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ABSTRACT In this paper, we overview the recent work on entropy of primitive (EoP), including its concept,
design, extension, and mathematical analysis in evaluating the visual information of natural images. The
design philosophy of EoP is establishing an entropy model that quantifies the visual information based
on patch-level sparse representation, due to the close relationship between sparse representation and the
hierarchical cognitive process of human perception. Furthermore, based on the concept and definition of EoP,
we also demonstrate several applications, including just noticeable difference estimation and visual quality
assessment. The future research directions of visual information evaluation are also envisioned, where we
can perceive both promises and challenges.

INDEX TERMS Entropy of primitive, sparse representation, visual information, quality assessment, just
noticeable difference.

I. INTRODUCTION
The evaluation of visual information perceived by the human
visual system (HVS) is a fundamental issue that plays an
important role in understanding the visual world. In the field
of information theory [1], the entropy is an effective measure
that quantifies the amount of information missing before
reception. For natural images, a traditional way of the visual
information quantification is to calculate the entropy at pixel
level. For example, the histogram that characterizes the occur-
rence of each pixel in the image can be built for entropy cal-
culation. However, this may not reveal the visual information
perceived by HVS. It has been widely believed that natural
image signals are highly structured [2]: their pixels are not
independently distributed and exhibit strong dependencies
that carry important information about the structure of the
objects in the visual scene. As such, the hypothesis that the
visual information is perceived in terms of pixels is quite
questionable.

Sparse representation has been repeatedly proven to be
powerful in characterizing the visual signals based on the
sparsity and redundancy of their representations for many

visual processing tasks [3]. In [4], the properties of spatially
localized, oriented and bandpass properties of the primitives
in sparse representation are exhibited to be closely relevant
with the human visual system, especially the receptive fields
of simple cells. As such, constantly increasing applications
have been powered by sparse representation, and promising
performance in image quality assessment [5]–[15], image
denoising [16], image restoration [17]–[22] and image/video
coding [23]–[28] has been achieved. Despite the great success
of sparse representation, the visual information evaluation
based on patch-level sparse representation is an emerging
area.

To perform sparse representation, the typical K-SVD [29]
algorithm is a popular method in obtaining the over-
completed dictionary based on dictionary training. A series
of matching pursuit family algorithms have also been pre-
sented to achieve sparse representation [30]. Among them,
the orthogonal matching pursuit (OMP) [31] is one that works
in a greedy fashion. These powerful tools enable efficient
and effective visual signal representation for visual infor-
mation evaluation. Benefiting from the advantages of sparse

31750
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1205-8763


S. Tan et al.: Visual Information Evaluation With Entropy of Primitive

representation over the traditional pixel level representation,
the Entropy of Primitive (EoP) was proposed to characterize
the visual information in a more precise way. In this paper,
we investigate and summarize the design and concept of
EoP, explore its characteristics and possible extensions, and
demonstrate its further applications. The future extensions
of visual information evaluation, especially based on deep
learning, which has been demonstrated to be more powerful
in dealing with the rich, varied and directional information,
are discussed. In summary, the paper presents the following
contributions:

• We systematically analyze the concept and design phi-
losophy of EoP in an effort to provide an accessible
and intuitive overview of these approaches. In particular,
the sparse representation and dictionary learning, which
serve as the foundations of EoP, as well as the properties
of the EoP, are reviewed. The extension of EoP by
considering the coefficient energy and its convergency
analysis, are also discussed.

• The applications of EoP are introduced, including the
typical visual perception relevant tasks such as just
noticeable difference (JND) estimation and visual qual-
ity assessment. Possible applications of EoP that worth
further investigation are also discussed.

• We outline the main challenges and potential further
research directions of visual information evaluation
powered by the deep neural network, due to wide spec-
trum visual computing applications of deep learning that
can automatically extract meaningful features in a data
driven manner.

The rest of the paper is organized as follow. In Section 2,
we provide the review of EoP as well as its properties and
extensions. Section 3 introduces the applications of EoP.
Current challenges and future directions of visual informa-
tion evaluation are discussed in Section 4, and the paper is
concluded in Section 5.

II. ENTROPY OF PRIMITIVE
A. SPARSE REPRESENTATION
The Sparseland model serves as the foundation of the sparse
representation [3], and it assumes that natural visual signals
x(x ∈ Rn) can be well represented by a linear combination
over an over-complete dictionary, which can be written as
∀x, x ≈ 9α and ‖α‖0 � n. Here, 9(9 ∈ Rn×k ) is the
over-complete dictionary and the primitive is denoted as ψi.
α(α ∈ Rk ) is the representation vector corresponding to
the coefficients in sparse representation. The notation ‖•‖0
represents the `0 norm. Typically, we assume that k > n,
implying the dictionary 9 is redundant to x. To obtain the
over-complete dictionary, the K-SVD algorithm [29] is typ-
ically employed. In particular, two iterative calculations are
performed, including sparse coding and dictionary updating.
Given the training samples which are generated by partition-
ing the input image into patches x1, x2, . . . , xi, . . ., we can
obtain the dictionary that leads to the best representation of

FIGURE 1. The 256 primitives learned in terms of 8× 8 patches (Lena).

the image under the sparsity constraint, which is formulated
as follows,

(9, {αi}) = argmin
9,{αi}

∑
i
‖xi −9αi‖22, s.t.‖αi‖0 < L. (1)

Here, L controls the sparse level. A typical dictionary learned
from the Lena image is shown in Fig. 1.

Based on the trained dictionary 9 and the constrains on
accuracy and sparsity, sparse representation targets at obtain-
ing the coefficients αi that represents the visual signal, which
is given by,

αi = argmin
αi

‖xi −9αi‖22, s.t.‖αi‖0 < L. (2)

This can be solved by a number of approximation algorithms,
among which the OMP [31] is a popular one working in a
greedy way.

The sparse representation in terms of different values of
L is shown in Fig. 2, where L is used to specify a specific
iteration in OMP. It is clearly observed that the reconstruction
quality increases with the value of L. In particular, the image
reconstructed by the first layer (L = 1) represents the primary
information. With the increasing number of the primitives
used in the reconstruction, the artifacts such as blocking and
blur are removed and most of the structural information can
be preserved after L = 6. In essence, such observation
is in accordance with the mechanism of HVS. In partic-
ular, based on the Internal Generative Mechanism (IGM)
theory [32], [33], visual signal can be regarded by the com-
position of primary visual information and uncertainty. The
primary visual information can be accounted by the low-
level layers, and the uncertainty corresponds to the details
described by the high level layer.

In [34], it is observed that the matching pursuit schemes
such as OMP can decompose the image signal into multiple
layers, including primary, sketch and non-structural layers.
Interestingly, these layers are naturally ordered by perceptual
importance, as demonstrated in Fig. 3. As such, the most
significant structural information can be reconstructed by the
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FIGURE 2. Reconstructed Lena images with different number of primitives. (a) Original image. (b) L = 1. (c) L = 3. (d) L = 5. (e) L = 7. (f) L = 9. (g) L = 11.
(h) L = 13.

FIGURE 3. Hierarchical image representation based on different number of primitives [34].

first layer (L = 1), and the following layers reconstruct
the detailed information. With the primary and sketch layers,
almost all the perceptual information that is sensitive to HVS
is adequately represented.

B. ENTROPY OF PRIMITIVE
The design philosophy of EoP [34] is that the visual infor-
mation perceived in the natural scene shall be evaluated in
terms of the patch level representation instead of the pixel
level histogram. This originates from the fact that the natural
images obey the natural scene statistics [35] and appear to be

highly structured [2]. Moreover, due to the close relationship
between the patch level sparse representation and human
perception, the primitive is adopted as the basis in entropy
calculation. In particular, in the sparse representation process,
we assume that the total number of the ith primitive used from
the first iteration to the L th iteration is defined as N̄L,i. The
corresponding probability density functions (PDF) for the ith

primitive selected is given by,

p̄L,i =
N̄L,i∑k
i=1 N̄L,i

. (3)
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FIGURE 4. EoP and EEoP curves in terms of the number of iterations L. The original image is shown in the corner of each figure.

Based on the Shannon theory [1], the EoP at the L th iteration
can be defined as follows,

EoPL = −
∑k

i=1
p̄L,i log p̄L,i. (4)

As indicated in (4), the EoP is essentially defined based
on the iteration index L, indicating that at each iteration
of reconstruction, the visual information characterized by
EoP is variant. In particular, as the visual quality becomes
better along with the increase of the iteration index, it is
also interesting to see that the EoP increases monotonously
with L, as shown in Fig. 4. Another observation is that it
converges to a saturation point, which also corresponds to
the scenario that the visual quality is perceptually equiva-
lent to the original image as the visual information becomes
constant. As such, it is natural to apply the concept of EoP
in JND estimation and quality evaluation, as discussed in
Section III.

C. EXTENSION OF EOP
However, a major drawback of the EoP is that the coefficients
in sparse representation are not taken into consideration.
In particular, the PDF in EoP definition is only based on
the selected primitive, regardless of the coefficient energy.
To tackle this, an extension of EoP (EEoP) based on the `2
norm of the coefficients is proposed in [36]. First, a PDF

considering the coefficient energy can be defined as follows,

NL =
k∑
i=1

nL,i, (5)

pL,i =
nL,i
NL

, (6)

where nL,i denotes the `2 norm of the coefficients for the ith

primitive and the L th iteration. Then, the EEoP is defined as
follows,

EEoPL = −
∑k

i=1
pL,i log pL,i. (7)

In [36], the convergence of the EEoP is further verified.
In particular, it is proved that the PDFs of two neighboring
iterations become similar to each other as the number of
iterations increases, i.e., limL→∞ |pL+1,i − pL,i| = 0, which
can be split to the following two parts,

lim
L→∞

|pL+1,imin − pL,i| = 0, (8)

lim
L→∞

|pL+1,imax − pL,i| = 0, (9)

where pL+1,imin and pL+1,imax are the lower and upper bounds
of pL+1,i, respectively.
Some examples of the EEoP curves are shown in Fig. 4.

We can observe that the curves of EEoP are more stable and
robust compared to the original EoP curves. EoP is essentially
based on the statistical distribution of the number of nonzero
coefficients, i.e., the `0 norm, while the EEoP is essentially
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FIGURE 5. Images noised by different JND models including Yang et al.’s [37], Liu et al.’s [38], Wu et al.’s [39] and EoP based JNDs from left to right,
respectively.

based on the coefficient energy, i.e., the `2 norm. Therefore,
EoP could be rather sensitive to the values close to zero and it
simply ignores the coefficient amplitude. As such, a signifi-
cant primitive with large coefficient value and an insignificant
primitive with negligible value have the same impact on the
entropy calculation in EoP. EEoP addresses this issue by
taking the coefficient energy into account, thus achieving
a more stable and robust representation compared to EoP.
As such, EEoP is a meaningful extension of EoP, which
comprehensively reflects the sparse representation process
and the relationships between sparse representation andHVS.

III. APPLICATIONS OF EOP
While the fields of visual information evaluation and sparse
coding are still quickly evolving, it is interesting to discuss
how we could make use of EoP in real-world applications.
As a powerful tool in evaluating the visual information, EoP
has been successfully applied in the applications of JND esti-
mation and visual quality evaluation. In this section, the appli-
cations of EoP will be detailed to show how EoP can play
important roles in an even more extended field of scenarios.
It is also envisioned that in the future more applications of the
EoP or visual information evaluation methods may emerge,
especially for the perceptual visual compression which relies
on robust visual quality assessment algorithms.

A. JUST NOTICEABLE DIFFERENCE ESTIMATION
As the quality of the reconstructed image improves gradually
with the value of L, the visual quality will reach to the satura-
tion point such that further signal level fidelity improvement
cannot further improve the visual quality. As such, it is nat-
ural to exploit the characteristics of EoP in JND estimation.

In particular, given an original image X , the corresponding
reconstructed image X̃ can be obtained by sparse represen-
tation. As such, the JND profile can be estimated by the
difference between X and X̃ , which is given by,

JND(X ) ,
∣∣∣X̃ − X ∣∣∣ , (10)

where the notation |•| indicates the absolute operator.
To obtain the reconstruction image X̃ , we follow the com-

putation of EoP. In particular, the image X is used to train the
dictionary using the K-SVD algorithm. Then each patch is
decomposed into a linear combination of a few primitives by
the OMP approach. The threshold L̃ can be calculated based
on the definition of EoP,

L̃ = argmin
i
i, s.t.

EoPi − EoPi−1
maxj

(
EoPj

)
−minj

(
EoPj

) < ε, (11)

where ε determines the convergence condition. As such,
the reconstructed image X̃ can be reconstructing the image
with the first L̃ primitives, and the following primitives can
be discarded. Due to the concept of EoP, we regard the recon-
structed image X̃ as having equal quality with the original
image or perceptual lossless. In this manner, the JND map
can be obtained via (10).

In [34], the JND noised images are compared, as shown
in Fig. 5. Though they share approximately identical PSNR
value, it is interesting to see that the noise injected images
with the JND derived based on EoP and sparse representation
have better quality. Here, we also provide the JND maps to
better show their differences, as illustrated in Fig. 6. It is
also worth noting that all these JND maps contain exactly the
same noise energy, as identical quantity of errors are injected
into the original images. One can see that the EoP based
method can concentrate the noises on the regions that have
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FIGURE 6. Illustration of the JND maps including Yang et al.’s [37], Liu et al.’s [38], Wu et al.’s [39] and EoP based JND maps from left to right, respectively.

rich textures and details, and meanwhile keep the smooth
areas with minimal distortions, yielding better visual quality.
This further provides useful evidence that the JND profile
guided with EoP is more effective in shaping the noise.

B. VISUAL QUALITY EVALUATION
Recently, image quality assessment (IQA) has received
great interest due to its widely applications in monitor-
ing and optimizing the multimedia systems [40]. Advanced
full-reference (FR) [2], [32], [41], reduced-reference (RR)
[42]–[47] and no-reference (NR) [48]–[50] IQA mod-
els have been developed to access the visual quality
of natural images. Moreover, the IQA tasks have also
been extended in various ways, such as screen con-
tent [51], [52], contrast [53]–[55], 3D and synthesized
view [56]–[58], video streaming [59], [60] etc. Recently, var-
ious databases [61], [62] and evaluation methods [63] have
also been proposed for the validation of the IQA methods.

In view of the significant importance of IQA, EoP has
been adopted in IQA models in various ways. In particular,
EoP serves as the measure that globally quantifies the visual
information, such that the RR-IQA model can be built based
on it. More specifically, inspired by the IGM theory, the
RR-IQA model in [12] is derived based on the primary visual
information and uncertainty. The primary visual information
can be regarded as the information that can be understood
in the natural scene, and this is naturally consistent with the
concept of EoP. In [64], the uncertainty is represented as the
discrepancy between the input signal and the best interpreta-
tion with the auto-regression model. In the context of sparse
representation, by regarding sparse coding as the approxima-
tion of visual cognition process, the residuals between the
input signal and the reconstructed signal with sparse repre-
sentation can be treated as the uncertainty. As such, assuming
the reconstructed image after the sparse representation is X̃ ,
the uncertainty is defined as the entropy of the difference
signal between the original and reconstructed one,

FL(X ) = E(X − X̃L). (12)

Here, E denotes the entropy calculation and again L denotes
the iteration in the sparse representation process.

The RR-IQA model is finally defined as the combination
of primary information and uncertainty, which are both char-
acterized with sparse representation. In particular, with two
images X and Y , which correspond to the original image and

TABLE 1. Performance Comparisons of Visual Quality Prediction Based
on LIVE Image Dataset.

the distorted version, the quality measure is defined as

Q = EoPL(X ) · FL(X )− EoPL(Y ) · FL(Y ). (13)

As such, the features extracted from the original image X are
transmitted and comparedwith those of Y , such that one value
is required to be transmitted to the receiver side, which greatly
facilitates the application of the RR-IQA model. The exper-
imental results of the RR-IQA model are listed in Table 1,
where the RR-IQAmethods such as RRVIF [42], OSVP [43],
ROCB [44] and WNISM [45], and the FR-IQA metrics such
as PSNR and SSIM [2] are compared. The performance
is evaluated based on Pearson linear correlation coefficient
(PLCC), Spearman’s rank correlation coefficient (SRCC),
Kendall’s rank correlation coefficient (KRCC), Root mean-
squared error (RMSE) and mean absolute error (MAE). It is
observed that the RR-IQA model achieves promising perfor-
mance in terms of both prediction accuracy andmonotonicity.

In addition, the concept of EoP has also been extended in
various ways, such that they can be successfully applied in the
IQAmodel. In [13], the `1 norm instead of `0 norm is used in
the calculation of EoP, and it is interesting to observe that the
EoP curve with such modification is more consistent with the
perceptual quality measure SSIM [2]. As such, the perceptual
stereoscopic image quality assessment method is derived.
In [14], the visual primitives are classified into DCprimary,
sketch and texture, and the corresponding entropy of classi-
fied primitives (EoCP) are calculated. In this manner, the dif-
ferences of EoCP are used as the feature distance to charac-
terize the perceptual loss. In [15], the EoCP is also applied in
the stereoscopic IQA scheme, where the EoCP as well as the
mutual information of classified primitives (MIoCP) are used
in the quality prediction. In particular, the MIoCP is obtained
by the two-view images to indicate the binocular cue.
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As a natural extension of EoP, in the future EEoP may
also play important roles in visual perception tasks, especially
for the near-threshold JND profile estimation and supra-
threshold IQA algorithm development. Moreover, it is also
envisioned that more ways will be found with EoP and EEoP
to benefit various IQA tasks, such as 3D synthesized view,
contrast, as well as other relevant IQA topics.

IV. OUTLOOK
It is apparent that the sparse representation based visual
information evaluation possesses many favorable properties.
However, as one of the first attempt in this research topic,
although it has demonstrated promising performance in var-
ious visual computing tasks, accurate and efficient visual
information quantification is still in its infancy stage. While
artificial intelligence is still quickly evolving, deep neural
network has been shown to be advanced methods in learning
discriminative prior models for natural images [65]. As such,
it is natural to investigate the visual information evaluation
in the context of deep neural network, which has also been
verified to be highly correlated with the cognitive process of
the human visual system [66], [67].

In particular, powered by the deep neural network, the cur-
rent approach can be improved from the following perspec-
tives. Firstly, the deep features instead of the primitives are
extracted for visual information evaluation, which provide
a more intuitive way in combining the psychological pro-
cess in the HVS and visual information processing. Sec-
ondly, with the flexible representation of the deep neural
networks, instead of the primitives, the features which corre-
spond to the coefficients in sparse representation, are used in
visual information evaluation. As such, the extracted infor-
mation are more meaningful, leading to more robust eval-
uation of visual entropy. Finally, the deep neural network
enables adaptive perceptual scale in computing the visual
entropy, such that the perceived information can be adaptively
computed with the dynamic viewing conditions and image
content. However, one important issue of deep learning is
that there does not exist a generic deep model that is per-
fectly designed and trained. As such, the accuracy of visual
information evaluation may get improved gradually with the
evolution of deep learning methods. This poses new chal-
lenges to visual research and opens up new space for future
exploration.

Another meaningful research topic is to systematically
develop the evaluation framework for validating the visual
information prediction methods. In contrast with other visual
computing tasks, it is difficult to obtain the ground-truth of
the visual information. Therefore, a widely accepted evalua-
tion protocol is necessary in this scenario. Moreover, regard-
ing the application of EoP, most of the efforts focus on the
perceptual visual quality assessment, and much less work has
been dedicated to the visual analysis tasks. In the future, how
the visual information evaluation could benefit the high level
visual analysis should also be further investigated.

V. CONCLUSION
In this paper, we review recent findings on visual information
evaluation based on sparse representation, and bridge the rela-
tionship between visual information and primitive represen-
tation with the concept of EoP. More specifically, the design
philosophy of EoP is discussed, and the distinct properties of
EoP are analyzed. It has also been demonstrated that the EoP
can be successfully applied in awide spectrum of applications
such as visual quality evaluation and JND estimation. In
the future, it is expected that the intelligence-oriented visual
information evaluation can play more important roles in the
visual processing and communication, and impact the new
development of future visual-related technologies.
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