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Abstract—1In the large body of research literature on image
restoration, very few papers were concerned with compression-
induced degradations, although in practice, the most common
cause of image degradation is compression. This paper presents a
novel approach to restoring JPEG-compressed images. The main
innovation is in the approach of exploiting residual redundancies
of JPEG code streams and sparsity properties of latent images.
The restoration is a sparse coding process carried out jointly
in the DCT and pixel domains. The prowess of the proposed
approach is directly restoring DCT coefficients of the latent image
to prevent the spreading of quantization errors into the pixel
domain, and at the same time, using online machine-learned
local spatial features to regulate the solution of the underlying
inverse problem. Experimental results are encouraging and show
the promise of the new approach in significantly improving the
quality of DCT-coded images.

Index Terms— Compressed image restoration, sparse coding,
soft decoding, machine learning.

I. INTRODUCTION
HE PAST decade has witnessed a rapid growth of
research works on sparsity-based image analysis and
processing. A large number of sparsity-based image restoration
methods have been reported [2]-[11] that can deliver superior
performance to previous techniques in various applications,
e.g., image denoising, super-resolution (upsampling), deconvo-
lution, demosaicking, etc. However, so far the sparsity-based
image restoration approaches are seemingly not as effective
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on combating compression artifacts as on other types of
degradations.

Relatively fewer papers were devoted to sparsity-based
restoration of compressed images [12]-[16], [28], [29].
This is quite regrettable, as the most common cause of
image degradation in practice is nothing but compression.
Sensor noises and low spatial resolution are much lesser
problems nowadays because modern digital cameras, even
mass-marketed ones, offer sufficiently high spatial/spectral
resolutions and high signal-to-noise ratio (SNR) to meet the
image quality requirements of most users. But compression
is and will continue to be indispensable in almost all visual
communication and computing systems, as the sheer volume
of image data can easily overwhelm the communication
bandwidth and in-device storage.

The so-far lack of success in sparsity-based restoration
of compressed images is largely due to the fact that the
compression noises are much more difficult to model than
other degradation sources, e.g., motion blur and sensor noises.
The non-linearity of quantization operations in image com-
pression systems makes quantization noises signal dependent,
far from being white and independent, as commonly assumed
by works on other image restoration problems [17], [18], [20].
Following the tradition of assuming degradations to be signal
independent, most existing works on restoration of compressed
images modeled quantization noises as signal independent
ones, e.g., uniform noises in DCT domain [21], white Gaussian
noises (WGN) in spatial domain [22], [23], or generalized
Gaussian noises [24]. Inaccurate modeling of compression
degradations limits the restoration performance.

A. Related Work

Up to now, very few published compressed image restora-
tion techniques directly recover the original compressed DCT
coefficients [24], [25]. Most of existing works on restoring
compressed images are formulated to estimate the latent image
in the pixel domain. Reeve and Lim proposed to remove struc-
tured discontinuities induced by DCT code blocks by Gaussian
filtering of the pixels around the DCT block boundaries [26].
Zhai et al. employed postfiltering in shifted overlapped win-
dows and fused the filtering results to better suppress blocking
artifacts [27]. Restoration of JPEG-compressed images can be
cast and solved in a standard inverse problem formulation.
Alter et al. proposed a total variation (TV) minimization
method constrained by the intervals of unquantized DCT coef-
ficients [28], assuming that natural images are approximately
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piecewise constant. Their design goal is to reduce blocking
artifacts and Gibbs phenomenon while preserving sharp edges.
Bredies and Holler studied optimality conditions of the TV
minimization approach in an infinite dimensional model, and
proposed to solve a discrete version by a primal-dual algorithm
supplemented by a primal-dual gap stopping criterion [29].
Accompanying its success in other restoration applications,
the approach of sparse coding has also shown its promise in
combating compression distortions [12]-[16]. Very recently,
Kwon er al. [30] proposed a simplified scheme of Gaussian
process regression that can be applied to the removal of
compression artifacts among other applications.

B. Our Contribution

In this work, we do away with any preassumption on com-
pression noises and aim to repair signal-dependent degrada-
tions via a novel data-driven approach. The proposed restora-
tion approach performs a joint sparse coding in both the DCT
domain and the pixel domain. As natural images are statisti-
cally non-stationary with spatially varying sparse representa-
tions, sparse coding is performed on individual patches, one
at a time, so that the restoration can adapt to local statistics.
For each restoration patch, two dictionaries of PCA bases are
learned in the DCT and the pixel domains respectively, using
sample sets of approximately matched DCT code blocks. The
two dictionaries are then used to generate two locally adaptive
sparse representations that jointly determine the restored image
patch. Fig. 1 depicts the architecture of the proposed image
restoration framework, in which the degraded input is the
decompressed (hard-decoded) image and the restored output is
called soft-decoded image. In the compression literature, the
task of repairing hard-decoded results is commonly referred
to as soft decoding.

The premise of soft decoding is that practical image
compression methods, such as popular international standards
JPEG, H.264/AVC, HEVC etc., are not information-
theoretically optimal. Therefore, the resulting compression
code streams still contain residual redundancies. It is
possible, at least theoretically, to improve the reconstruction
by reestimating the original signal with the knowledge ignored
or underused by the encoder. In particular, in the ubiquitous
local DCT block-based coding framework, correlations exist
between different code blocks, because natural images tend
to have similar local structures and the code block size is not
large enough to capture the underlying statistical redundancy.
These inter-block correlations, which are not exploited by
the encoder, can be used by the decoder to increase the
reconstruction fidelity without receiving any extra bits.

The restoration of compressed images either in the pixel
or in the DCT domain alone has its own drawbacks. As the
pixel domain restoration works with hard-decoded image,
the inverse DCT is required. This will propagate an isolated
quantization error, originally confined to a single DCT
coefficient, to all pixels in the corresponding DCT block.
To make the matter worse, an aggressively quantized DCT
coefficient can produce structured errors in the pixel domain
that correlate to the latent signal, complicating the restoration
task. On the other hand, the pure DCT-domain restoration is
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severely restricted by the fact that the compression process
sets most of the high frequency coefficients to zero, making
the recovery of edges and fine textures impossible. In the
proposed dual domain soft decoding (D2SD) scheme, the
advantages and disadvantages of the pixel-domain and DCT-
domain restorations are made to complement each other. The
design motive, which is also a main contribution of this work,
is to exploit residual redundancies (e.g., inter-DCT-block
correlations) in the DCT domain without spreading errors into
the pixel domain, and at the same time recover high frequency
information with machine learning driven by a large training
set. A uniqueness of our machine learning method for soft
decoding is in its feature selection: the DCT code block rather
than the (or some attributes of) corresponding hard-decoded
pixel patch is used as the feature vector. Directly associating
the DCT code block to the underlying latent image block
isolates the degradation cause at its root and hence simplifies
the learning task. Furthermore, the soft decoding performance
is boosted by incorporating the known boundaries of quantizer
cells, which is a strong piece of available side information in
the DCT code stream, into the new sparsity-based restoration
scheme. The short version of this work was presented in [1].

The rest of the paper is organized as follows. Section II
details the proposed technique of sparse coding in the DCT
domain; here the main novelty is the collecting and clus-
tering of a sample set created by performing forward DCT
of overlapped pixel patches in the hard-decoded image.
By breaking free from the rigid DCT code block tessellation,
the proposed sparse coding process can fully benefit from the
self-similarities of the latent image and remove the blocking
compression artifacts. In Section III, we extend sparse cod-
ing from the DCT domain to the dual DCT-pixel domain,
and finally cast the dual sparse coding-based restoration of
compressed images as a mixed ¢1-{» minimization problem.
The highlight of this section is the new data-driven learning
method for repairing distorted high-frequency image features.
Section IV provides the details of solving the formulated
optimization problem, and Section V reports the experimental
results. We finally conclude in Section VI.

II. SPARSITY-BASED SOFT DECODING IN THE
TRANSFORM DOMAIN

As mentioned earlier in the Introduction, soft decoding
performed solely in the pixel domain has one main drawback:
the inverse DCT has to be applied, which causes propagation
of an isolated quantization error to all the pixels of the cor-
responding DCT block. In contrast, the soft decoding directly
performed over the DCT coefficients can effectively avoid such
problem, confining the quantization errors to the associated
DCT coefficients.

In this section, we discuss the sparsity-based soft
decoding in the transform domain, where adaptive dictionary
learning in the DCT domain and a collaborative sparse coding
mechanism to exploit inter-block correlations are involved.
This DCT-domain restoration framework will be combined
appropriately with the pixel-domain soft decoding in the next
Section to eventually give our dual transform-pixel domain
soft decoding approach.
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Fig. 1.

Block diagram of the proposed data-driven soft decoding system in dual transform-pixel domain. In the hard-decoded image, the red block represents

a coding block. The blue blocks represent non-coding blocks, which are exacted in an overlapped fashion. Note that for coding blocks, their DCT codes are
read directly from the code stream. While for non-coding blocks, we perform DCT transform to get the corresponding DCT codes. Here, for simplicity we

use “DCT” to cover both cases.

A. Adaptive DCT Dictionary Learning

In JPEG compression images are coded in non-overlapping
8 x 8 blocks in DCT domain; these blocks are called coding
blocks in the sequel. As illustrated in Fig. 1, we divide the
hard-decoded image H into a set of overlapped patches {X;}
of size 8 x 8, which is called non-coding blocks. For coding
blocks, the DCT coefficients are read directly from the code
stream. While for non-coding blocks, we apply the DCT
transform on them to get the associated DCT coefficients,
which are denoted as {y;}. We emphasize that blocks {X;}
are extracted in overlapped positions in misalignment with
the DCT coding block boundaries. The purpose is to destroy
artificial block structures of JPEG compression method and
hence remove much of the notorious DCT blocking artifacts.
To build the sparsity dictionary for restoring a generic DCT
coefficient patch yo, we specifically employ the non-local self-
similarity inherent to natural images and form the training set
by
Y = F: |I[Fi —oll3 < 7, 1
where 7 is selected in practice such that the first n (we
empirically set n = 30) closest ¥; to ¥ constitute the training

set ).

We make the vectors of collected patches to be the columns
of matrix Y € R%**”_ Then, following the work [4], we learn
an adaptive sub-dictionary @ that is most relevant to Y by
applying PCA on Y. PCA generates the dictionary @ whose
atoms are the eigenvectors of the covariance matrix of Y.
In this way, we construct one sub-dictionary per DCT patch
in an adaptive manner.

B. Soft Decoding in the Transform Domain

All the existing image/video compression methods utilizing
block-based DCT suffer from a common problem: DCT blocks
are encoded independently, which could leave inter-block
correlations. Such dependence not only reduces the coding
efficiency, but also limits the modeling capability of sparsity-
based image prior. This problem is aggravated for low bit
rates as vital structural information of the source image is
lost or severely distorted due to the quantization operations.
An effective way of alleviating the above problem is to impose
structural sparsity constraints when conducting soft decoding.
Noticing that similar patches are often encoded by similar
sparsity patterns, we in this work propose a collaborative
sparse coding scheme, which explicitly introduces a regular-
ization term to preserve the consistency of sparse codes for
similar local patches. More specifically, the soft decoding in
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the transform domain can be cast into the following minimiza-
tion problem:

min > 5 — i3+ 41 D ey
1 i i
+ 5D e — a5 Wy, )
L]

where A1 and y; are regularization parameters; W;; measures
the similarity between a pair of patches (¥;,y;) and can be
defined by

o

~ ~ 12
Wi = exp [ /bl —J H } 3)

In addition to sparsity prior, the DCT image code stream
contains another source of side information that should be
exploited to further improve restoration performance. For each
DCT coefficient y;(u,v), where u and v are the indices of
the corresponding 2D subband in DCT domain, we know
exactly the associated quantization interval (¢ ,.q.,) in
which y; («, v) lies in. Namely,

ay, <Vi(u,0) <q,, “)

holds for all # and ». Note that such important side information
is available without the need of receiving any extra bits. These
linear inequalities can be incorporated into (2) to confine the
solution space, which could further improve the restoration
performance. For non-coding blocks, the quantization interval
of the corresponding similar coding block is used as the
constraint. Finally, we formulate our problem of soft decoding
in the transform domain as the following constrained optimiza-
tion problem:

min > 15 = @iaill; + 41 D el
1 l l
+ 5 2 e~ o Wi
i,j

st. qf < @0, < qY, ®)

where q” and qY are vectors containing bound values of
the quantization interval, and < denotes the element-wise
inequality.

III. SPARSITY-BASED SOFT DECODING IN DUAL
TRANSFORM-PIXEL DOMAIN

In this section, we propose to augment the previously
discussed transform-domain restoration by including the pixel-
domain knowledge. The standalone restoration in the DCT
domain cannot satisfactorily recover the high-frequency com-
ponents that are discarded or severely distorted during the
quantization process. In this work, we address this challeng-
ing issue by using a machine learning-based technique that
incorporates high-frequency priors of uncompressed images
into the restoration framework. Specifically, we develop a
novel soft decoding strategy in dual transform-pixel domain
in such a way that the advantages and disadvantages of both
domains can complement each other. In the following, we first
present the adaptive dictionary learning in the pixel domain,
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and then describe the dual transform-pixel domain strategy of
soft decoding.

A. Adaptive Dictionary Learning in the Pixel Domain

The learning in the pixel domain employs a training set of
uncompressed images, from which we extract pairs of patches
in both the pixel and the DCT domains. Specifically, let {x;}
be the 8 x § sized pixel blocks from the uncompressed training
images, and let {y;} be the corresponding DCT coefficient
blocks. To restore a generic pixel patch Xp, whose DCT
counterpart is denoted by ¥o, we construct a dictionary by
using the training data in the paired set {x;,y;}. We collect
a set of pixel patches x; that have their DCT representations
sufficiently close to ¥o:

X = {xlllyi — Yol < ¢}, (©6)

Similar to the dictionary learning in the DCT domain, we
can apply the PCA-based technique over X to obtain the
dictionary ;.

When selecting the samples in (6), it should be noted
that we directly employ the DCT code block rather than the
corresponding hard-decoded pixel patch as the feature vector.
Directly associating the DCT code block to the underlying
latent image block isolates the degradation cause at its root
and hence can significantly simplify the learning task and
improve the restoration performance. In addition, we here use
the original, unquantized {y;} to calculate the £, distances for
training sample selection. A better alternative to this end is
to use the quantized version of {y;}, and obtain the set X
for each quantization parameter. We experimentally find that
this strategy indeed improves the overall performance; but the
additional gain over the case of using the unquantized {y;}
is rather limited (less than 0.1dB). Meanwhile, the incurred
complexity is large and the flexibility of performing the soft
decoding is reduced. Therefore, in this work we still adopt
the simple yet effective way of selecting the samples, as
demonstrated in (6).

B. Soft Decoding in Dual Domain

Given the two learned dictionaries ® = {®;} and ¥ = {W¥;}
in the transform and the pixel domain, we jointly search for
two sparse code vectors {a;} and {f;} that best represent the
observed DCT patches {y;} in the dual domain:

S NF = Bieill; + A1 X lleilly

. 1 l

I BEEPES L il R N P TA N
1 1

S.t. qL < ®;0; < qU, 7

where T~! is the inverse DCT; A;, A2, A3 are Lagrange
multipliers.

Incorporating the collaborative sparse coding and the quan-
tization interval constraint into (7), we arrive at the following
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constrained optimization problem to estimate {o;} and {B;}:

(15 — @ieill5 + 21 2 lleilly
l

l
y
+ 5 D e — e[ Wy
¥

EE AR EEED ol | ot TR T A
l
+ X Bl + 5 18 - B Wy
i ij
S.t. qL < ®;0; < qU, ®)

where y1, y2 are two other Lagrange multipliers. Note that
here we apply the collaborative sparse coding in both the DCT
and the pixel domains. Joint restoration in the DCT and the
pixel domain allows the two sparse representations f{e;} in
dictionary @ and {f;} in dictionary ¥ to cross validate each
other, improving the quality of soft decoded image patches.
Upon solving (11) and obtaining the optimal sparse coding
vectors {ﬂ ;"} in the pixel domain, the soft-decoded image H
can be obtained by averaging all the reconstructed patches [2]:

N 1w

H= (Z R/ R,-) (Z R/ \Ir,-/s?), ©)
i=1 i=1

where N is the total number of sampled patches, R; is the

matrix extracting patch X; from the hard-decoded image H at
location i.

IV. OPTIMIZATION DETAILS

In this section, we present the details of solving the con-
strained optimization problem in (8).

The objective function Eq.(8) can be further reformulated
into a matrix form:

|Y — @A + 41 1Al + 71 Tr(ALAT)

arg min + 13 HT—1<I>A—\IIBH§+/12 Bl ’
(A.B) + 9,Tr(BLBT)

s.t. QF < @A < QY, (10)

where Y € R®**N is the DCT patch sample matrix, N is
the number of blocks to be processed, Tr(-) denotes the trace
function, L is the graph-Laplacian matrix [32], [33], A and B
are sparse codes matrices, QF and QU are matrices with q”
and qY being columns, respectively.

Defining ® = [AB]” = {a,B;)7, 6 = (.8,

—~ ~ T . P 0
Y = [YO] = {yi}, D = [—ﬂ3T_1<I> ﬂa‘l’:| and

=_|(nkL 0 . )
L = |:0 yzL:|’ the optimization problem in (10) can be

simplified as
arg min H? - D(-)leF +AO; +yTr (@Tf(-)) ,
(C]

st. [QF 017 < DO < [QY 0]7, (11)

where for simplicity we set A = A1 = A2 and y = y; = p».
This is a mixed {;-{» minimization problem with a
graph-Laplacian regularization term.

It is easy to see that the objective function in (11) is convex,
which implies that global minimizer exists and is unique.
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Algorithm 1 Optimization Algorithm for Estimating Sparse
Coefficients

Input: The observed DCT patches ¥;; the dictionary D;; the graph-
Laplacian matrix L; A, v;

Output: The optimal sparse code 6;.

Procedure:
Initialize Step:

1: 6; is the result of standard sparse coding [38], active set A :=
Find(@; # 0), s := sign(0;), s; € {—1,0,1} denotes
sign (ij) , where Oij) is j-th component of 6;;
Activate Step:

2: From zero coefficient of 6;, select j = arg max;

v (e )‘,
where ng ) J(8) the subdifferentiable value of the jth coefficient
of J(6;) . Activate 05'7) only if it locally improve the objective
function Eq.(13), namely:

o If V/E]:)J(Oi) > A thensets; =—1, A={j}UA
« VY J(8,) < —A, then sets; =1, A= {j} U A
Feature-sign Step:

3: Let D; be a submatrix of D, that only contains columns

corresponding to the active set. Let 8;, h; and S be subvectors

of 8;, h; and s corresponding to the active set;
4: Compute the optimal solution under the current active set:

677 = (DIDi +4La1) (DI — (00 +1)/2) (14)

where I is the identity matrix;

5: Plerfoml_a\ discrete line search on the closed/l_i&e segment from
0; to 67°*: Check the objective value at 67 and all points
where any coefficient changes sign, and update 6; to the point
with lowest objective value;

6: Remove zero coefficients of §; from the active set and update
s = sign(0;);

Check the Optimality Conditions Step:

7: Condition (a): Check optimality condition for nonzero coeffi-
cients: VZ(»])J(OZ-)‘ + Asign(67)) = 0,v8Y) = 0. If condition
(a) is satisfied, go to feature-sign step; else check condition (b).

8: Condition (b): Check optimality condition for zero coefficients:
‘VE”J(Oi)‘ < )\,VBEJ) = 0. If condition (b) is satisfied, go to
activate step; else return 6; as the solution denoted as 6;;

Several approaches have been proposed to solve the problem
of this form [34], [35]. In this paper, we use an optimization
method based upon coordinate descent to solve this problem.
We optimize each code 6; individually while keeping all
the remaining sparse representation codes 8;(j # i) fixed.
We further define:

J©) =Y -De|; +,7r (6'Le)
= > I3 —Dibil5+y D Li6/0;.  (12)
i i,j

We can obtain ; by solving the following optimization prob-
em:

argmin J (6;) + 4[16; |1
0;
= argmin [5; — D;6;13 + 7 L8] 6, + 67b; + 2. 6],
) -
(13)

where h; =2y (Zj# i:,-jﬂj), 0i(k) is the k-th element of 6;.
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A
Statue512

Bike512

Flower Boat House Airplane512
Fig. 2. Twelve test images, the first nine images are 256 x 256, the last three ones are 512 x 512.
TABLE 1
OBJECTIVE QUALITY COMPARISON WITH RESPECT TO PSNR (IN dB) AND SSIM AT QF =5

Images JPEG ACR PSW BM3D-SAPCA KSVD DicTV D2SD
PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM
Burterfly 22,65 | 0.7571 || 22.55 | 0.7636 || 23.58 | 0.8152 || 23.91 | 0.8266 || 23.96 | 0.8417 || 23.54 | 0.8228 || 25.15 | 0.8705
Barbara 23.85 | 0.6562 || 24.01 | 0.6698 || 24.73 | 0.6958 || 24.76 | 0.7051 || 24.93 | 0.7091 || 24.49 | 0.7006 || 25.48 | 0.7261
Boat 2523 | 0.7054 || 25.19 | 0.7053 || 26.13 | 0.7382 || 26.31 | 0.7547 || 26.64 | 0.7656 || 26.31 | 0.7491 || 26.98 | 0.7758
Leaves 2249 | 0.7775 || 22.42 | 0.7765 || 23.49 | 0.8276 || 23.78 | 0.8408 || 23.76 | 0.8481 || 23.27 | 0.8245 || 24.92 | 0.8831
Bike 21.72 | 0.6530 || 21.61 | 0.6448 || 22.16 | 0.6743 || 22.60 | 0.7039 || 22.56 | 0.6976 || 22.28 | 0.6952 || 23.08 | 0.7203
Flower 2451 | 0.6866 || 24.43 | 0.7636 || 25.19 | 0.7078 || 25.49 | 0.7352 || 25.39 | 0.7366 || 25.88 | 0.7316 || 25.88 | 0.7501
House 2776 | 0.7732 || 27.77 | 0.7756 || 28.73 | 0.7964 || 28.87 | 0.8020 || 28.47 | 0.8168 || 29.59 | 0.8072 || 29.95 | 0.8217
Hat 2597 | 0.7117 || 26.11 | 0.7328 || 26.84 | 0.7557 || 26.79 | 0.7497 || 27.06 | 0.7721 || 27.33 | 0.7707 || 27.28 | 0.7741
Parrot 26.15 | 0.7851 || 26.49 | 0.8032 || 27.08 | 0.8275 || 27.40 | 0.8329 || 27.22 | 0.8465 || 27.92 | 0.8382 || 28.04 | 0.8504
Airplane512 || 26.01 | 0.7753 || 26.45 | 0.7929 || 27.01 | 0.8086 || 27.11 | 0.8101 || 27.38 | 0.8204 || 26.95 | 0.8114 || 28.92 | 0.8407
Bike512 22.11 | 0.6198 || 22.20 | 0.6184 || 22.80 | 0.6422 || 23.12 | 0.6693 || 23.13 | 0.6597 || 22.74 | 0.6562 || 24.76 | 0.6949
Statue512 25.64 | 0.6735 || 25.99 | 0.6908 || 26.54 | 0.7143 || 26.58 | 0.7077 || 26.85 | 0.7293 || 26.51 | 0.7269 || 28.11 | 0.7630

Average H 24.51 ‘ 0.7145 H 24.60

‘ 0.7281 H 25.35 ‘ 0.7503 H 25.56

‘ 0.7615 H 25.61 ‘ 0.7702 H 25.56 ‘ 0.7612 H 26.55 ‘ 0.7892

The solution of (13) can be effectively obtained by the
feature-sign search algorithm [36]. The optimization algorithm
is detailed in Algorithm 1; more information about the opti-
mization process can be found in [34] and [35]. To satisfy the
quantization bin constraints, we simply clip DCT coefficients
outside the bin to the nearest bin boundaries.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to demon-
strate the superior performance of the proposed dual-domain
joint estimation approach for restoring compressed images.

A. Comparison Group

The proposed approach is compared with the state-of-
the-art methods in the literature. The comparison group is

composed of: 1) deblocking methods: the ACR algorithm [37],
the PSW algorithm [27]. These methods are included into
the comparison group because they can be considered as soft
decoding methods for DCT-compressed images; 2) denoising
algorithms: the extended work BM3D-SAPCA [19] of the
well-known BM3D algorithm [18], which achieves better
performance than BM3D. BM3D-SAPCA is included because
the restoration of compressed images can be viewed as
a denoising process, in which the degradation source is
the quantization; 3) sparsity-based restoration methods: the
well-known KSVD [17], DicTV [14], and the proposed dual-
domain soft decoding (D2SD) algorithm. DicTV is a very
latest sparsity-based compressed image restoration algorithm.
All the source codes of the compared algorithms are kindly
provided by their authors. The source code of our method is
available at http://homepage.hit.edu.cn/pages/xmliu/2.
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TABLE II
OBJECTIVE QUALITY COMPARISON WITH RESPECT TO PSNR (IN dB) AND SSIM AT QF = 80
Images JPEG ACR PSW BM3D-SAPCA KSVD DicTV D2SD
PSNR | SSIM PSNR SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM
Butterfly 34.75 | 0.9639 34.60 | 0.9613 34.75 | 0.9639 36.17 | 0.9761 35.53 | 09711 34.70 | 0.9684 37.13 | 0.9806
Barbara 37.61 | 09737 37.58 | 0.9734 37.59 | 09737 38.66 | 0.9774 38.32 | 0.9742 36.01 | 0.9570 39.34 | 0.9795
Boat 38.37 | 0.9658 38.29 | 0.9649 38.37 | 0.9662 39.60 | 0.9728 39.02 | 0.9672 35.56 | 0.9486 3946 | 0.9728
Leaves 3591 | 0.9789 35.81 | 0.9774 35.90 | 0.9788 38.02 | 0.9914 37.30 | 0.9871 35.85 | 0.9835 39.04 | 0.9920
Bike 34.44 | 0.9676 3448 | 0.9676 3448 | 0.9676 35.59 | 0.9773 35.27 | 0.9737 3391 | 0.9559 36.45 | 0.9802
Flower 36.14 | 0.9616 36.13 | 0.9607 36.17 | 0.9618 37.36 | 09718 36.86 | 0.9663 34.82 | 0.9444 37.86 | 0.9733
House 39.10 | 0.9530 39.05 | 0.9621 39.10 | 0.9532 40.04 | 0.9549 39.26 | 0.9447 37.29 | 0.9231 40.78 | 0.9643
Hat 37.08 | 0.9567 37.14 | 0.9563 37.19 | 0.9582 38.13 | 0.9628 37.58 | 0.9537 35.93 | 0.9350 38.65 | 0.9672
Parrot 38.18 | 0.9621 38.27 | 0.9621 38.28 | 0.9627 38.81 | 0.9626 38.43 | 0.9587 36.67 | 0.9443 39.30 | 0.9663
Airplane512 37.98 | 0.9648 37.92 | 0.9643 38.00 | 0.9653 38.96 | 0.9694 38.56 | 0.9663 36.69 | 0.9429 40.09 | 0.9727
Bike512 34.78 | 0.9654 34.78 | 0.9654 34.78 | 0.9655 3593 | 0.9751 35.57 | 0.9707 33.88 | 0.9476 37.56 | 0.9775
Statue512 37.21 | 0.9550 37.21 0.9550 37.22 | 0.9555 37.94 | 0.9575 37.35 | 0.9489 35.32 | 09191 39.24 | 0.9650
Average H 36.79 ‘ 0.9640 H 36.771 ‘ 0.9642 H 36.81 ‘ 0.9643 H 37.93 ‘ 0.9707 H 37.42 ‘ 0.9652 H 35.55 ‘ 0.9474 H 38.74 ‘ 0.9742 ‘
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Fig. 4. Average PSNR values comparison of tested methods in a large image

test set at QF = 5. The p-value in F-TEST is 5.7129e-12.

For thoroughness of our comparison study, we select twelve
widely used images in the literature as test images, as illus-
trated in Fig. 2. The first nine images are of size 256 x 256,
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QF-PSNR performance comparison for QFs ranging from 10 to 90.
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Fig. 5. Average PSNR values comparison of tested methods in a large image

test set at QF = 80. The p-value in F-TEST is 8.0875e-35.

the last three ones are of size 512 x 512. For the uncompressed
training set used to get the pixel-domain dictionary, we ran-
domly select five images from the Kodak Lossless True Color
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KSVD (23.86)

DicTV (23.54)

D2SR (25.15)

Fig. 6. Comparison of tested methods in visual quality on Butterfly at QF = 5. The corresponding PSNR values (in dB) are also shown.

Image Suite.! Certainly, the training set does not have any
overlap with the test set.

B. Objective Performance Comparison

Table I-1I tabulate the PSNR and SSIM results of the above
algorithms on the twelve test images, which are encoded by a
JPEG coder with quality factors (QF) 5 and 80, respectively.
Quality factors, which are integers defined in the range 1-100,
are indexes of a set of quantization matrices. Larger QF values
correspond to better image quality. As can be observed, our
proposed dual domain soft decoding technique achieves the
best objective performance for all test images and over the
low and high quality factors.

More specifically, compared with the image deblocking
algorithms, namely, ACR and PSW, the average PSNR gains
can be up to 1.95dB and 1.2dB, respectively, which are
significant. When comparing with the denoising approaches
BM3D-SAPCA, we assume the true quantization error
variances are known and fed into this algorithm. As in practice
the error variances cannot always be estimated accurately, the
results of BM3D-SAPCA shown in Table I-II can be regarded
as performance upper bounds. Even under this favorable
condition, BM3D-SAPCA is still outperformed by our
proposed method, with average PSNR gain being up to 1 dB.

Furthermore, our method works better than the
state-of-the-art sparse coding based methods. The average
PSNR gain over the KSVD is 0.94dB, with the highest gain
being 1.99dB, achieved by the test image Bike512 when
QF = 80. When comparing with the latest DicTV, our average
PSNR gain is 0.99dB when QF = 5, and the highest gain

1http://rOk.us/graphics/kodak/

1.84dB is retained in the test image Butterfly when QF = 5.
For high quality factor QF = 80, DicTV works poor. Our
average PSNR over it is 3.19dB.

We also provide the SSIM [39] performance results of
different algorithms in Table I-II. From these tables, we can
notice that our method achieves the highest average SSIM
scores among all of competing methods. To better demonstrate
the superior performance against these compared techniques,
we in Fig. 3 illustrate the PSNR comparison for a wide range
of QF values from 10 to 90. It can be seen that the proposed
method consistently outperforms these competitors for all QF
values.

In order to get statistical validation of the superior
performance of the proposed method, we further report
performance comparison over a large image set. We choose
80 images randomly from UCID dataset,” and exam the
average PSNR values of compared methods. As illustrated
in Fig. 4 and Fig. 5, the proposed method achieves the
highest average PSNR values when QF = 5 and QF = 80,
respectively. Furthermore, F-test is conducted in order to
demonstrate that our performance is statistically significant.
For QF = 5 and QF = 80, the p-value is 5.7129e-12 and
8.0875e-35 respectively, which are both close to zero, indicat-
ing that our superior performance is statistically convincing.

C. Subjective Performance Comparison

In addition to its superior performance in objective fidelity
metric, the dual transform-pixel domain restoration approach
also obtains better perceptual quality of the restored images.
The reader is invited to examine and compare the restored

2http://hornepages.lboro.ac.uk/~—cogs/datasets/ucid/ucid.html
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ACR (26.49)

PSW (27.09)

BM3D-SAPCA (27.40)

KSVD (27.48)

Fig. 7.

/
Ours (25.07, 0.8359) Ours (26.22, 0.7868)

Fig. 8.

JPEG images by different methods in Fig. 6-7. It can be
seen that the images reconstructed by the ACR algorithm
still have strong blocking artifact. In addition, the images
reproduced by PSW and BM3D-SAPCA suffer from highly
visible noises that accompany edges and textures. KSVD and
DicTV can suppress most of blocking artifacts; but there
are still noticeable artifacts along edges. This is because
patches are processed independently in KSVD and DicTV.
When similar patches admit very different estimates, due to
the potential instability of sparse decompositions, the quite
noticeable reconstruction artifacts appear. In contrast, our new
method is capable of restoring images with well-preserved

DicTV (27.22)

Proposed (28.04)

Comparison of tested methods in visual quality on Parrot at QF = 5. The corresponding PSNR values (in dB) are also shown.

TPEG (22.96, 0.7383)

A\

Ours (24.08, 0.7807)

Ours (29.41, 0.8532)

Restoration of compressed color images, where QF = 10 or 15. The corresponding PSNR (in dB) and SSIM values are also shown.

edges, textures, structures, and sharpness. Even in smooth
areas, our approach can still effectively eliminate the blocking
artifacts and suppress the staircase and ringing artifacts along
edges.

D. Restoration of Compressed Color Images

The proposed method can be easily extended to restore
compressed color images. When compressing color images,
JPEG first performs the YUV color transformation, and
then compresses the resulting Y, U and V channels sep-
arately. As the image signal energy is highly packed into
the luminance channel Y, the proposed dual-domain method
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TABLE III
COMPUTATION COMPLEXITY COMPARISON (IN SECOND) WHEN QF =5

Image || ACR | PSW | BM3D-SAPCA | KSVD | DicTV | D2SD
Butterfly || 1.11 | 2.82 278.7 335.67 29 101.56
Barbara || 0.73 | 2.81 273.7 138.31 | 21.59 | 100.46
Boat 0.71 | 2.78 269.4 11046 | 21.62 | 97.76
Leaves || 031 | 2.29 278.6 553.68 | 30.28 | 99.59
Bike 0.57 | 2.75 286.85 499.98 | 28.17 | 103.39
Flower || 0.71 | 2.54 265.12 13592 | 22.48 | 98.65
House 0.89 | 29 268.95 75.85 | 19.64 | 106.43
Hat 0.76 | 2.54 241 73.15 | 19.79 | 101.26
Parrot 09 | 2.87 268.1 154.43 | 21.42 | 108.29
’ Average H 0.74 ‘ 2.70 ‘ 270.04 ‘ 230.82‘ 23.78 ‘ 101.93 H

is applied only to Y. For chrominance channels U and V,
we only restore in DCT domain to speed up the process.
Fig. 8 shows that the proposed method effectively attenuates
the compression artifacts, faithfully preserving the structures
in the image.

E. Computational Time Comparison

Another issue needed to consider is the computational com-
plexity. Here we show the practical running time comparison
on nine 256 x 256 test images when QF = 5. The compared
methods are running on a typical laptop computer (Intel Core
i7 CPU 2.6GHz, 16G Memory, Winl0, Matlab R2014a).
As depicted in Table III, the complexity of our method
is lower than the state-of-the-art algorithms BM3D-SAPCA
and K-SVD.

VI. CONCLUSION

A novel data-driven sparsity-based approach is proposed for
the restoration of compressed images in the dual DCT-pixel
domain. The main technical contribution of this work is
the combined use of dual dictionaries learned respectively
using samples drawn from the hard-decoded input image
and samples drawn from uncompressed training images.
Experimental results demonstrate the efficacy of the proposed
restoration approach for compressed images. The reported
research findings reveal so-far under-utilized potential of
improving compressed images and videos via sophisticated
postprocessing after decompression. In the future work, we
will work on simplifying the proposed method to make it
more suitable for larger images, e.g., the popular HD images.
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