented in [14] and [15] are provided.

The proposed GSR deblurring method is compared
with four recently developed deblurring approaches, i.e.,
TVMM [9], L0_ABS [46], NCSR [15], and IDDBM3D [14].
TVMM [8] is a TV-based deblurring approach that can well
reconstruct the piecewise smooth regions but often fails to
recover fine image details. The L0_ABS [9] is a sparsity-
based deblurring method exploiting a fixed sparse domain.
IDDBM3D [10] method is an improved version of BM3D
deblurring method [31]. NCSR proposed a centralized sparse
constraint, which exploits the image nonlocal redundancy to
reduce the sparse coding noise [15]. As far as we know, NCSR
and IDDBM3D provide the current best image deblurring
results in the literature.

The PSNR and FSIM results on six gray test images in the
first set of experiments are reported in Table IV. For the case

Fig. 10. Visual quality comparison of image deblurring on gray image
House (256×256). From left to right and top to bottom: noisy and blurred
image (Gaussian kernel: σ = √

2), the deblurred images by TVMM [9]
(PSNR = 33.01dB; FSIM = 0.9139), L0_ABS [46] (PSNR = 33.07dB;
FSIM = 0.9212), NCSR [15] (PSNR = 33.63dB; FSIM = 0.9333),
IDDBM3D [14] (PSNR = 34.08dB; FSIM = 0.9359) and the proposed GSR
(PSNR = 34.45dB; FSIM = 0.9420).

Fig. 11. Visual quality comparison of image deblurring on image Bar-
bara(512 × 512). From left to right and top to bottom: original image,
noisy and blurred image (scenario 2), the deblurred images by TVMM [8]
(PSNR = 24.58dB; FSIM = 0.9576), IDDBM3D [10] (PSNR = 27.21dB;
FSIM = 0.9699), NCSR [11] (PSNR = 26.89dB; FSIM = 0.9669) and the
proposed GSR (PSNR = 28.05dB; FSIM = 0.9738).

Fig. 12. Visual quality comparison of image CS recovery on gray image
Vessels in the case of ratio = 20%. From left to right: original image, the
CS recovered images by DWT (PSNR = 21.14dB; FSIM = 0.8230), TV
[41] (PSNR = 22.04dB; FSIM = 0.8356), MH [40] (PSNR = 24.95dB;
FSIM = 0.8756), CoS [42] (PSNR = 26.71dB; FSIM = 0.9214) and the
proposed GSR (PSNR = 31.58dB; FSIM = 0.9599).

of 9 × 9 uniform kernel with noise σ = √
2, μ = 0.0075

and λ = 0.554, and for the case of Gaussian kernel with noise
σ = √

2, μ = 0.0125 and λ = 0.41.
From Table IV, we can see that the proposed GSR achieves

highly competitive performance compared with other leading
deblurring methods. L0_ABS produces slightly higher aver-
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TABLE IV

PSNR AND FSIM COMPARISONS FOR IMAGE DEBLURRING IN THE FIRST SET

TABLE V

COMPARISON OF THE ISNR (dB) DEBLURRING RESULTS IN THE SECOND SET

age PSNR and FSIM than TVMM, while GSR outperforms
L0_ABS by 1.5 dB and 1.4 dB for the uniform blur and
Gaussian blur, respectively. One can observe that IDDBM3D,
NCSR and GSR produce very similar results, and obtain
significant PSNR/FSIM improvements over other competing
methods. In average, GSR outperforms IDDBM3D and NCSR
by (0.22 dB, 0.21 dB) and (0.18 dB, 0.17 dB) for the two blur
kernels, respectively. The visual comparisons of the deblurring
methods are shown in Figs. 9∼10, from which one can observe
that the GSR model produces cleaner and sharper image edges
and textures than other competing methods.

Table V lists the comparison of ISNR results for six
typical deblurring experiments in the second set. It is clear
to observe that GSR achieves the highest ISNR results in
the most cases, as labeled in bold. In particular, for image
Barbara (512 × 512) with rich textures, GSR outperforms
current state-of-the-art methods NCSR and IDDBM3D more

than 1 dB in the scenarios 1, 2, 3, with more textures and
clearer edges than other competing methods, as shown in Fig.
11. More visual results can be found in the website of this
paper.

C. Image Compressive Sensing Recovery

From many fewer acquired measurements than suggested
by the Nyquist sampling theory, CS theory demonstrates that
a signal can be reconstructed with high probability when it
exhibits sparsity in some domain, which has greatly changed
the way engineers think of data acquisition. More specifically,
suppose that we have an image x ∈ R

N and its measurement
y ∈ R

M , namely, y = H x. Here, H is an M × N
measurement matrix such that M is much smaller than N .
The purpose of image CS recovery is to recover x from y
with measurement rate, denoted by ratio, equal to M/N . For
image CS recovery application, μ = 0.0025 and λ = 0.082.
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TABLE VI

PSNR AND FSIM COMPARISONS WITH VARIOUS CS RECOVERY METHODS (dB)

In our simulations, the CS measurements are obtained by
applying a Gaussian random projection matrix to the original
image signal at block level, i.e., block-based CS with block
size of 32 × 32 [47]. GSR is compared with four represen-
tative CS recovery methods in literature, i.e.,wavelet method
(DWT), total variation (TV) method [41], multi-hypothesis
(MH) method [40], collaborative sparsity (CoS) method [42],
which deal with image signals in the wavelet domain, the
gradient domain, the random projection residual domain, and
the hybrid space-transform domain, respectively. It is worth
emphasizing that MH and CoS are known as the current state-
of-the-art algorithms for image CS recovery.

The PSNR and FSIM comparisons for six gray test images
in the cases of 20%, 30%, and 40% measurements are provided
in Table VI. GSR achieves the highest PSNR and FSIM among
the six comparative algorithms over all the cases, which can
improve roughly 7.9 dB, 7.3 dB, 4.4 dB, and 3.7 dB on
average, in comparison with DWT, TV, MH, CoS, respectively,
greatly improving existing CS recovery results. Some visual
results of the recovered images by various algorithms are
presented in Figs. 12∼13. Obviously, DWT and TV generate
the worst perceptual results. The CS recovered images by MH
and CoS possess much better visual quality than those of DWT
and TV, but still suffer from some undesirable artifacts, such
as ringing effects and lost details. The proposed algorithm
GSR not only eliminates the ringing effects, but also preserves
sharper edges and finer details, showing much clearer and
better visual results than the other competing methods. Our
work also offers a fresh and successful instance to corroborate
the CS theory applied for natural images.

D. Effect of Number of Best Matched Patches

This subsection will give the detailed description about how
sensitive the performance is affected by c, which is the number
of best matched patches.

Fig. 13. Visual quality comparison of image CS recovery on gray image
Barbara in the case of ratio = 20%. From left to right and top to bottom:
original image, the CS recovered images by DWT (PSNR = 23.96dB;
FSIM = 0.8547), TV [41] (PSNR = 23.79dB; FSIM = 0.8199), MH [40]
(PSNR = 31.09dB; FSIM = 0.9419), CoS [42] (PSNR = 26.60dB;
FSIM = 0.8742) and the proposed GSR (PSNR = 34.59dB; FSIM = 0.9703).

To investigate the sensitivity of c, experiments with respect
to various c, ranging from 20 to 120, in the case of image
inpainting and image deblurring for three test images are
conducted. The performance comparison with various c is
shown in Fig. 14. From Fig. 14, it is concluded that the
performance of our proposed algorithm is not quite sensitive
to c because all the curves are almost flat. The highest
performance for each case is usually achieved with c in the
range [40, 80]. Therefore, in this paper, c is empirically set to
be 60.

E. Effect of Sparsity Parameter

This subsection gives some discussion about how sensitive
the performance is affected by the sparsity parameter λ.

To investigate the effect of the sparsity parameter λ for
the performance, two scenarios of deblurring experiments are
conducted with various blur kernels and noise variances, i.e.,
scenario 4 and scenario 5 in Table III. Fig. 15 provides
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Fig. 14. Performance comparison with various c for three test images. From
left to right: in the case of image text removal and in the case of image
deblurring with 9 × 9 uniform blur kernel and σ = 0.5.

Fig. 15. PSNR evolution with respect to sparsity parameter λ in the cases
of in the cases of scenario 4 (PSF = [1 4 6 4 1]T [1 4 6 4 1], σ = 7) and
scenario 5 (PSF = Gaussian with std = 1.6, σ = 2) for two test images.

Fig. 16. Visual quality comparison of proposed algorithm with various λ
in the case of scenario 5(PSF = Gaussian with std = 1.6, σ = 2) with
respect to image House. (a) Original image; (b) Deblurred result with λ =
0.2, ISNR = 2.68dB; (c) Deblurred result with λ = 0.8, ISNR = 5.95dB;
(d) Deblurred result with λ = 3.2, ISNR = 5.28dB.

ISNR (dB) evolution with respect to λ in the cases of scenario
4 (PSF = [1 4 6 4 1]T [1 4 6 4 1], σ = 7) and scenario
5 (PSF = Gaussian with std = 1.6, σ = 2) for two test
images. From Fig. 15, three conclusions can be observed. First,
as expected, there is an optimal λ that achieves the highest
ISNR by balancing image noise suppression with image details
preservation (see Fig. 16(c)). That means, if λ is set too small,
the image noise can’t be suppressed (see Fig. 16(b)); if λ is
set too large, the image details will be lost (see Fig. 16(d)).
Second, in each case, the optimal λ for each test image is
almost the same. For instance, in the case of σ = 7, the
optimal λ is 12.2, and in the case of σ = 2, the optimal
λ is 0.8. This is very important for parameter optimization,
since the optimal λ in each case can be determined by only
one test image and then applied to other test images. Third, it
is obvious to see that λ has a great relationship with σ , i.e., a
larger σ corresponds to a larger λ.

F. Algorithm Complexity and Computational Time

The complexity of GSR is provided as follows. Assume
that the number of image pixels is N , that the average
time to compute similar patches for each reference patch is

Fig. 17. Stability of the proposed algorithm. From left to right: progression
of the PSNR (dB) results achieved by proposed GSR for test images with
respect to the iteration number in the cases of image deblurring with uniform
blur kernel and image CS recovery with ratio = 0.3.

Ts . The SVD of each group xGk with size of Bs × c is
O(Bs × c2). Hence, the total complexity of GSR for image
restoration is O(N(Bs c2 + Ts)). For a 256 × 256 image,
the proposed algorithm GSR requires about 8∼9 minutes for
image inpainting, 6∼7 minutes for image deblurring and 7∼8
minutes for CS recovery, on an Intel Core2 Duo 2.96G PC
under Matlab R2011a environment.

G. Algorithm Stability

Since the objective function (12) is non-convex, it is difficult
to give its theoretical proof for global convergence. Here, we
only provide empirical evidence to illustrate the stability of
the proposed GSR. Take the cases of image CS recovery and
image deblurring as examples. Fig. 17 plots the evolutions of
PSNR versus iteration numbers for test images in the cases of
image deblurring with uniform blur kernel and CS recovery
with ratio = 0.3. It is observed that with the growth of
iteration number, all the PSNR curves increase monotonically
and ultimately become flat and stable, exhibiting good stability
of the proposed GSR model.

H. Comparison Between �0 and �1 Minimization

In order to make a comparison between �0 and �1 mini-
mization, split Bregman iteration (SBI) is also used to solve
Eq. (21). The only difference from solving Eq. (12) described
in Table I is α̂Gk in Eq. (40) is computed by the operator of soft
thresholding, rather than hard thresholding. Take the cases of
image deblurring with uniform blur kernel for two images Bar-
bara and Parrot as examples. Fig. 18 plots their progression
curves of the PSNR (dB) results achieved by proposed GSR-
driven �0 and �1 minimization with respect to the iteration
number. The result achieved by GSR-driven �0 minimization
with SBI is denoted by SBI+L0 (blue solid line), while the
result achieved by GSR-driven �1 minimization with SBI is
denoted by SBI+L1 (green dotted line). It is obvious that
SBI+L0 has better performance than SBI+L1 with more than
1.5 dB on average, which fully demonstrates and the superior-
ity of �0 minimization (Eq. (12)) over minimization (Eq. (21)),
and validates the effectiveness of our proposed approach to
solve Eq. (12) again. Our study also assures the feasibility of
using the �0 minimization for image restoration problems.

I. Comparison Between SBI and IST

In our previous work [47], the convex optimization approach
iterative shrinkage/thresholding (IST) is utilized to solve our
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Fig. 18. Comparison between GSR-driven and �1 minimization solved by
SBI. From left to right: progression of the PSNR (dB) results achieved by
proposed GSR-driven �0 and �1 minimization with respect to the iteration
number for images Barbara and Parrot in the cases of image deblurring with
uniform blur kernel.

Fig. 19. Comparison between SBI and IST for solving GSR-driven �0
minimization. From left to right: progression of the PSNR (dB) results
achieved by proposed GSR-driven �0 minimization with respect to the
iteration number for images Monarch and Leaves in the cases of image CS
recovery with ratio = 0.3.

proposed GSR-driven �0 minimization for image CS recovery.
Here, we make a com-parison between SBI and IST. Take
the cases of image CS recovery with ratio = 0.3 for two
images Monarch and Leaves as examples. Fig. 19 plots their
progression curves of the PSNR (dB) results achieved by
solving GSR-driven �0 minimization with SBI and IST. The
result achieved by �0 minimization with SBI is denoted by
SBI+L0 (red solid line), while the result achieved by �0
minimization with IST is denoted by IST+L0 (black dotted
line). Obviously, SBI is more efficient and effective to solve
our proposed GSR-driven �0 minimization problem than IST.

VI. CONCLUSIONS

This paper establishes a novel and general framework for
high-quality image restoration using group-based sparse rep-
resentation (GSR) modeling, which sparsely represents natural
images in the domain of group, and explicitly and effec-
tively characterizes the intrinsic local sparsity and nonlocal
self-similarity of natural images simultaneously in a unified
manner. An effectual self-adaptive group dictionary learning
technique with low complexity is designed. To achieve high
sparsity degree and high recovery quality, this paper proposes
to exploit the convex optimization algorithms to solve the non-
convex �0 minimization problem directly. Our study not only
assures the feasibility of using the �0 minimization for image
restoration problems, but also demonstrates the superiority
of the �0 minimization over the �1 minimization, which is
very interesting and surprising. Experimental results on three
applications: image inpainting, deblurring and CS recovery
have shown that the proposed GSR achieves significant per-
formance improvements over many current state-of-the-art
schemes and exhibits good stability. It is worth emphasizing
that GSR greatly improves existing CS recovery results, which

will promote further research and development of CS theory
applied in natural images. Future work includes the extensions
of GSR on a variety of applications, such as image deblurring
with mixed Gaussian and impulse noise, and video restoration
and so on.

APPENDIX

PROOF OF THEOREM 1

Due to the assumption that each e( j) is independent, we
obtain that each e( j)2 is also independent. Since E[e( j)] = 0
and V ar [e( j)] = σ 2 , we have the mean of each e( j)2, that is

E[e( j)2] = Var[e( j)] + [E[e( j)]]2 = σ 2, j = 1, . . . , N .

(41)

By invoking Law of Large Numbers in probability theory,
for any ε > 0, it yields lim

N→∞ P{| 1
N

∑N
j=1 e( j)2 −σ 2| < ε

2 } =
1, i.e.,

lim
N→∞ P{| 1

N ‖x − r‖2
2 − σ 2| < ε

2 } = 1, (42)

Further, let xG , rG denote the concatenation of all xGk and
rGk , k = 1, 2 . . . , n, respectively, and denote each element
of xG − rG by eG(i), i = 1, . . . , K . Due to the assumption,
we conclude that eG(i) is independent with zero mean and
variance σ 2.

Therefore, the same manipulations with Eq. (40) applied
to eG(i)2 lead to lim

K→∞ P{| 1
K

∑K
i=1 eG(i)2 − σ 2| < ε

2 } = 1,

namely,

lim
K→∞ P{| 1

K

∑n

k=1

∥∥∥xGk
− rGk

∥∥∥
2

F
− σ 2| < ε

2 } = 1. (43)

Considering Eqs. (42) and (43) together, we prove
Eq. (34). �
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