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Abstract

These years have seen the advances of compressive sensing (CS), but efficient coding of
sensed measurements is still an issue. In this paper, we propose an image coding system
based on the compressive sensing paradigm via stripe-based differential pulse-code modu-
lation (DPCM). In the system, we sample and encode an image in a unit of multiple rows,
which we call a stripe. Through extensive experiments, we observe that the correlation
between measurements of adjacent stripes are much higher than that of neighboring blocks.
Based on this, we combine the stripe-based CS acquisition with the DPCM framework and
design a mechanism that predicts a stripe of measurements from its preceding stripe of mea-
surements. The produced measurement residuals are then quantized and entropy-encoded
into binary coding bits, which are tremendously reduced compared to the traditional block-
based framework. Furthermore, we provide an image CS reconstruction algorithm corre-
sponding to the stripe-based acquisition. Experiments verify that the reconstruction quality
is no worse or even better than the block-based case when much lower bitrate is consumed.
In a rate-distortion point of view, the proposed system also outperforms the methods using
block-based sampling and achieves the state-of-the-art performance for compressive-sensed
image coding.

1 Introduction

With the development of the compressive sensing (CS) theory and application, more
and more interest is devoted into this area. Compressive sensing features far fewer
measurements for a signal than those required by the Shannon-Nyquist theory; by
projecting the original signal into a lower-dimentional subspace chosen at random, it
can be accurately recovered under certain conditions [1]. Thus, the coding system
based on compressive sensing seems to accomplish compression while sampling and
does not require the complex compression procedures in conventional coding paradigm
[2]. Strictly speaking, however, the measurements still contain a lot of redundant
data in an aspect of the information theory. Therefore, coding techniques such as
quantization and entropy coding are necessary so that the CS system can achieve
equivalent or higher rate-distortion performance than conventional coding methods
[3].

There have been a few works in the literation for compressive-sensed image coding.
A straightforward method is to do a scalar quantization (SQ) [3] for each of the
sampled measurements in an image. Although this reduces coding bits by dropping
some insignificant information in the measurements, it is proved to be inefficient
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in a rate-distortion perspective compared to conventional coding methods. Thus,
by collaboratively considering the coding bits and the reconstruction performance,
some methods attempting to optimize the quantization or reconstruction process
were proposed in the literature (e.g., [4], [5]).

The introduction of the block-based compressive sensing, which tackles the issues
of memory and computation burden for real implementation, brings new possibilities
for measurement coding. In this framework, an image is divided into non-overlapped
blocks, which are sensed independently using a comparatively small matrix. Based
on this, S. Mun and J. E. Fowler propose to use differential pulse code modulation
(DPCM) of the CS measurements in conjunction with the uniform scalar quantization
[6]. Instead of directly quantizing each measurement, they first produce a prediction
for the current block using measurements of the preceding neighboring block. Then it
is subtracted from the current block in the measurement domain to generate residuals,
which are scalar-quantized uniformly. This method outperforms scalar quantization
and rivals JPEG in some cases.

Although predictive coding using neighboring blocks achieves better performance
than scalar quantization alone, the correlation between neighboring blocks is limited
if we take a closer look. A block is in a square shape, both the row and the column
having the same number of pixels. Taking a pair of horizontally neighboring blocks
for example, the left-most pixel of the left block and the right-most pixel of the right
block are 25 — 1 pixels away from each other, if the block size is S x S. It is very
probable that they are completely different when S is not small enough. Consequently,
DPCM cannot play an efficient role with a dissimilar prediction. In order to address
this issue, rather than dividing an image into blocks, we design a novel sampling unit
called a stripe, which consists of multiple rows of pixels. A stripe is much flatter than
a block, thus the pixel distance between neighboring stripes is much smaller and the
correlation is much higher accordingly. To be specific, for a stripe size 2 x N, the
farthest distance between pixels of neighboring stripes is only 3. Besides the good
predictive property of the stripe design, many applications favoring linear sensing
would benefit from it, such as flatbed scanners and airborne spaceborne images [7].

Based on our stripe design, we propose a CS image coding system in this pa-
per, which is organized as follows. We first give a background introduction of the
compressive sensing paradigm in Section 2. In Section 3, the proposed method for
compressive-sensed image coding is presented in detail. Section 4 provides simulation
results to demonstrate the performance of the method and Section 5 concludes this
paper.

2 Background

The compressive sensing (CS) theory states that a signal can be accurately recovered
under certain conditions after being projected into a much lower dimension[1]. Con-
cretely, let us consider a signal of a finite dimension x € RY. The acquisition process
of CS is expressed as

y = ®x, (1)
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where ® is an M x N random projection matrix and y € RM represents the acquired
linear measurements. M /N is called the sampling rate or subrate, which is typically
very small. Since the number of observations are far fewer than the unknowns, the
inverse problem is highly ill-posed and impossible to solve in general. But according
to the CS theory, if the original signal is sufficiently sparse in a transform domain,
its exact recovery is possible.

We represent the signal x in an appropriate NV x N basis ¥, ie., x = WYa. If
at most K < N entries of the coefficients a are nonzero, we say x is K-sparse
in the domain W. Although many natural signals are not strictly sparse, they can
be approximated as such; we call them compressible signals. According to the CS
theory, sparse and compressible signals can be reconstructed by solving the following
minimization problem:

min o X))y, st y=Px, (2)

where ¢ (x) denotes a prior property of the signal, usually a sparsity representation.
By converting the above unconstrained problem to a constrained problem by intro-
ducing a penalty parameter A\, we get

1
min 5 [ly = ®x[3 + A6 ()] (3)

This is the general paradigm of CS-based sampling and reconstruction processes.
For real application of CS-based coding, the measurements should be encoded before
being put into the transmission channel. In the next section, we provide our proposed
coding system and the detailed techniques.

3 Proposed Compressive-Sensed Image Coding Method

In this section, we first introduce the architecture design of our proposed image coding
system in Part 3.1. Then we detail the stripe-based image acquisition mechanism in
Part 3.2 and discuss the predictive coding with the stripe acquisition mechanism in
Part 3.3. Finally in Part 3.4, we give our reconstruction algorithm.

3.1 Architecture of the Proposed Image Coding System

The proposed coding system combines the idea of stripe-based sampling and differ-
ential pulse code modulation (DPCM). Fig. 1 shows its overall architecture.

In the encoder side, an input image is first divided into non-overlapped stripes,
each consisting of multiple rows of image pixels. Each stripe of pixels is projected into
the measurement domain by being applied a random matrix independently. Then all
stripes of measurements are put into a DPCM encoder, in which the measurements
of one stripe are predicted from those of its previous stripe and the residuals are then
scalar-quantized and entropy-encoded to generate a binary bitstream. The binary
bitstream is transmitted over a channel and reaches the decoder side.

173



X
-1
CS Acquisition .o Q
& _—
ol
3
: 4 y

, PR TR
xIIl x(-) xl‘!

1) y(fl (3) (i)

mZzZp»IT0O

l

=

Q: Quantizer
D: Delay
C: Entropy Coder

CS Reconstruction ! i !
— s

yul §,(:) ym

1 oL
yM

Decoder

Reconstructed Image

Figure 1: The architecture of the proposed CS image coding system. @ is uniform scalar
quantization; Q! is inverse uniform scalar quantization; C' is an entropy encoder; C~! is
an entropy decoder; D refers to a delay buffer containing measurements of the previous
stripe.

In the decoder side, the bitstream is first interpreted by an entropy decoder and is
de-quantized using the same quantization parameters as the encoder. The measure-
ment residuals are hereby recovered and added to the already-recovered measurements
of the previous stripe to produce the measurements of the current stripe. With the
recovered measurements of all stripes, we apply a CS reconstruction algorithm and
finally obtain the reconstructed image.

3.2 Stripe-based Image Acquisition

Suppose that the scene we wish to acquire (the original image) is represented by
the matrix X € RM*N_ If we make a stripe consist of s rows of image pixels, then
the image could be divided into M /s non-overlapped stripes. All pixels in a stripe
are sampled simultaneously by being projected into a lower dimension via a random
matrix. The acquisition process for the i-th stripe in the image, where 1 <i < M/s,
is formulated mathematically as follows

¥ = ox09, (4)

where the vector x(9 € R*N*! denotes the i-th stripe of pixels, which are rearranged
in a horizontal scan order into a column vector. The matrix ® € R"™*V is the
projection matrix, which is composed of Gaussian random numbers as its elements.
The vector y* € R™*! represents the obtained measurements for the i-th stripe. For
the whole image, this sampling process is performed progressively from top to down,
which is summarized in Table 1.
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Table 1: The proposed stripe-based CS acquisition process for an input image

Algorithm: Stripe-based image acquisition
1: Input: the image x, which is a column vector for X; the projection matrix ®
2: Divide the input image into non-overlapped stripes by x(?) = E(Vx,

where E( is a matrix operator that extracts the i-th stripe x from x

3 For i =1 to M/s Do

4: Calculate Eq. (4) to get the measurements for the i-th stripe
5 End For

6: Output: the measurements of all the stripes Y = [y(l)y(z) .. .y(M/S)]

Figure 2: Demonstration of the correlation between blocks and stripes. Each block in the
left image has the same number of pixels as each stripe in the right image. In the left
image, the green block is adjacent to the red block, but they are quite different in content
and texture. In contrast, the two neighboring stripes in the right image — the green one
and the red one are quite similar in pixel values.

3.8 Stripe-based Predictive Coding

Our CS image coding system takes advantage of DPCM, which works well when
neighboring signal segments exhibit high correlation. Consecutive stripes naturally
have higher similarity than consecutive blocks in the pixel domain, which is illustrated
in Fig. 2.

The high correlation between neighboring stripes of image pixels are reserved in
the random measurement domain by y? = ®x. To further verify this, we also pro-
vide a quantitative comparison between the measurement correlations of neighboring
blocks and of neighboring stripes. As in [6], we compute the correlation coefficient to
evaluate the correlation. Assuming the measurement vector for a block or a stripe is
denoted as y, then its correlation coefficient with another measurement vector y)
is formulated as

()T, (5)
) @y - Y ¥
p (Y. yY) == : ()
V) = o o]
According to Eq. (5), we calculate the average correlation coefficients (ACC)
over all pairs of neighboring blocks and all pairs of neighboring stripes in an image

respectively. They are written as
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Table 2: Average correlation coefficient for neighboring measurement blocks/stripes

Pixel number | ACC Clown Peppers Lena  Average
0.5 x 10° ACCpg | 0.8063 0.8945 0.9256 0.8755
ACCg | 09946  0.9971 0.9982 0.9966
1x 103 ACCp | 0.7955 0.9090 0.9424 0.8823
ACCg | 0.9841 0.9930 0.9946 0.9905
92 % 10° ACCp | 0.7206  0.8464 0.8708 0.8126
ACCgs | 0.9611 0.9854 0.9882 0.9783
3 % 103 ACCp | 0.7050 0.8215 0.8486 0.7917
ACCs | 0.9364 0.9724 09777 0.9621
4 % 103 ACCp | 07319  0.8800 0.9163 0.8427
ACCs | 09236  0.9699 0.9782 0.9573
5 % 103 ACCp | 0.6356  0.7417  0.7655 0.7143
ACCg | 0.8961 0.9515 0.9626 0.9367
ACCy = — Soocior Ytk 6
B = Nooor Z P (y block? yblock) ) (6)
1<i<Npjoer—1
and 1
ACCy = S (e v (7)

stripe 1 SiSNstripe -1

respectively. Ny denotes the total number of blocks in an image; y,(;lpk and y,(,;:p?

are measurement vectors of two neighboring blocks. N, denotes the total number
of stripes in an image; yiﬁw and yg::;l are measurement vectors of two neighboring
stripes.

We test the values of ACCp and ACCy on a variety of images. Table 2 demon-
strates the results of three images (the subrate is 0.5). In the stripe case, we test
six different stripe sizes 1 x 512,2 x 512,4 x 512,6 x 512,8 x 512 and 10 x 512;
and in the block case, to make the pixel number in a block as close as possible
to the pixel number in a stripe, we use the corresponding six different block sizes
23 x 23,32 x 32,45 x 45,55 x 55,64 x 64 and 72 x 72. Pizel number in Table 2 refers
the round pixel number in one stripe or block. We can see that ACCy is obviously
higher than ACCp for all pixel numbers. This indicates that prediction using stripe-
based CS acquisition is more accurate than using block-based CS acquisition, and
thus smaller residuals would be produced. As a result, a lower bitrate is generated
from the DPCM encoder.

3.4 C8 reconstruction algorithm of the proposed coding system

In the decoder side, the measurements of all stripes are recovered after the received
bitstream passes through a DPCM decoder. We need to reconstruct the whole image
X using the decoded measurements Y = [yWy@ ... yM/)] " For this purpose, we
design an optimization algorithm for the following reconstruction problem
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Table 3: The proposed stripe-based CS reconstruction algorithm for an input image

Algorithm: Stripe-based image reconstruction

1: Input: the recovered measurements Y, the projection matrix ®

2: Initialize the reconstructed image vector x

3: For k =1 to Max_teration Do

4: r—x-n Y ROT(ROx-3D) where RV = EO
1<i<M/s

5 % argmin g [x —r[l3 + Al¢ (%)l
6 End For

7 Rearrange x to obtain the image X

8: Output: the reconstructed image X

. 1 TG i
x=argmins > min||y® — SEVx; + A6 ()], (8)

1<i<M/s

where x € RMN*1 is a column vector containing all the pixel values in the original
image X and x is its reconstructed value. E® is a matrix operator that extracts
the i-th stripe x® from x, so we have x() = E(®x. Using the idea of the iterative
shrinkage/thresholding algorithm (ISTA) [8], we solve Eq. (8) by alternating two
iterative steps, as shown in Table 3.

In Table 3, the specific solution for the equation in Line 5 is dependent on the
form of ¢ (x). For example, if ¢ (x) represents the wavelet sparsity of an image, i.e.,
¢ (x) = ¥x, where ¥ is the wavelet transform matrix, then Line 5 is replaced by

X < hard (r, \/2)\>, where hard refers to the hard-thresholding algorithm [9]. Other

efficient image reconstruction models (e.g. [10], [11]) can also be incorporated into
this framework.

In Part 3.3, we showed the bit-saving property of the stripe-based strategy. One
may wonder whether it would bring down the reconstruction quality without as many
coding bits. To resolve this concern, we compare the reconstruction performance of
the proposed stripe-based system with the performance of the block-based system.
In order to eliminate the influence of quantization to the final reconstruction results,
we do this comparison in a lossless setting, i.e., disabling scalar quantization in both
systems. We apply the same sparsity model for both systems, the DDW'T sparsity
model [12] to be specific. The settings of the block sizes and the stripe sizes are
the same as those in Table 2. Five different subrates are adopted: 0.2, 0.25, 0.3,
0.35, and 0.4. Fig. 3 demonstrates the results for the test image ‘Lena’ of the size
512 x 512. We can see that the reconstruction performance of the stripe-based system
is no worse or even better than the block-based system except for the upper-left test
case. This exceptional inferior performance is because there is only one row of pixels
in a stripe, which is not stable for reconstruction. This is also the reason that we
make our processing unit a stripe, which is composed of multiple rows, rather than a
single row.
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Figure 3: Reconstruction comparison of the block-based and the stripe-based CS systems
for ‘Lena’.

4 Simulation Results

In this section, we provide simulation results to verify the rate-distortion (RD) perfor-
mance of the proposed stripe-based CS image coding method. The RD performance
is in terms of peak signal-to-noise ratio (PSNR) in dB versus bitrate in bits per pixel
(bpp). Following [6], we estimate the bitrate using the entropy of the quantizer in-
dices, which could be actually produced by a real entropy coder. Three images of the
size 512 x 512 are tested: ‘Lena’; ‘Pepppers’, and ‘Clown’.

We first consider which stripe size is optimal for our system to reach its best
performance. If the size is too large, then the correlation between neighboring stripes
would not be as high; if the size is too small (e.g., 1 row of pixels), it is not stable
for reconstruction. We test the RD performances of five different stripe sizes and
demonstrate the results in Fig. 4. We can see that when the size is 2 x 512, the
proposed method produces the highest RD quality.

Then we compare its RD performance with the methods of scalar quantization
(SQ) and the block-based DPCM [6]. For all the methods, the DDWT sparsity
model [12] is utilized for reconstruction and the same setup for the combination
of quantization step-size and subrate is utilized as in [6]. There is also a tradeoff in
selecting the block size for the two comparative methods. Ref [13] suggests a block size
of 32 x 32, and Ref [6] utilizes a block size of 16 x 16 to demonstrate its performance.
We compare the RD performances of the block sizes 16 x 16,32 x 32,48 x 48,64 X
64,70 x 70, and find 16 x 16 is the best for both methods. Fig. 5 demonstrates the
RD performance comparison of the proposed method with the stripe size 2 x 512 and
the methods of SQ and the block-size DPCM with the block size 16 x 16. We can see
that the the proposed method outperforms the other methods by obvious gains and
achieves the best RD performance.

In Figure 6, we provide the visual comparison of the proposed method and the
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Figure 4: Rate-distortion performance of the proposed CS system with different stripe sizes:
2x512,4x512,6 x512,8 x 512 and 10 x 512. The DDWT sparsity model [12] is utilized for
reconstruction. The same setup for the combination of quantization step-size and subrate
is utilized as in [6].
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Figure 5: Rate-distortion performance comparison of the proposed CS system and the
methods of SQ and block-based DPCM.

block-based DPCM at a bitrate of 0.2 bpp. We can see that the reconstructed images
using the proposed method have less noises and are much more visually pleasant.

5 Conclusion

In this paper, we propose a novel compressive-sensed image coding method. We bring
up the concept of a stripe, and by incorporating it into the DPCM framework, we
design a CS image acquisition-reconstruction system. We verify the effectiveness of
the stripe-based system in the aspects of measurement correlation, reconstruction
quality and the rate-distortion performance. Experiments demonstrate that the pro-

z
£
3
3

Figure 6: Visual comparison at a low bitrate of 0.2 bpp for the two test images: ‘Peppers’
and ‘Lena’. The first and the third images show the results of the block-based DPCM with
the block size 16 x 16, and the second and the third images show the results of the proposed
method with the stripe size 2 x 512.
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posed method brings significant improvement compared to the block-based methods
in both rate-distortion objective performance and the visual subjective results.

This new design of a CS system breaks the square-shape restriction of a sampling
unit and implies more flexible unit-division. For future work, other shapes of a unit
could be considered, and besides, more efficient sparsity models corresponding to this
paradigm can be designed to further improve the reconstruction quality.
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