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Abstract

Gaussian random matrix (GRM) has been widely used to generate linear measurements
in compressive sensing (CS) of natural images. However, in practice, there actually exist
two problems with GRM. One is that GRM is non-sparse and complicated, leading to high
computational complexity and high difficulty in hardware implementation. The other is
that regardless of the characteristics of signal the measurements generated by GRM are
also random, which results in low efficiency of compression coding. In this paper, we design
a novel local structural measurement matrix (LSMM) for block-based CS coding of natural
images by utilizing the local smooth property of images. The proposed LSMM has two main
advantages. First, LSMM is a highly sparse matrix, which can be easily implemented in
hardware, and its reconstruction performance is even superior to GRM at low CS sampling
subrate. Second, the adjacent measurement elements generated by LSMM have high corre-
lation, which can be exploited to greatly improve the coding efficiency. Furthermore, this
paper presents a new framework with LSMM for block-based CS coding of natural images,
including measurement generating, measurement coding and CS reconstruction. Experi-
mental results show that the proposed framework with LSMM for block-based CS coding of
natural images greatly enhances the existing CS coding performance when compared with
other state-of-the-art image CS coding schemes.

1. Introduction

In recent years, Compressive Sensing (CS) has been extensively studied, whose pur-
pose is to reconstruct the natural image from its observed measurements

y = Φx, (1)

where x ∈ RN is lexicographically stacked representations of the original image and
y ∈ RM is the CS measurements observed by a randomM×N measurement matrix Φ,
(M � N). From many fewer acquired measurements than suggested by the Nyquist
sampling theory, CS theory demonstrates that a signal can be reconstructed with high
probability when it exhibits sparsity in some domain Ψ, which has greatly changed
the way engineers think of data acquisition,

x = Ψθ. (2)

If θ is a sparse coefficient vector, the signal x is sparse under the domain Ψ. In most
CS literature, both sensing architectures [1] and image reconstruction algorithms [2–7]
are proposed. Although CS measurement process can be regarded as a combination of
image acquisition and image compression, this process is not a real compression in the
strict information theoretic sense, because it cannot directly produce a bitstream from

2015 Data Compression Conference

1068-0314/15 $31.00 © 2015 IEEE

DOI 10.1109/DCC.2015.47

133



the sensing device hardware, which can be only seen as a technology of dimensionality
reduction in essence [2].

As a very important technology of image coding, quantization is introduced into
the CS image coding model [3], which is applied for each CS measurement. However,
due to the random characteristic of generated measurements by the random matrix
Φ, isometric scalar quantization does not perform well in rate-distortion performance.

Inspired by the success of the block-based hybrid video coding, such as HEVC [8],
H.264, MPEG-2, the inter prediction coding technology can be used in the CS mea-
surement process. Some works [2, 4, 5] on the block-based CS (BCS) hybrid coding
framework are presented. Mun and Fowler proposed the block-based quantized com-
pressed sensing of natural images with differential pulse-code modulation (DPCM)
[2] and uniform scalar quantization. In [2], the previous decoded measurement is
taken as the candidate of the current measurement. Zhang et al. extended the D-
PCM based CS measurement coding and proposed the spatially directional predictive
coding (SDPC) [4], in which the intrinsic spatial correlation between neighbouring
measurements of natural images are further explored. In the BCS [9] measurement
coding, Khanh et al. [5] points out that, the spatial correlation among neighboring
blocks becomes higher as block size decreases and the CS recovery of a small block
is less efficient than that of a large block. In order to balance the conflict between
compressed ratio and reconstructed quality, a structural measurement matrix (SMM)
is proposed [5] to achieves a better RD performance, in which the image is sampled
by some small blocks, and reconstructed with large blocks spliced by the small block.
However, all these above block-based hybrid CS coding frameworks [2, 4, 5] with Gaus-
sian random matrix (GRM) only utilize the inter-block prediction to improve the RD
performance. In the intra prediction of HEVC, it can be noticed that in the spa-
tial domain the inter-block prediction between non-overlapped blocks is less efficient
than the directional intra-block prediction using the nearby L line pixels. But in the
measurement domain with GRM, regardless of the characteristics of signal the gener-
ated measurements by GRM are random, which results in low efficiency of prediction
coding. Furthermore, GRM is a non-sparse and complicated matrix, leading to high
computational complexity and high difficulty in hardware implementation.

In considering the above problems, we design a novel local structural measurement
matrix (LSMM) for block-based CS coding of natural images by utilizing the local
smooth property of images. The proposed LSMM has two main advantages. First,
LSMM is highly sparse, which can be easily implemented in hardware, and its recon-
struction performance is even superior to GRM at low CS sampling subrate. Second,
the generated adjacent measurements with LSMM have high correlation, which can be
exploited to greatly improve the coding efficiency. Furthermore, this paper presents
a new framework with LSMM for block-based CS coding of natural images, including
measurement generating, measurement coding and CS reconstruction. Experimental
results show that the proposed framework with LSMM for block-based CS coding of
natural images greatly enhances the existing CS coding performance when compared
with other state-of-the-art image CS coding schemes.
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Figure 1: Diagram of the Gaussian random measurement matrix and the proposed local
structural measurement matrix.

2. The Local Structural Measurement Matrix

As discussed in Section 1, the block-based CS coding schemes [2, 4, 5] of natural images
with Gaussian random matrix (GRM) only utilize the inter-block correlation between
non-overlapped neighbouring blocks, which results in high computational complexity
and low coding efficiency. In order to further improve the coding efficiency with easy
hardware implementation, we hope to design a new measurement matrix, which is
not only sparse but also can generate CS measurements with high correlation. In
our design, the new measurement matrix is based on the local smoothness charac-
teristics of natural images, which is named as local structural measurement matrix
(LSMM).The design details of LSMM are given below.

In this design, most of the random elements in the LSMM denoted by Φ are set
to be zero, which makes the LSMM highly sparse for easy implementation. The kth
line of the matrix Φ is denoted by Φ(k) = {ak,1, ak,2, ..., ak,Nb

}, Nb is the number of
pixels in one block. For the specific application of natural image compressive sensing
coding, by considering the local smoothness characteristics of the image, these pixels
in the image corresponding to these non-zero elements in the Φ(k) are composed of
a local window. As shown in Fig. 1, with the GRM, an element of the measurement
is computed as the random weighted sum of all the pixels in a block, but in ours
design of LSMM, an element of the measurement is computed with the pixels in a
corresponding local window. All the non-zero elements in Φ(k) are set to be positive
and each ak,i = 0 means its corresponding pixel is outside the kth local window in
the image. The constraint of Φ(k) is:

‖Φ(k)‖0 = L2, ak,i ≥ 0 and

Nb∑
i=1

ak,i = 1, (3)

where the size of the local window is L × L. Therefore the generated measurement
is similar with these pixels in the corresponding local window. The reconstruction
performances of GRM and the proposed LSMM with SPL-DCT [10] algorithm are
demonstrated by the experiment. As shown in Table. 1, compared with GRM, LSMM
is particularly effective at the low CS sampling subrate, and does not perform well at
the high CS sampling subrate. It is noteworthy that, LSMM is very suitable for the
application of image CS coding, because image CS coding does not usually use a too
high sampling subrate in practice.
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Table 1: The uncompressed CS reconstruction performance (PSNR) by SPL-DCT with
GRM and LSMM.

Sampling subrate
Airplane Monarch Parrot Peppers

GRM LSMM GRM LSMM GRM LSMM GRM LSMM
0.05 23.61 24.38 20.48 22.49 26.15 27.46 25.06 26.01
0.10 25.54 26.48 23.12 25.39 28.15 29.73 27.90 29.26
0.15 27.07 27.60 24.88 26.62 29.39 30.81 28.56 30.93
0.20 27.06 28.51 26.43 28.20 30.40 32.38 29.30 32.09
0.25 29.09 29.20 27.62 28.95 31.48 33.17 29.87 32.72
0.30 30.00 29.68 28.84 29.48 32.52 33.72 31.01 33.04
0.35 30.92 29.98 29.62 29.79 33.53 33.54 31.71 32.86
0.40 31.77 30.62 30.61 30.57 34.28 34.77 33.81 33.81
0.45 32.61 30.97 31.40 30.95 35.32 35.21 34.44 34.14
0.50 33.68 31.36 32.22 31.32 36.45 35.76 35.07 34.40

Because the nearby pixels are similar in the image and the measurement is similar
with these pixels in the corresponding local window, the neighboring measurements
are also similar with each other. The generated adjacent measurements with high
correlation can be exploited to greatly improve the coding efficiency. As we know,
edges and other structured high-frequency features of natural images are very im-
portant to perceptual quality. The LSMM can be seen as a broad-band filter and it
retains the correlation between these neighboring CS measurements and hence leaves
the CS measurement coding the possibility of getting higher compression rate. To
demonstrate the superiority of the proposed LSMM over GRM, a further quantitative
comparison will be provided in the next section.

3. The Proposed Image CS Coding Framework

In the block-based hybrid CS coding framework, the input natural image is divided
into non-overlapped blocks and these blocks are linear projected by the same Gaussian
random matrix (GRM). At the encoder, each current measurement of a block is coded
by the prediction measurement. In DPCM based CS measurement coding [2], the
prediction measurement is the decoded measurement of the previous block; In SDPC
[4], the optimal prediction measurement is selected from a set of candidates that
are generated by four designed directional predictive modes. Then, the prediction
residuals are uniform scalar quantized and entropy encoded into bitstreams. The
decoder process is the inverse of encoder.

In the proposed image CS coding framework, the local smoothness characteris-
tics of the image is utilized by the block-based local structural measurement matrix
(LSMM) Φ. An image is divided into non-overlapped blocks, each measurement of a
block is observed by the same matrix Φ. The measurement of kth block is defined
as Mk = {mk,1,mk,2, ...,mk,Ne}, Ne is the number of elements in a measurement. By
LSMM, each observed element of the measurement in a local window is highly related
with those in nearby local windows. The first element mk,1 of Mk in the kth block is
directly scalar-quantized and entropy coded into bitstreams. At the process of coding
the ith element mk,i, the prediction candidate is selected by the shortest Euclidean
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Figure 2: Three types of correlation coefficients (DPCM by GRM, SDPC by GRM and
the proposed LSMM) on the test image Peppers with the sampling subrate = 0.25 and the
block size for BCS is 32×32.

distance between the local window of mk,i and those windows of previous decoded
element in Mk. The prediction element, denoted by m̂k,i, after obtaining the predic-
tion m̂k,i of mk,i, the residuals rk,i can be calculated by rk,i = mk,i − m̂k,i, then rk,i
is scalar-quantized and entropy coded into bitstreams. To demonstrate the superior-
ity of the proposed LSMM over GRM, we make a further quantitative comparison.
All the ith elements of measurements in all non-overlapped blocks are composed as
an unit named Gi, the corresponding prediction unit is define as Ĝi. Like [5], the
correlation coefficient to measure the correlation of an unit and the corresponding
prediction unit is shown by

ρ
(
Gi, Ĝi

)
=

GT
i Ĝi

‖Gi‖2
∥∥∥Ĝi

∥∥∥
2

, (4)

where the correlation coefficient is defined as ρ. It can be seen in Fig. 2, correlation
coefficients of coding units by LSMM are much higher than these two correlation
coefficients of DPCM coding units and SDPC coding units by GRM.

At the decoder, by the de-quantization on quantizer indexes from the bitstream
the quantized residuals r̃k,i can be obtained, which is then added by the prediction
m̂k,i, producing the reconstructed CS measurements group m̃k,i = r̃k,i + m̂k,i, ready
for further prediction coding. At last, all groups of reconstructed measurements ỹ are
obtained sequentially, which are then utilized for the natural image reconstruction by
CS recovery algorithms. Compressive sensing theory allows that a natural image x
can be exactly recovered from its space measurements y acquired by linear projection
with the sampling subrate S = M/N , if x has advantage of being sparse in a domain,
e.g. DCT domain, DWT domain, or some incoherent domains. Different from other
signals, natural image as a two-dimensional signal has its own prior knowledge, such
as local smoothing model and group sparse model. To cope with the ill-posed problem
of natural image CS recovery, these traditional methods employ various image prior
knowledge for regularizing the solution to the following minimization problem:

argminx
1

2
‖y − Φx‖22 + λΓ(x), (5)

where y is the observed measurement value at the encoder, 1
2
‖y − Φx‖22 is the l2-

norm data-fidelity term, Γ(x) is called the regularization term denoting image prior
and λ is the regularization parameter. Due to that image prior knowledge plays
an important role in the performance of the uncompressed image CS restoration
algorithms, designing effective regularization terms Γ(x) to reflect the image priors
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is at the core of image restoration. Some image prior models are usually used as the
regularization term, such as the local smoothing based total variation (TV) model
[11], nonlocal self-similarity [12] based model and these dictionary based models:
DCT model, DWT model and KSVD [13] model. However, in the case of image CS
restoration with compressed measurements, the true measurements y does not exist in
the decoder, the instead l2 data-fidelity term

1
2
‖ỹ − Φx‖22 cannot accurately reflect the

accuracy of the actual measurements value. Because the decoded measurements value
ỹ reconstructed at the decoder by the sum of the predicted measurements and the
quantized residual is not equal to the observed measurement value y at the encoder.

To deal with this problem, we propose a soft image compressive sensing recon-
struction method with compressed measurements, in which the side information in
the coded bitstreams is incorporated to confine the solution space and help to improve
the restoration performance. For each decoded measurement ỹi = ŷi+ r̃i, yi being the
corresponding actual measurement value and QS being the quantization step for the
residual r̃i, the quantization interval from the side information in bitstream for yi:

ylowi ≤ yi < yupi , (6)

where ylowi = �(ỹi − ŷi) /QS�QS + ŷi and yupi = �(ỹi − ŷi) /QS + 1�QS + ŷi are the
lower and upper bounds of yi. Here, ≤ and < denote the operation of element-wise
comparison. The inequality can be incorporated into Eq.(5) to further refine the
solution space and improve the performance. Finally, we formulate our problem of
soft decoding as the following minimization problem:

argminx
1

2
‖F (Φx, ỹ, ŷ, QS)‖22 + λΓ(x), (7)

Fi (Φ(i)x, ỹi, ŷi, QS) =

{
0 if ylowi ≤ Φ(i)x < yupi
ỹi − Φ(i)x else

. (8)

Then the general solution to this problem is given by adopting the framework of split
Bregman iteration [14] (SBI). This minimization problem can be translated into an
equivalent constrained optimization problem by introducing variables u and v:

argminu,v =
1

2
‖F (Φu, ỹ, ŷ, QS)‖22 + λΓ(v) s.t. u = v. (9)

Algorithm 1 Generalized solution for Eq.(9) by split Bregman iteration.

Input:
Set μ, initialize u(0), v(0) and z(0), t = 0;

1: while (stopping criterion is not satisfied) do

2: u(t+1) = argminu
1
2
‖F (Φu, ỹ, ŷ, QS)‖22 + μ

2

∥∥u− v(t) − z(t)
∥∥2

2
;

3: v(t+1) = argminvλΓ(v) +
μ
2

∥∥u(t+1) − v − z(t)
∥∥2

2
; ;

4: z(t+1) = z(t) − (
u(t+1) − v(t+1)

)
and t = t+ 1;

5: end while

So in this case the SBI addresses the minimization problem Eq. (9) into u sub-problem
and v sub-problem as shown in Algorithm 1. Given z(t) and v(t), the u sub-problem
is essentially a minimization problem of strictly convex quadratic function, that is

u = argminu
1

2
‖F (Φu, ỹ, ŷ, QS)‖22 +

μ

2

∥∥u− v(t) − z(t)
∥∥2

2
. (10)
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Figure 3: All experimental test images.

The steepest gradient descent method is utilized to solve Eq. (10):

ũ = u− γ
∂ 1

2
‖F (Φu, ỹ, ŷ, QS)‖22 + μ

2

∥∥u− v(t) − z(t)
∥∥2

2

∂u
, (11)

where γ represents the optimal step. Therefore, solving u sub-problem only requires
computing the following equation iteratively

ũ = u− γ
(
ΦTF (Φu, ỹ, ŷ, QS)− ΦT ỹ + μ

(
u− v(t) − z(t)

))
, (12)

where ΦT ỹ, �(ỹi − ŷi) /QS�QS + ŷi and �(ỹi − ŷi) /QS + 1�QS + ŷi can be calculated
before, making above computation more efficient. The solution of the v sub-problem
is dependent on the regularization term Γ(v). If Γ(v) is l2-norm regularization term,
it has the close form solution by least square method, else if Γ(v) is l1-norm or l0-
norm regularization term, the above minimization problem is large-scale and highly
non-convex. Some approximation approaches, such as TV [11], K-SVD [13] and GSR
[15], have been proposed to solve this l1-norm or l0-norm problem. It can be notice
that each sub-problem minimization may be much easier than the original problem
Eq.(5). In fact, we acquire the efficient solution for each separated sub-problem,
which enables the whole soft decoding algorithm more efficient.

4. Experimental Results

In this section, we present experimental results of block-based CS coding of natural
images by LSMM, and compare our results to some representative techniques in the
literature: DPCM [2] and SDPC [4]. The image reconstruction algorithm are SPL-
DCT [10] and GSR [15] separately. All the experimental test images are shown in
Fig. 3, these natural images are of size 512×512 and the block size of BCS is set to be
32×32. The window size L×L of the LSMM is set to be 3×3. Following [2, 4, 5], the
actual bitrate is estimated using the zero order entropy of the quantizer indexes, which
can be actually produced by a real entropy coder. In all cases, for the experiments,
the optimal combination of quantization step and sampling subrate is chosen via an
exhaustive search over all combination pairs drawn from a finite set of quantization
step and a finite set of sampling subrate. The rate-distortion performance in PSNR
in dB and bitrate in bpp is provided in Fig. 4. The proposed LSMM achieves the
highest PSNR over all the cases. By the SPL-DCT algorithm, the proposed LSMM
can improve roughly more than 3.5dB and 3dB on average in comparison with GRM-
DPCM and GRM-SDPC under the different bitrates on 0.3bpp, 0.6bpp and 0.9bpp.
By the GSR algorithm, the performance of LSMM is 3dB and 2.5dB higher than
GRM-DPCM and GRM-SDPC under the different bitrates on 0.3bpp, 0.6bpp and
0.9bpp. The reconstruction algorithm GSR achieves 3dB higher performances on
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Figure 4: The rate-distortion performance on test images.

Table 2: The rate-distortion performances by different quantization step with DPCM, SDPC
and LSMM with the sample-rate=0.25 using SPL-DCT reconstruction algorithm.

0.4 bpp 0.5 bpp 0.6 bpp
Pictures DPCM SDPC LSMM DPCM SDPC LSMM DPCM SDPC LSMM
Airplane 22.24 24.69 29.22 24.31 26.74 29.37 25.35 27.45 29.43
Monarch 22.26 24.11 29.64 23.68 25.01 28.97 24.93 25.78 29.10
Parrot 26.13 27.85 33.05 27.74 29.05 33.25 29.10 29.68 33.31
Peppers 22.94 26.47 31.82 25.12 27.01 32.55 26.92 27.35 32.64
avg 23.39 25.87 30.93 25.21 26.95 31.03 26.57 27.56 31.12

average than SPL-DCT with the same coded CS measurements.
Then, we take the sampling subrate=0.25 as an example to show the rate-distortion

performances by different quantization step with GRM-DPCM, GRM-SDPC and
LSMM-SoftDecoding in Table 2 and Table 3. Compared with GRM-DPCM and
GRM-SDPC, the proposed coding algorithm can improve roughly more than 5dB,
4dB, and 3dB on 0.4bpp, 0.5bpp and 0.6bpp by SPL-DCT, and improve 4dB, 3dB,
and 1.5dB on 0.4bpp, 0.5bpp and 0.6bpp by GSR. Table 4 shows the performance
comparison with the traditional reconstruction algorithms (DCT and GSR) and the
proposed soft reconstruction algorithm (SoftDCT and SoftGSR) with LSMM. SoftD-
CT and SoftGSR can improve about 0.2dB and 0.3dB on average at the low bitrate
about 0.2bpp. However at the middle bitrate and high bitrate, the quantization inter-
val of the code measurement is very small, the performances of SoftDCT and SoftGSR
are little higher than DCT and GSR. Finally, the subjective quality performances are
shown in Fig. 5, it can be seen that, on the almost same bitrate, the images produced
by LSMM are more clear than these by DPCM and SDPC, and the images produced
with SoftDCT and SoftGSR are better than these with DCT and GSR.
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Table 3: The rate-distortion performances by different quantization step with DPCM, SDPC
and LSMM with the sampling subrate=0.25 using GSR reconstruction algorithm.

0.4 bpp 0.5 bpp 0.6 bpp
Pictures DPCM SDPC LSMM DPCM SDPC LSMM DPCM SDPC LSMM
Airplane 22.54 26.13 29.58 25.74 28.21 29.69 26.05 29.76 30.02
Monarch 23.04 24.16 29.47 25.34 26.31 29.77 26.30 27.38 29.89
Parrot 27.05 29.20 33.22 28.98 31.22 33.29 31.32 32.20 33.34
Peppers 23.22 26.78 32.61 26.04 27.75 32.94 27.62 30.30 33.02
avg 23.96 26.56 31.22 26.52 28.37 31.42 27.82 29.91 31.56

Table 4: The rate-distortion performances of the traditional reconstruction algorithm and
the proposed soft reconstruction algorithm of LSMM with the sampling subrate=0.25.

Pictures DCT SoftDCT GSR SoftGSR bpp DCT SoftDCT GSR SoftGSR bpp
Airplane 27.06 27.15 27.10 27.39 0.1499 29.05 29.06 29.42 29.56 0.3336
Monarch 27.34 27.51 27.82 28.03 0.2591 28.97 28.98 29.77 29.86 0.5054
Parrot 29.49 29.84 30.01 30.38 0.1926 32.71 32.79 33.02 33.20 0.3329
Peppers 29.47 29.79 30.30 30.61 0.2226 32.22 32.34 32.91 32.92 0.4542

5. Conclusion

In this paper, a novel local structural measurement matrix (LSMM) for block-based
CS coding of natural images is proposed by utilizing the local smooth property of
images, which has two main advantages compared with the Gaussian random matrix
(GRM). Furthermore, a new framework with LSMM is presented for block-based CS
coding of natural images, including measurement generating, measurement coding
and CS reconstruction. Experimental results show that the proposed framework with
LSMM for block-based CS coding of natural images greatly enhances the existing
performance when compared with other state-of-the-art image CS coding schemes.
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