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ABSTRACT

Changes in the viewing angles pose a major challenge for
gait recognition because the human gait silhouettes can be
different under the various viewing angles. Recently, View
Transformation Model (VITM) was proposed to tackle this
problem by transforming gait features from across views to
a common viewing angle. However, VTM must use the da-
ta of subjects crossing all views to train the pre-constructed
model, which might be unsuitable for the real applications.
To address this problem, this paper proposes a View Feature
Recovering Model (VFRM) to generate the VTM with incom-
plete training data. In our algorithm, if the gait signature of a
pedestrian is missing under a view, it can be recovered from
the K-nearest pedestrians whose gait features are available in
the same view. Moreover, the Geodesic distance based K-
Nearest Neighbor (GKNN) algorithm is adopted in our algo-
rithm to better measure the neighborhood between two pedes-
trians. Experimental results on a benchmark database has
demonstrated the effectiveness of our method.

Index Terms— Gait recognition, View Transformation
Model (VTM), View Feature Recovering Model (VFRM),
Geodesic distance based K-Nearest Neighbor (GKNN), In-
complete data

1. INTRODUCTION

Human gait is one of the well-recognized biometric features
for surveillance systems to ascertain the identity of a human at
a distance from a camera. In practical visual surveillance sce-
narios, various factors can affect human gait, including vari-
ations of view, walking speed, carrying an object and even
wearing different types of shoes [1]. Among them, changes
in the viewing angles pose a major challenge for gait recogni-
tion. This is because the available visual gait features change
a lot under different viewing angles. Moreover, the view un-
der which the gait signatures database is generated may not
be the same as the one when the probe data is obtained.
Basically, existing works on multi-view gait recognition
can roughly be divided into three categories: 1) performing

This work is partially supported by grants from the National Natural Sci-
ence Foundation of China under contract No. 61035001 and No. 61390515.

gait recognition under calibrated multi-camera system with
view synthesis using 3D structure information; 2) extracting
gait features that are invariant to view change; 3) projecting
gait feature from one view to the other with view transforma-
tion. In the view synthesis based approaches, Shakhnarovich
et al. [2] developed a view-normalization method for multi-
view face and gait recognition. They utilized a set of monoc-
ular views to construct image-based visual hull (IBVH), from
which to render virtual views for gait recognition. Zhao et
al. [3] set up a human 3D model from video sequences cap-
tured by multiple cameras. They used the motion trajecto-
ries of lower limbs as dynamic features and exploited linear
time normalization for matching and recognition. Ariyanto
et al. [4] employed articulated cylinders with 3D Degrees of
Freedom (DoF) at each joint to model the human lower legs.
With gait structural and dynamics 3D features being extract-
ed, a model-fitting algorithm was applied for gait recognition.
Overall, these approaches often require a fully controlled and
cooperative multi-camera system for reconstructing 3D gait
model. Moreover, they are not applicable for real-time sys-
tems due to the high computation cost.

In the view-invariant features based approaches, Kale et
al. [5] concluded that if a person was far enough from the
camera, it was possible to generate a side view from any ar-
bitrary view using a single camera. Thus they proposed a
perspective projection model and flow-based structure from
motion for gait recognition. Jean et al. [6] introduced an ap-
proach to compute and evaluate view-normalized trajectories
of body parts from monocular video sequences. Extracting
2D trajectories of both feet and head as view-invariant gait
features, the walking trajectory was segmented into piecewise
linear segments. Goffredo et al. [7] utilized the angular mea-
surements and trunk spatial displacement derived from the es-
timated lower limbs’ poses as a view-invariant gait feature
for viewpoint-independent gait biometrics. Kusakunniran et
al. [8] proposed a method to normalize gaits from arbitrary
views in the input layer (i.e., on gait silhouettes). The cor-
responding domain transformation obtained through invari-
ant low-rank textures (TILTs) was adopted to transform se-
quences of gait silhouettes onto the common canonical view.
Then, procrustes shape analysis (PSA) was applied on a se-
quence of the normalized gait silhouettes to extract a view-



invariant gait feature with procrustes mean shape (PMS) and
consecutively measure a gait similarity with procrustes dis-
tance (PD). Obviously, these methods work well only for a
limited range of viewing angles. When two views differ a lot,
their performance would be remarkably dropped.

In the view transformation based approaches, View Trans-
formation Model (VTM) transformed gait features from d-
ifferent views into the same view. To construct the VTM,
a training matrix was needed, in which each row contains
gait features from the same view but different subjects, and
each column contains gait features from the same subjec-
t but different views. Then, the matrix was decomposed in-
to a view-independent matrix and a subject-independent ma-
trix using singular value decomposition (SVD). The subject-
independent matrix was used to construct the VTM. Maki-
hara et al. [9] first introduced the VTM with gait features in
the Frequency Domain. Then, Kusakunniran et al. [10] ap-
plied the truncated SVD (TSVD) to create the VITM and u-
tilized Linear Discriminant Analysis (LDA) to optimize Gait
Energy Image (GEI) as gait features. It had been proved that
this method could improve the performance of the method
in [9]. Later in [11], they re-formulated this problem as a
regression problem. Support Vectort Regression (SVR) was
proposed to create the VIM and local motion relationship
was used to seek local Region of Interest (ROI) for predicting
the corresponding motion information under different views.
Zheng et al. [12] introduced a robust VITM via robust Princi-
pal Component Analysis (robust PCA). Gait feature was ex-
tracted by adopting the feature selection method with Partial
Least Square (PLS) on the original GEI. As such, the roubst
VTM was constructed while the view transformation projec-
tion and feature selection functions were learned. Overall, the
view transformation based approaches can overcome the de-
fects in the other two categories. However, they still have a
limitation that they must use the data of pedestrians crossing
all views to train the pre-constructed model, which might be
unsuitable for the real applications.

To address this problem, we propose a View Feature Re-
covering Model (VFRM) for multi-view gait recognition with
incomplete training data. In our method, if the gait signature
of a pedestrian is missing under a view, it can be recovered
from the neighborhood pedestrians whose gait features are
available in the same view. This frees us from the need for
gait features crossing all views in the processing of construct-
ing VIM. Moreover, the Geodesic distance based K-Nearest
Neighbor (GKNN) algorithm is adopted to obtain the better
measured neighborhood between two pedestrians.

Experiments are conducted on the well-known benchmark
database, the CASIA gait database B [13]. To evaluate the
performance of the proposed VFRM, 10, 30 and 50 percent
of the training data is randomly removed. The experimental
results shows that with these incomplete data, our method can
achieve the comparable or slightly lower performance with
the VTM-based solution that is trained with complete data.
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Fig. 1. Overview framework of VTM based Gait Recognition.

The rest of this paper is organized as follows. Section 2
describes the VTM-based solution, including the GEI extrac-
tion, VIM construction and gait similarity measurement. The
proposed VFRM model and the GKNN algorithm are present-
ed in Section 3. Experimental results are shown in Section 4
and the conclusion is drawn in Section 5.

2. VIM BASED GAIT RECOGNITION

The overview framework of VTM-based gait recognition is
illustrated in Fig. 1. After gait features being extracted, the
viewing angles of gallery gait data and probe gait data are
transformed into the same direction with the generated VTM.
Thus, gait signatures can be measured without difficulties.

2.1. Gait feature extraction

The first step for gait feature extraction is gait period estima-
tion. We adopt the method in [10], which uses the the aspect
ratio of silhouette bounding box to estimate the walking peri-
od. Consecutively, the well-known GEI [14], which has been
reported as a good feature robust to silhouette errors and im-
age noise, is extracted as the original gait feature. GEI is
defined as:

Q
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where each S, ¢ (z,y) is a particular pixel located at posi-
tion (z,y) of t (¢t =1,2,...T) walking silhouette image
from ¢, (¢ = 1,2,...Q) gait cycle in a gait sequence. All
silhouettes S, ; are rescaled along both horizontal direction
and vertical direction to a fixed width (1) and height (H)
respectively. 7' is the number of frames in gait cycle. S is
a silhouette image at frame ¢.  and y are the image coordi-
nates. The original extracted GEI feature representation is a
1-D vector, whose size is W x H. Linear Discriminant Anal-
ysis (LDA) is applied on GEI to acquire an optimized version
of the feature. The dimension of the gait features is reduced
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Fig. 2. GEIs of a same subject under different views.

to N,. The extracted gait features for a subject in different
viewing angles are shown in Fig. 2.

2.2. View transformation model construction

A gait matrix is created to construct VIM. Each row of the
matrix contains gait features from same view but from the
different subjects. Each column contains gait features from
same subject but under the different views. There are total
N viewing angles and M subjects for constructing VIM. g;*
denotes the gait feature of subject m under ny;, viewing angle.
The factorization process by TSVD is as below:
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where U is the NNy x r orthogonal matrix. V is the r x r
orthogonal matrix. S is the 7 X r diagonal matrix contains the
first 7 (r < m) largest singular values. P = [P, ..., Px|T =
US where P is the Ny X r sub-matrix of US. v™ is the
r dimensional column vector. According to [10], the opti-
mization of TSVD over regular SVD algorithm is that TSVD
avoids over fitting problem by removing the less important
elements from the transformation model.

The vector v™ is an intrinsic view-independent gait fea-
ture of the my;, subject. P, is the subject-independent matrix
which can project intrinsic gait feature vector v to the gait
feature vector under specific viewing angle n. Thus, given
the gait feature vector g}” from the myj, subject under the j;p
viewing angle, the feature vector under the ¢;;, viewing angle
is easily obtained as:

g = PPt g (3)

where Pj+ is the pseudo inverse matrix of P;.

2.3. Gait Similarity Measurement

With the generated VTM, gait features of gallery data and
probe data from across views have been normalized into the
same view. Thus, gait signatures can be measured using the
simple L1-norm distance:

d(gi»95) = llgi — gl “)

where d(g;, g;) is a distance between gait signatures g; and
g;. The smaller value of d(g;, g;) means the larger similarity
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between two gait signatures. The similarity of the two gait
feature sequences is defined as:

D(QP:QG) = Mediani Hl]ln {d(ngng)} (5)

where D(Qp,Q¢) is the a distance between gait signature
sequences in probe and gallery data.

3. VFRM BASED GAIT RECOGNITION WITH
INCOMPLETE TRAINING DATA

In real environment, it is hard to obtain the gait features of
a pedestrian crossing all viewing angles. In this section, we
introduce the View Feature Recovering Model to recover the
training matrix for VIM with incomplete training data.

3.1. Geodesic distances based K-nearest-neighbor

Assuming that when the gait feature of a subject has not been
extracted under one view, at least one other subject’s is avail-
able under the same view. The proposed VFRM recovered
the missing data with the average of the k-nearest-neighbor
subjects’ gait features:

1 K k
gz:?k—lgt’
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where g{ denotes the missing gait feature of subject i un-
der ty, viewing angle. { g/} represents the k-nearest subjects’
gait feature under the same view. D(M;, M;) is the distance
between subject 7 and j, which will be addressed in the fol-
lowing subsection.

The rule under which the VFRM computes the average
could also be replaced as “weighted average”. That is,

} (7

where w,, denotes the weight of the k;, subject’s gait feature.
ws, 1is defined as:

gi = D Ws, 9r,
k=1
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K
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In this paper, we just apply the normal average in Formula. 6.

3.2. Pedestrians neighborhood measurement

The key problem is how to measure the neighborhood be-
tween two subjects. Firstly, we utilize Dijkstra’s algorithm to



1. Compute the Euclidean distance matrix.
Put all features available in a vector:
G={{g]g: #0,ieV} {gilg#0,jeV}}
Assume the size of vector is Ng. Compute the
Euclidean distance matrix between any two features in
G;
for ry =1;71 < Ng;r1 + + do

fOI”I‘Q =7 +1;7‘2 < Ng;T'Q + + do

de (r1,r2) = /(G (r1) - G (r2))*:

end
end
2. Compute neighborhood graph A.
Initialize N = 0;
for ry = 1;7ry < Ng;r1 + + do
forro =7r1 + 1;79 < Ng;7r2 + + do
if 7o is one of the K j-nearest points of r1 then
set A (r1,72) connected;
dg (r1,72) = de (11,72);

end

else

dg (11,72) = 003
N+ +;

end
end

end
3. Approximate geodesic distances with the shortest
path in graph A.
forn =0;n < N;n+ + do

dg (1”17 TQ) =

min {d, (r1,72),dg (11, k) +dg (k,72)};
end
Finally D, = {d, (11, 72)} will contain the shortest
path distances between all pairs of points in A, which
outputs the desired geodesic distances matrix.

Algorithm 1: Geodesic distances computing algorithm

approximate the geodesic distances between any two gait fea-
tures from different subjects. The reason why we use geodesic
distances rather than Euclidean distances is that, when the two
gait features are extracted from different views, it’s more rea-
sonable to consider the data distributed in a high dimensional
manifold space. The geodesic distances measurement method
is similar to steps in [15], which is described in Algorithm 1.

After achieving the geodesic distances between any two
gait features from different subjects, the desired distance of
subjects is extracted by weighted averaging the distances of
features:

1% 1%
D(M;, My) =Y "> wpn,d(gh,. ), gh, # 0,95, #0

n7¢:l ;4 =1
€))
We also introduce a novel method to assign the weights
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of the distances between the features. As illustrated in Fig. 2,
the gait features from the same view contains same gait in-
formation, as well as the mirror view (e.g. the mirror view of
54°is view 126°). The more two views differ, the less com-
mon their features have in. So, with rules: 1) the distance
of gait features from the same view gets heavier weight, as
well as the mirror view; 2) the bigger difference between two
viewing angles, or between one and the other’s mirror angle,
the lighter weight is assigned to the distance:

dwnn, = % —min{|n; —n;|,|N —n; +1—nj|}
(10)
where dwnmj represents the “distance” between two views.
N is the number of viewing angles. The distances are drawn
in Fig. 3, in which the deeper blue means a bigger value of
dwn,;n,. The weight of distances between gait features is de-

fined as:
dwn i TL]'

N N
Z Z dwnmj

ni=1ln;=1

(1)

wninj =

4. EXPERIMENTS

Dataset— The CASIA gait database B [13] is used in our ex-
periments. The dataset consists 124 subjects from 11 viewing
angles (0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°,
and 180°). There are 10 walking sequences consisting of 6
normal walking sequences, 2 carrying-bag sequences and 2
wearing-coat sequences for each subject from each view. 6
walking sequences from 9 views from 18°to 162°are used
in our experiments. Because the approximate frontal views
0°and 180°provide gait information which is too differen-
t from the canonical view. 24 subjects in the dataset are used
to train VIM. The rest of 100 subjects are used for multi-
view gait recognition. Specifically, the 6 walking sequences
of each subject are separated into probe and gallery group,



which contains 4 and the last 2 walking sequences respective-
ly. Gait recognition rate is employed to evaluate the correct
matching numbers gait feature vectors in the gallery dataset
with probe data.

Multi-View Gait Recognition with Incomplete Training
Data- To evaluate the performance of the proposed VFRM,
we randomly remove 10, 30 and 50 percent of the data for
training VIM in three experiments, respectively. VFRM in-
troduced in Section 3 is subsequently applied to recover the
data. The recovered matrix with 70% training data is drawn in
Fig. 4, which contains unambiguous gait features from differ-
ent subjects crossing all views. Fig. 5 illustrates the first rank
multi-view gait recognition by using gait recognition method
described in Section 2. Each bar chart is computed by trans-
forming probe gait data to a feature set under viewing angle
that matches one of the views in gallery gait data. Then, L1-
norm distance is employed to measure the similarity. It can
be seen from Fig. 5 that, with 10% or 30% data missing, our
method achieve the comparable performance with the VITM-
based solution that is trained with complete data. Occasion-
ally, the proposed methods even outperforms the recognition
with complete data. This is because the VFRM replaced the
imperfect gait features, which are extracted from a set of frag-
mentary walking silhouettes, with better features containing
more gait information. While, when 50% data is unavailable,
the raise of redundant information resulting in slightly lower
performance with the proposed method.

VFRM with Different Distance Measurements— VFRM us-
ing Euclidean distance based KNN rather than GKNN is also
tested in our experiments. The recovering error rate is defined
as:

vV M
> X g =gl
=t (12)
2 2 gl

where ¢’}" and g™ are the recovered gait feature and original
gait feature respectively. r is the recovering error rate with
the corresponding distance measurement method. The small-
er value of r means the larger similarity between the recov-
ered data with the original data, and the better performance of
the corresponding method. Results of two different distance
measurement methods are shown in Table 1. As exhibited
in Table 1, the proposed GKNN approach outperforms than
KNN. Since the geodesic distances helps to provide a more
accurate description about the distance between gait features
from different viewing angles, it is not surprise that it per-
forms better. While, results of the two methods haven’s made
a big difference when a small percent of data is missing. Be-
sides, the Euclidean distance based KNN has advantages in-
cluding fast processing and small data storage than GKNN.
Thus, the Euclidean distance based KNN is also an alternative
choice for VFRM when there is not too much data missing.

Table 1. Recovering error rate with different methods
Data Percent 10 30 50

GKNN 0.026 | 0.074 | 0.098

KNN 0.025 | 0.077 | 0.111
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Fig. 4. Gait feature matrix recovered by VFRM with 70%

training data. Subgraphs with black background are the avail-

able GEIs; ones with blue background are the recovered GEISs.
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5. CONCLUSIONS

In this paper, we present a novel View Feature Recovering
Model for multi-view gait recognition with incomplete train-
ing data. VFRM outputs the matrix containing gait features
of subjects crossing all views to construct VTM. With VT-
M transforming gait signatures under various views into a
common view, the similarity is measured easily. The pro-
posed approach has been testified on a large multiple views
gait database. It is shown to be an efficient method for multi-
view gait recognition with incomplete training data. In the
future, we plan to verify the proposed method in a more dif-
ficult dataset such as the HumanID Gait Challenge Problem
Datasets [1] and seek a new data recovery scheme to further
improve the performance.
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