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Abstract—Inspired by the recent image quality assessment
(IQA) studies which indicate that the image gradient data reflects
the visual information more reliably than the image pixels,
gradient based transmission scheme was recently proposed to
pursue better perceptual quality for wireless visual communi-
cation. This paper develops an effective method to reconstruct
high quality image from the received noisy gradient data. The
proposed method utilizes both local correlation and non-local
similarity within the image signal to regularize the reconstruction
image. Principle component analysis (PCA) is employed to learn
signal-adaptive two-dimensional (2D) transform basis, and 3D
transform is performed on grouped similar patches to further
decorrelate the coefficients. In this way, distortions can be
effectively suppressed via adaptive collaborative shrinkage on
the transform coefficients. Experimental results demonstrate that
the proposed method improves the reconstruction performance
remarkably compared with the existing schemes.

Index Terms—Gradient-based image transmission, local corre-
lation, nonlocal similarity, grouped similar patches, collaborative
shrinkage

I. INTRODUCTION

Most image communication and reconstruction schemes use
mean square error (MSE) as the fidelity measurement when
transmitting pixel values or DCT coefficients. Nevertheless,
MSE of pixel values may not coincide with the visual quality
perceived by human eyes. Recent researches on image quality
assessment reveal that gradient similarity is highly correlated
with perceptual image quality. Inspired by such observations,
[1] proposed to convey the visual information by delivering
gradient data with minimum distortion in order to achieve
better perceptual reconstruction quality.

Although [1] has shown evident visual improvement over
the compared anchor schemes, it merely uses a rather simple
image prior model to suppress the influence of noise. Bayesian
framework tells us that, as a way to depict the characteristic of
the original image, the image priors play a significant role in
image reconstruction. Widely used image priors include sparse
representation in different domains, such as DCT domain [2]
and Wavelet domain [3], or on a trained dictionary [4]. The
transform or dictionary de-correlates the signals, concentrating
the energy on a few coefficients. However, the use of fixed
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transform basis like DCT and wavelet ignores the fact that
image signals are not stationary. Structural patterns in an
image can be quite different, making it impossible to represent
the whole image efficiently with a fixed basis. The principal
component analysis (PCA) can be utilized to tackle this
problem [5], which computes signal-adaptive basis in order
to get the sparsest representation of image.

In order to achieve better reconstruction performance than
[1], this paper takes advantage of both local correlation
and nonlocal similarity. We adopt the total variation (TV)
regularization to utilize local correlation, and perform three-
dimensional PCA as well as collaborative shrinkage to make
use of nonlocal similarity. Taken together, the TV regulariza-
tion attempts to smooth out noise, while the usage of nonlocal
similarity can preserve the finest details when suppressing
distortions, so the cooperation of these two terms in our
scheme may achieve excellent reconstruction performance.

The remainder of this paper is organized as follows. Section
II briefly reviews the G-Cast scheme. Section III describes
the proposed reconstruction framework for G-Cast and Section
IV explains the numerical solution. Experimental results are
reported in Section V and Section VI concludes the paper.

II. GRADIENT BASED IMAGE SOFTCAST

Based on recent researches showing that image gradients
contain large amount of visual information, G-Cast advocates
to transmit an image over wireless channel by delivering
gradient data. At G-Cast sender, image gradients are gener-
ated by gradient transform (GT), and processed by Walsh-
Hadamard transform (WHT) to reduce peak-to-mean ratio. Just
as SoftCast [6], [7], the WHT transformed data are modulated
into a dense constellation for raw OFDM transmission. In
addition, a few low frequency components are also provided
so as to tell the global and regional luminance of the image.
For this purpose, the image is transformed into frequency
domain and a small amount of data are extracted by low pass
selection (LPS). These low frequency components are encoded
into bitstream using variable length coding (VLC), then sent
to OFDM module for transmission using FEC codes (for error
protection) and quadrature amplitude modulation (QAM).

The transmission process is usually influenced by interfer-
ences in the air, which is modeled by additive Gaussian white
noise. At the receiver side, it is the gradient values rather
than pixel intensities that the G-Cast scheme reproduces for
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image reconstruction. The decoder first retrieves the gradients
from the noisy OFDM signal by demodulation and inverse
WHT transform, then creates an estimation of the image via
a gradient based reconstruction (GBR) procedure using these
gradients as well as the several low frequency components.
The illustration of G-Cast transmission scheme is shown in
Fig. 1. Please refer to [1] for further details.
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Fig. 1. Illustration of G-Cast Transmission Scheme

III. IMAGE PRIOR FOR G-CAST RECONSTRUCTION

The image reconstruction scheme in [1] did not consider
advanced methods to further improve the performance. Bayes
rule tells us that, in order to achieve better reconstruction
efficiency, a good prior model is indispensable. Obviously,
the reconstructed image should share with natural images
the characteristics of nonlocal similarity, which reflects the
repetitiveness of the structural patterns in an image. The usage
of nonlocal similarity in this paper is two-fold: finding data
samples for principle component analysis (PCA), and three-
dimensional (3D) collaborative shrinkage in transform domain.

Suppose pi is a k× k patch treated as a column vector, its
M most similar patches p1

i ,p
2
i , . . .p

M
i can be searched out

by block matching. Let matrix Pi = [p1
i ,p

2
i , . . .p

M
i ]. We can

estimate pi, the expectation of pi, by averaging every row of
Pi. Then the centralized version of Pi is P̃i = [p1

i −pi,p
2
i −

pi, . . .p
M
i − pi]. The covariance matrix of P̃i is symmetric

and can be written as Cov(P̃i) = ΦiΛiΦ
T
i , where Φi is the

orthonormal eigenvector matrix and Λi is the sorted diagonal
eigenvalue matrix. Denote by Ψi = ΦT

i , then Ψi is the desired
transform to fully de-correlate the signal pi.

To thoroughly decorrelate the coefficients in transform do-
main, we adopt a collaborative filtering approach, which is
similar with BM3D [8]. For the current patch pi, we stack its
M similar patches into a group, perform PCA patch-wise, i.e.,
multiply each patch by Ψi, then perform 1D DCT along the
third dimension. Denote the resulted coefficient block by Zi.

We model the distribution of each coefficient by a sep-
arate zero-mean Laplacian distribution. Use a block Ti of
the same size as Zi to store the standard deviation values
of these coefficients. These standard deviation values are
estimated from the transform coefficients of the pilot image
u′. Specifically speaking, the same collaborative transform
is carried out within u′ and results in a coefficient block

Z′i, in which each coefficient is treated as the sample of the
corresponding coefficient in Zi. Since only one sample for
each coefficient is available, we may just use the absolute value
of the corresponding coefficient in Z′i as the rough estimation
of standard deviation, i.e. set Ti = |Z′i|. Denote the prior by

φ(u) =
∑
i

∥∥∥∥∥
√

2

Ti
Zui

∥∥∥∥∥
1

. (1)

IV. NUMERICAL ALGORITHM FOR G-CAST
RECONSTRUCTION

Let Dv and Dh be the vertical and horizontal finite differ-
ence operators, hence Dvu and Dhu are are respectively the
vertical gradient picture and horizontal gradient picture. Let
m = E ◦ F(u) be the low-frequency coefficients of u, F is
two-dimensional discrete Fourier transform, E represents the
matrix to extract the M ×M block at the top left corner from
a matrix of the same size, and ”◦” denotes component-wise
multiplication. Assume that the received gradient data dv and
dh are polluted by Gaussian white noise:

dv = Dvu + nv, dh = Dhu + nh, (2)

Write D = [Dv;Dh], d = [dv;dh] and n = [nv;nh] for
simplicity.

Based on TV regularization and the image prior (1), the
MAP estimate of the reconstructed image is formulated as:

min
u

µ

2
‖Du− d‖22+

√
2

σ∆

∑
i

‖Diu‖+φ(u) s.t. E◦F(u) = m,

(3)
where σ2

n is the variation of noise and σ∆ is the standard
deviation of the gradient data. Resorting to variable splitting
technique [9], [10] to change (3) into a constrained problem:

min
u

µ

2
‖w − d‖22 +

√
2

σ∆

∑
i

‖wi‖+ φ(x)

s.t. E ◦ F(u) = u,w = Du,x = u. (4)

The corresponding augmented Lagrange function reads

LA(u,w,x) =
1

2σ2
n

‖w − d‖22

+

√
2

σ∆
‖w‖+

β

2
‖w −Dhu‖22 − λT(w −Du)

+ φ(x) +
τ

2
‖x− u‖22 − δT(x−Du)

+
γ

2
‖E ◦ F(u)−m‖22 − ρT(E ◦ F(u)−m). (5)

where β, τ and γ are regularization parameters, λ, δ and ρ
are Lagrange multipliers.

Then alternating direction technique [11], [12] can be used
to decompose (5) into three sub-problems so as to conquer
each of them efficiently.
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A. x-problem

With u and w fixed, the optimization problem associated
with x can be written as:

LA(x) = φ(x) +
τ

2
‖x− u− δ

τ
‖22. (6)

Let r = u+ δ
τ , which can be regarded as a noisy observation of

x. Suppose N is the size of image, K is the total number of the
groups generated by block matching over the whole image, and
i is the group index. Assume that elements of u− r conform
to an i.i.d zero-mean distribution, and that every pixel appears
in the groups equally frequently, then it can be inferred that

‖u− v‖22 = θ
K∑
i

‖Zui − Zvi ‖
2
2 , θ =

N

k2 ×M
. (7)

Then taking (1) into account, (6) is equivalent to

LA(Zx) =
K∑
i

(∥∥∥∥∥
√

2

Ti
Zxi

∥∥∥∥∥
1

+
θ · τ

2
‖Zxi − Zri ‖22

)
. (8)

The solution is a component-wise shrinkage operation:

Zxi = max(|Zri | −
√

2

θ · τ ·Ti
, 0) · sgn(Zri ). (9)

Then x can be obtained by taking inverse transform for every
Zxi , putting back the patches and performing weighted average.

B. w-problem

With u and x fixed, the w-problem is simplified as:

LA(w) =

√
2

σ∆i

‖w‖+
β + η

2
‖w − w̃‖22, (10)

with η = 1
σ2
n

, w̃ =
β(Du+λ

β )+ηd

β+η . The solution is also a simple
component-wise shrinkage operation:

w=max

(
|w̃|−

√
2

(θ+η)·σ∆
, 0

)
·sgn(|w̃|−

√
2

(θ+η)·σ∆
). (11)

C. u-problem

Fixing x and w, the u-problem becomes:

LA(u) =
γ

2
‖E ◦ F(u)− (m +

ρ

γ
)‖22

+
β

2
‖Du− (w − λ

β
)‖22 +

τ

2
‖u− (x− δ

τ
)‖22 (12)

Considering that D can be seen as a convolution operator
while m happens to be a block of Fourier coefficients, the
least square problem can be efficiently solved in the Fourier
transform domain:

u=F−1

(
F∗(D)◦F(w−λβ )+ τ

βF
∗(I)◦F(x−δτ )+ γ

β (m+ρ
γ )

F∗(D) ◦ F(D) + τ
βF∗(I) ◦ F(I) + γ

β · E

)
,

(13)

here ”∗” denotes complex conjugacy, I is the identity matrix.
Both the multiplication and the division are component-wise.

V. EXPERIMENTAL RESULTS

This section presents the experimental results to evaluate the
performance of the proposed G-Cast reconstruction scheme.
As a reconstruction approach for wireless visual communica-
tion scheme, it should be tested under a wide CSNR range,
which is not feasible for standard coding methods, so we use
SoftCast [6] and TV based G-Cast [1] as the anchor schemes.
To make the comparison fair, the transmission in SoftCast is
performed twice (and averaged at the receiver side) so that
they send the same amount of data as G-Cast does.

In the implementation, patch size is set to be 8× 8 and the
number of similar patches M is set to be 50. We set m = 8,
i.e. the base layer of G-Cast remains 8 × 8 low-frequency
coefficients. The three schemes are tested by 15 images.
Besides the widely used metrics SSIM and PSNR, we also
measure the signal fidelity in gradient domain by gradient SNR
(GSNR). Since G-Cast is designed for perception oriented
visual communication, we put more emphasis on SSIM and
GSNR.

As can be seen from Table I, in terms of SSIM and GSNR,
the proposed scheme outperforms TV based G-Cast substan-
tially, and TV based G-Cast is much better than SoftCast.
The average performance of the 15 tested images exhibits
similar results, for example, when CSNR = 0dB, the GSNR of
our proposed scheme is 1.52dB higher than TV based G-Cast
and 3.59dB higher than SoftCast; the SSIM of the proposed
method is 0.04 higher than TV based G-Cast and 0.13 higher
than SoftCast. In terms of PSNR, the proposed scheme also
has evident gain over TV based G-Cast, and is superior to
SoftCast in many cases but inferior in others, which is not
strange because G-Cast is not optimized w.r.t MSE.

Furthermore, portions of two reconstructed images are
shown in Fig. 2. The proposed scheme has remarkable im-
provement over the other two schemes with respect to visual
quality. Other experimental results show similar observations
and are not displayed here due to lack of space.

VI. CONCLUSION

This paper presents an effective image reconstruction
scheme for gradient based image transmission. Exploiting
the local and nonlocal correlation in images, we stack the
similar patches into a group, and perform PCA transform
in spatial domain as well as a transform along the third
dimension so as to get a sparser representation. Then perform
adaptive shrinkage to the transform coefficients. The intensity
of shrinkage is determined by the energy of each coefficient.
After estimate of each patch is generated by inverse transform,
we can get the reconstructed image by putting back all the
patches and averaging overlaps. Experimental results show that
the proposed method outperforms SoftCast and TV based G-
Cast dramatically in terms of both objective and visual quality.
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