IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014 5

Representing Visual Objects in HEVC Coding Loop

Tiejun Huang, Senior Member, IEEE, Siwei Dong, and Yonghong Tian, Senior Member, IEEE

Abstract—Different from the previous video coding standards
that employ fixed-size coding blocks (and macroblocks), the latest
high efficiency video coding (HEVC) introduces a quadtree struc-
ture to represent variable-size coding blocks in the coding loop. The
main objective of this study is to investigate a novel way to reuse
these variable-size blocks to represent the foreground objects in the
picture. Towards this end, this paper proposes three methods, i.e.,
flagging the blocks lying in the object regions flagging compression
blocks (FCB), adding an object tree in each Coding Tree Unit to de-
scribe the objects’ shape in it additional object tree (AOT) and con-
fining the block splitting procedure to fit the object shape confining
by shape (CBS). Among them, FCB and CBS add a flag bit in the
syntax description of the block to indicate whether it lies in the ob-
jects region, while AOT adds a separate quadtree to represent the
objects. For all these methods, the additional bits are then fed into
the HEVC entropy coding module to compress. As such, the repre-
sentation of visual objects in the pictures can be implemented in the
HEVC coding loop by reusing the variable-size blocks and entropy
coding, without additional coding tools. The experiments on six
manually-segmented HEVC testing sequences (three in 1080P and
three in 720P) demonstrate the feasibility and effectiveness of our
proposal. To represent the objects in the 1080P testing sequences,
the BD rate increases of FCB, AOT, and CBS over the HEVC an-
chor are 1.57%, 3.27%, and 5.93% respectively; while for the 720P
conference videos, those are 4.57%,17.23%, and 26.93% (note that
the average bitrate of the anchor is only 1009 kb/s).

Index Terms—Entropy coding, high efficiency video coding
(HEVC), variable-size coding blocks, video coding, visual object
representation.

I. INTRODUCTION

N GENERAL, foreground visual objects are regarded as

the most important part of a video sequence, especially for
vision-related applications. Accordingly, it is crucial to repre-
sent foreground objects with arbitrary shape in the coded video
stream. For example, for a TV shopping program, audiences are
interested in interacting with the specific picture area which con-
tain the promoting commodity; in the video conference appli-
cations, the conferees’ figures in each camera may be directly
extracted and be further blended into an available virtual confer-
ence room; while in a surveillance video, the independent rep-

Manuscript received September 08, 2013; revised November 24, 2013; ac-
cepted December 29, 2013. Date of publication January 27, 2014; date of cur-
rent version March 07, 2014. This work was supported by the Chinese National
Natural Science Foundation under Contract 61035001, Contract 61390515, and
Contract 61121002. This paper was recommended by Guest Editor B. Yan.

The authors are with the National Engineering Laboratory for Video Tech-
nology, School of Electrical Engineering and Computer Science, Peking Uni-
versity, Beijing 100871, China (e-mail: yhtian@pku.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2014.2298274

resentation of moving objects or interested regions will signifi-
cantly facilitate the subsequent detection and recognition tasks.

In spite of many previous works on visual object representa-
tion in the field of computer vision, MPEG-4, the object-based
standard, firstly standardized the representation of visual ob-
jects in the coded stream [1]. Basically, MPEG-4 represents
a scene with dynamic visual (and audio) objects, something
like multiple actors performing in a theatre, by encoding the
detailed representation of each object and background (e.g.,
the motion, shape, and color information [2]) as well as the
spatial-temporal relationship between different objects. More
recently, as the latest video coding standard, high efficiency
video coding (HEVC) [3] leads the video coding efficiency to a
new milestone, doubling that of MPEG-4 AVC (Part 10)/H.264
[4] and achieving about three times than the MPEG-4 Part 2
advanced simple profile (ASP). Obviously, the quadtree struc-
ture in HEVC makes it possible to achieve better representation
for visual objects than the fixed-size macroblocks in MPEG-4.
However, in its current version, HEVC does not support visual
object representation as offered by MPEG-4. Thus, it is neces-
sary to develop a compact object representation in the HEVC
coding loop so as to support the vision-related applications
based on HEVC.

In this study, we aim to investigate the potentialities of
reusing the variable-size coding blocks in HEVC to represent
foreground objects with arbitrary shape. Our basic idea is to
make the best use of the high efficient coding tools already de-
veloped in HEVC. Towards this end, we propose three methods
to represent the visual objects.

The first method, which is referred to as flagging compres-
sion blocks (FCB) in this paper, flags the HEVC coding blocks
on the object regions. Since the blocks are originally generated
for the purpose of optimal compression efficiency, this method
may not be able to describe the object shape perfectly. On the
other hand, FCB does not change the picture encoding proce-
dure, only with the additional bit to indicate whether a block
lies on the foreground objects area or not. As a result, the neg-
ligible loss in compression performance is induced due to the
additional flag bits.

The second method, named as additional object tree (AOT),
adds an object tree in each coding tree unit (CTU) that con-
tains at least one foreground pixel so as to describe the objects’
shape in it. In this way, the object shape can be well described
with variable-size blocks. Like FCB, AOT does not change the
HEVC encoding procedure, thus very small loss in compression
performance is induced as well due to the usage of additional
bits to represent the object tree.

The third, called as confining by shape (CBS) in this paper,
is to exert a shape constraint on the block splitting procedure so
as to force the blocks on the object boundary to be divided to

2156-3357 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

fit the object shape. Then the objects can be well described with
the blocks that are exactly inside of the objects contour. CBS
probably decreases the coding efficiency since it constrains the
block partitioning. However, one of its potential advantages is
that it can satisfy the special requirement in some applications
that more bits need to be allocated to the foreground objects
(e.g., video conference which often does not care the details in
the background).

In the three methods, the additional bits are all fed into the
HEVC entropy coding module for compression. That is, the rep-
resentation of visual objects can be implemented in the HEVC
coding loop by reusing the variable-size coding blocks and the
entropy coding module without additional new coding tools.

To evaluate the feasibility and effectiveness of our proposal,
we performed several experiments on six manually-segmented
HEVC testing sequences (three in 1080P and the other three in
720P). Experimental results show that, for representing the ob-
jects in the 1080P testing sequences, the BD rate increases of
FCB, AOT and CBS over the HEVC anchor are 1.57%, 3.27%,
and 5.93%, respectively; while for the 720P conference videos,
those are 4.57%, 17.23%, and 26.93% (note that the average bi-
trate of the anchor is only 1 009 kb/s). Moreover, compared with
the so-called ACE method that encodes the binary alpha plane
as a supplemental channel to the original video stream [5], the
proposed methods can achieve higher precision in object rep-
resentation. These results validate that the variable-size coding
block is a perfect tool to represent the visual objects with arbi-
trary shape, and the entropy coding is also a powerful tool to
compress the representation. Therefore, HEVC can be used as
a good platform to support the representation of foreground ob-
jects with a very high efficiency.

The rest of this paper is organized as following. The related
works are briefly discussed in Section II. Section III presents
the three proposed methods. Section IV introduces the exper-
imental video sequences in which the foreground objects are
manually segmented. Section V shows the experimental com-
parison of the three methods. Finally, the paper is concluded in
Section VI, with our proposal on extending HEVC to support
the object representation.

II. RELATED WORKS

MPEG-4 is the first well-known object-based video coding
standard. Different from the previous standards such as
MPEG-1, MPEG-2, and H.26%, the visual objects (VOs) and
their temporal instances, video object planes (VOPs), are the
basic components of a MPEG-4 video. In MPEG-4, each video
can be considered as a scene consisting of VOPs that may
undergo a variety of changes such as translations, rotations,
scaling, brightness, and color variations, etc. A VOP can be
fully described by texture variations (a set of luminance and
chrominance values) and (explicit or implicit) shape represen-
tation. For natural scenes, VOPs may be obtained by automatic
or semi-automatic segmentation, and the resulting shape infor-
mation can be represented as a binary shape mask. [6] gave
a detailed review on the coding of the VOs with arbitrary
shape in MPEG-4. Instead of implicit representation based on
chromakey and texture coding, MPEG-4 video employs the
explicit shape representation with boundary coding separately

from texture coding. To code the corresponding sequence of
binary alpha planes, each VO in a VOP sequence is enclosed
by a rectangular bounding box with its horizontal and vertical
dimensions being multiples of 16 pixels (i.e., the macroblock
size). As such, the pixels on the boundaries or inside the object
are assigned a value of 255 and are considered opaque, while the
pixels outside the object but inside the bounding box are con-
sidered transparent and are assigned a value of 0. If a 16 x 16
block structure is overlaid on the bounding box, three types of
binary alpha blocks exist: completely transparent, completely
opaque, and partially transparent (or partially opaque). Then
coding such a binary block can be performed either lossy or
lossless, controlled by a loss threshold which can take values of
0,16,32,64,...,256 from lossless to high lossy shape coding.
Similar to the coding of texture macroblocks, each binary alpha
block can be coded in intra mode (without explicit prediction)
or in inter mode (with explicit shape prediction and coding of
the resulting binary shape prediction error).

It should be noted that, besides the standardized methods in
MPEG-4, some novel or improved arbitrarily-shaped object
coding methods were also proposed. For example, the work
in [7] presented a new scheme for coding both the shape and
texture of an arbitrarily-shaped visual object based on the set
partitioning on hierarchical trees (SPITHT). The proposed shape
and texture SPTHT (ST-SPIHT) implemented the shape-adap-
tive discrete wavelet transform (SA-DWT) using in-place
lifting, along with the parallel coding of texture coefficients and
shape mask pixels to create a single embedded code that allows
for fine-grained rate-distortion scalability. Since this paper tries
to represent visual objects in the HEVC coding loop without
additionally introducing any new tools, no more papers on
independent visual object representation is to be reviewed here.

Besides MPEG-4, all previous ITU-T and ISO/IEC JTC
1 video coding standards make use of fixed-size 16 x 16
mac-blocks as the basic coding units. This configuration may
work well for compression, but places a major restriction on
directly using the blocks to describe arbitrary shape. Obviously,
the fixed-size block is too coarse to accurately fit the boundary
of an arbitrary shape. On the other hand, multiple 16 x 16
blocks are needed to cover a larger area that can be directly
covered by a 32 x 32 or 64 x 64 block.

The latest video compression standard, HEVC, introduces
variable-size coding blocks as the core of the coding structure
[4]. In HEVC, each picture is partitioned into slices, tiles, and
coding tree units (CTUs). CTU in HEVC is analogous to the
macroblock for the previous video coding standards. The sub-
division of CTU results in coding units (CUs) while each CU
is split into prediction units (PUs) and transform units (TUs).
These variable-size block structures in HEVC can be easily used
to represent the shape of objects. That is, the HEVC blocks with
the maximum size of 64 X 64 can provide an efficient way to
cover a large object, and at the same time the variable-size block
with the minimum size of 4 x 4 can be reused to well fit the fine
boundary. Therefore, this paper will investigate the possibility
to describe the objects with arbitrary shape by taking advantage
of the HEVC variable-size blocks.

In general, the quadtree is a common region-based method
to represent the shape of a visual object. Naturally, it is very

HUANG et al.: REPRESENTING VISUAL OBJECTS IN HEVC CODING LOOP

straight to employ the coding tree structure of HEVC to repre-
sent foreground objects in the pictures. To do so, the high effi-
cient tools already developed in HEVC could be utilized to com-
press the additional bits consumed by the object representation,
without new hardware or software modules. In other word, it
is possible to spend fewer bits to represent visual objects in the
HEVC coding loop.

III. THE PROPOSED METHODS

In this study, our basic idea is to utilize the variable-size
coding blocks in HEVC to represent foreground objects with
arbitrary shape, with the slightest extension to HEVC (if neces-
sary). With this in mind, we will investigate different potential
object representation methods in this section.

In HEVC, a picture is firstly divided into L x L coding tree
blocks (CTBs) where L could be 64, 32, or 16 (64 is adopted
in this paper). Then, each CTB could be recursively split into
squared coding blocks (CBs) until the size for a CB reaches the
minimal CB size which is usually 8 x 8. Each CB could be par-
titioned again into a set of prediction blocks (PBs) and a set of
transform blocks (TBs). The size of PBsinan M x M CB could
be M x N, whereN < M. The TBs within a CB are also orga-
nized as a quadtree, and the minimal TB size is 4 x 4. Therefore,
to find a partition of a picture for object representation, there are
four types of blocks available in HEVC (see Fig. 1).

1) CTB: Typically, CTB is the largest CB. It is too large to
describe the details of the object boundary. But for the ap-
plication that does not care the representation precision of
the object shape so much, CTB is a good choice since flag-
ging CTBs needs very few bits.

2) CB: CB can be as small as 8 x 8 in size. Despite not so
accurate, the representation granularity is fine enough for
most applications. As shown in Fig. 1, all CBs are orga-
nized as a quadtree in a CTU.

3) TB: TBisalower level to CB. TBs in one CB are organized
as a quadtree. The smallest TB is with 4 x 4. Thus, the
TB-based representation can reach to the 4 x 4 precision.

4) PB: PB is another lower level partition of CB. A CB could
be divided into multiple PBs in non-square shape, for ex-
ample, a 16 x4 PB and 16 x 12 PBina 16 x 16 CB. In
some case, the nonsquared PB spends even fewer bits than
multiple squared TBs.

With the above four types of blocks, there are five com-
binations to form a complete partition of a picture: CTBs
only, CTBs+CBs, CTBs+CBs+PBs, CTBs+CBs+TBs, and
CTBs+ CBs+PBs+TBs.

As both PBs and TBs can construct a complete partition of
the CB that contains them, it is possible to employ them together
to get a better partition for object representation. However, this
combination will lead to a complicated foreground black flag-
ging mechanism with a high bit cost. Thus this paper does not
go further on this direction.

The smallest size of the “block” in HEVC is 4 x 4, which is
also the finest granularity in HEVC to represent the objects in a
picture with the variable-size blocks. To reach higher accuracy
such as 2 x 2 or only 1 pixel, additional tools are required. In
the shape coder of MPEG-4, for example, there is a specific
tool to describe the arbitrary boundary in a 16 x 16 macroblock.

64x64

32x32

16x16

8x8
(smallest CB)

4x4
(smallest TB)

2x2 @
(beyond HEVC
block size)

1x1 @
(beyond HEVC
block size)

Fig. 1. Partition of a CTB with CBs, TBs, and smaller blocks.

Another approach is to employ the HEVC quadtree again to
describe the subtle structure till to pixel, which is easier to be

8 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

implemented in the HEVC framework. Fig. 1 demonstrates the
possibilities to partition a CTB at different levels as mentioned
above (where PB is not demonstrated).

To simplify the discussion, this paper takes the “HEVC
block™ or “block™ as the general term referring to CTB, CB,
PB, or TB. In the following description, the CB is employed as
the basic blocks. However, the presented methods can also be
used in other precision levels.

A. Method I: Flagging Compression Blocks

From the partitioning prospective, all coding blocks (CBs)
in a picture make up a complete partition of that picture (like
a jigsaw with variable-size pieces). Even the partition is origi-
nally generated to achieve higher compression efficiency, it can
be reused to describe the foreground objects. More specifically,
the objects could be represented by simply flagging the blocks
overlaying the object regions. Therefore, this method is named
as flagging compression blocks (FCB). One possible drawback
of FCB is the foreground objects could not be represented ac-
curately because their boundary may not align with that of the
blocks.

Given a partition, the representation of an object means to
flag each block whether it lies inside an object (or more than
half of the block is overlaid with the object). In HEVC, this can
be done by adding a flag of one-bit descriptor in the syntax of
the description unit of the corresponding block (e.g., a CU for
its CB). Except this extension to the HEVC syntax, no more
change is introduced. In other word, no additional coding tool
is added into the HEVC coding loop.

In general, the CB at the leaf node of the coding quadtree (re-
ferred to as the leaf CB), which does not need to be further split,
is considered as a foreground block only if more than half of its
pixels are foreground pixels; otherwise, it is a background block.
Recursively, a nonleaf CB is defined as a foreground block if it
contains at least one leaf CB that is a foreground block; other-
wise, it is a background block. Moreover, if a CB or CTB does
not contain any background pixel, it is recognized as a ful/ back-
ground block.

One way to indicate a CB is a foreground or background
block is to insert a flag named as “foreground_flag” into the
syntax of its CU. A block is flagged as “1” to indicate it is a
foreground block; otherwise, it is flagged as “0” to indicate a
background block. A more efficient way is to add the flag on
the middle nodes of the quadtree. That is, if the corresponding
CTB is a full background block, then the foreground_flag should
be set to 0, and all of its descendant blocks (if they exist) do not
add the foreground_flag; otherwise, the foreground_flag should
be set to 1, and all of its descendant blocks (if they exist) should
add the foreground_flag after their split_cu_flag. This procedure
will be repeated to the leaf nodes or a full background block.

Table I is the extension of the HEVC coding tree syntax in
which the flag descriptor is placed just after the “split_cu_flag”.
If a split_cu_flag is “0” (i.e., no further splitting), the following
foreground_flag indicates the corresponding CB as a foreground
(“1”) or background (“0”) block. For the case of split_cu_flag
being “1,” if the corresponding CB is a background block, a
foreground_flag “0” is followed and no foreground_flag is added
for all of the descendant blocks; otherwise, a foreground_flag

TABLE I
ADDING A FOREGROUND FLAG DESCRIPTOR IN THE HEVC CODING TREE
SYNTAX (FOR FCB METHOD)

@

coding _tree unit(xCtb, yCtb) { Descriptor
coding quadtree(xCtb, yCtb, Log2CtbSizeY, 0, 1)
}
(®
coding__quadtree(x0,y0, Descrinto
log2CbSize,ctDepth,parent foreground flag){ ripror
if(x0+(1<<log2CbSize)<=pic_width_in_luma_samples
&& y0+(1<<log2CbSize)<=pic_height _in_luma_samples
&& 1og2CbSize>MinCbLog2SizeY)
split_cu_flag[x0][y0] ae(v)
if(ctDepth== 0 || parent foreground flag==1){
foreground flag[x0][y0] ae(v)

parent foreground flag=foreground flag[x0][y0]
Yelse{
parent foreground flag=0

}

if(split_cu_flag[x0][y0]){
x1 =x0 + (1 << (log2CbSize — 1))
yl =y0 + (1 << (log2CbSize —1))
coding quadtree(x0,y0,log2CbSize-1,
ctDepth+1,parent foreground

flag)

if(x1<pic_width in luma _samples)

coding__quadtree(x1,y0,log2CbSize-1,

ctDepth+1,parent foreground flag)

if(yl<pic_height _in_luma_samples)

coding _quadtree(x0,y1,log2CbSize-1,

ctDepth+1,parent foreground flag)

if(x1<pic_width_in_luma_samples &&
yl<pic_width_in luma_samples)

coding _quadtree(x1,y1,log2CbSize-1,

ctDepth+1,parent foreground flag)

}else{

}

“1” is followed and all its descendant blocks still need the fore-
ground_flag.

At the decoding side, the object region could be reconstructed
by collecting the blocks whose foreground _flag bit equals to “1.”

Since the FCB method just adds a flag bit in the CTU syntax
and no change is made to the picture encoding procedure, the
loss in compression performance induced by this method is neg-
ligible. The drawback of FCB is that the coding tree originally
optimized for high efficient compression may not be perfect to
fit with the object shape. That is, the blocks lying on the object
boundary may be too coarse, consequently limiting the preci-
sion for object representation.

B. Method II: Additional Object Tree

For better representation, an improved way is to describe the
shape with a quadtree just as HEVC does in organizing CBs
in a CTU. The second method, named as additional object tree

HUANG et al.: REPRESENTING VISUAL OBJECTS IN HEVC CODING LOOP

(AOT), adds an independent object tree in each CTU to describe
the objects’ shape in it. Like FCB, the AOT method does not
change the HEVC encoding procedure, thus very small loss in
compression performance is induced as well.

In AOT, all CTBs which contain at least one foreground pixel
should be split till to each block in the CTB is either a fore-
ground block or background block. Here, for the smallest block,
an 8 x 8 CB, if more than half pixels in it are foreground pixel,
it is a foreground block, otherwise a background block.

The procedure to produce the quadtree for a CTB is as fol-
lowing: Start from the CTB, the splitting process will be re-
peated until each leaf node either reaches the smallest size or
becomes a full foreground or full background block. More for-
mally, let O,ff? denote the object block at position (i, j) with the
splitting depth d (0 < d < 3 in the experiments, corresponding
to the smallest size of CBs) and the size of 269 x 25— then
the corresponding object tree 7 (i, j, d) can be generated in a
recursive manner

T(ij.d)=
{ Useriires—ay T(s.t,d+1), d#3and0 < f(OF;) <1

te{j.j+25-d3
{071, d=3or f(O};)=0o0rl
(1)

()

650

where f (()1" ;) is the percentage of the foreground pixels inO
and d is initialized to 0.

To simplify the procedure of judging whether a CB is a full
foreground or a full background block in each step, Fig. 2 shows
an alternative way: A picture is firstly partitioned to an array of
the smallest CBs (here is a 8 X 8 block), where each CB is as-
signed to a foreground or background flag based on whether the
foreground pixels in it account for more than half of the pixels.
Then each CTB (an array of 64 smallest blocks) is recursively
split into squared CBs (larger than 8 x 8) until all these descen-
dent CBs are full of foreground or background flags. For ex-
ample, as shown at the top of Fig. 2, if a CTB contains fore-
ground pixels (the foreground proportion is between 0% and
100%), it should be split into four 32 x 32 CBs. Each 32 x 32
CB is then split into four 16 x 16 CBs based on its foreground
proportion, so does each 16 x 16 CB. Once the size of a CB is
8 x 8 or it is full of foreground/background flags, the split pro-
cedure terminates.

Table II shows the syntax of the object quadtree whose root is
also associated with the corresponding CTU, while the function
of the object tree generation is given in Table III.

Like as FCB, AOT has little influence on the coding perfor-
mance loss. However, AOT may use more bits to approximate
the object shape.

C. Method III: Confining by Shape

The advantages of both FCB and AOT are: 1) only negligible
loss in compression performance is induced, and 2) the HEVC
encoding procedure is not changed. However, the precision of
object representation in FCB is confined by the coding tree that
is generated for the purpose of optimal compression efficiency,
while AOT may cost more bits to represent the independent ob-
ject tree.

The variable-size object block on the boundary

Represent.objects
with the smallest

object blocks (8?8)

Binary Alpha Plane

Object Block Array

The 64x64 object block The 64x64 object block
inside the object outside the object

Fig. 2. Quadtree partition of a CTB overlaying visual objects.

TABLE 11
SYNTAX FOR OBJECT TREE UNIT

coding tree_unit(xCtb, yCtb) { Descriptor
coding quadtree(xCtb, yCtb, Log2CtbSizeY, 0)
ou quadtree(zCtb, yCtb, Log2CtbSizeY, 0)
}
TABLE III
FUNCTION FOR OBJECT QUADTREE GENERATION
ou_ quadtree(x0, y0, log20bSize, otDepth) { Descriptor
if(x0+(1<<log20bSize)<=pic_width_in luma_samples
&&
y0+(1<<log20bSize)<=pic_height_in_luma_samples
&& log20bSize>MinCbLog2SizeY)
split ou flag[x0][y0] ae(v)
if(split_ou_flag[x0][y0]){
x1 =x0+4 (1 << (log2CbSize —1))
yl =y0 4+ (1 << (log2CbSize — 1))
ou_quadtree(x0, y0, log20bSize-1, otDepth+1)
if(x1 < pic_width in luma samples)
ou_quadtree(x1, y0, log20bSize-1, otDepth+1)
if(yl<pic_height in luma samples)
ou_ quadtree(x0, y1, log20bSize-1, otDepth+1)
if(x1<pic_width_in_luma_sample
&& yl<pic_ height in luma samples)
ou__quadtree(x1,y1,Jog20bSize-1,ctDepth+1)
Jelse{
foreground ou flag[x0][y0] ae(v)
}
}

In HEVC encoder, when coding a 64 x 64 CTB region, it
firstly determines whether this block should be encoded as a
whole 64 x 64 CB or recursively encoded in the form of four
individual parts until the minimal size of CB (i.e., 8 x 8) is
reached. In this block splitting procedure, the encoder usually
makes the decision by recursively calculating the RD cost of

10 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

each kind of partitions of the input region. Here a shape con-
straint on the block splitting procedure can be exerted to force
dividing the blocks on the objects’ boundary so as to fit the ob-
ject shape. This is the main idea of the third method, which is
referred to as confining by shape (CBS) in this paper.

In general, there are two ways to implement the encoding pro-
cedure constrained by the object shape. One way is to firstly pro-
duce an object tree for each CTB containing foreground pixels,
just like AOT does. This initializes a partition of the picture.
Starting from this initial partition, the HEVC block splitting pro-
cedure is carried out to minimize the RD cost. Since the initial
partition is generated to well describe the objects, the further
partitioning performed by HEVC can be perfect for both object
representation and picture compression.

The other way is to tune the HEVC block splitting procedure
directly. A picture is firstly partitioned by the normal HEVC en-
coder to achieve a minimum RD cost. Then each CB in the par-
tition is double-checked whether it lies on the object boundary.
If it is true, the CB should be further split till to all its descen-
dants are pure foreground or background. As a result, a coding
tree will be generated by optimizing compression efficiency and
achieving the best representation of object shape.

Obviously, the final partition of a picture is the same in the
two ways. It is a superset of the partition result of FCB (for
compression purpose) and that of AOT (for shape description
purpose). Therefore, the object representation in CBS is also the
same to AOT, namely, adding an object sub-tree in the HEVC
coding tree.

However, CBS needs to pay the cost for the additional object
sub-tree and may induce the possible loss for the block parti-
tioning confined by the object shape. Despite of this, since the
blocks composing the objects are identified explicitly by the ob-
ject sub-tree, it is possible to allocate more bits to these blocks
so as to satisfy the application requirements that the foreground
objects should be emphasized. For example, the person region
is more important than the background for video conference, es-
pecially when bandwidth is limited.

D. Discussion

To represent foreground objects with arbitrary shape in the
HEVC coding loop, one of the most important prerequisites
is how to obtain the object shape mask or binary alpha plane
for a video frame. In this study, the ground truth is manually
segmented such that we can accurately compare the three
methods in the experiments. So, one may question us because
accurate foreground segmentation is still a difficult problem
in the field of computer vision. However, we have been evi-
denced that despite of not being applied in the general domain,
automatic foreground segmentation is highly applicable in
many specific applications. For example, the moving persons
or vehicles in a surveillance video could be segmented by the
background modeling and subtraction algorithms. One of such
examples is shown in Fig. 3, in which foreground objects are
segmented by a low-complexity background modeling method
[8]. Despite still not very perfect, the segmented objects are
good enough for detection and recognition tasks. In this case,

Fig. 3. Example of foreground objects segmented by a low-complexity back-
ground modeling method [8], where red grids indicate the objects (small red
grids means texture details), green ones are background, while blue ones are
ambiguous.

TABLE IV
Six HEVC TESTING VIDEOS USED IN OUR EXPERIMENTS

. Frame | Frame | Foreground feature
Resolution| Sequence name -
count [rate (fps)| (person count, size)
Kimono 240 24 1, large
1080P ParkScene 240 24 2, small to middle
(Class A) | b cketballDrive | 500 | 50 multiple,
variable sizes
720P Johnny 600 60 1, large
(Class E) KristenAndSara | 600 60 2, large
FourPeople 600 60 4, middle

the FCB method can be used for object representation since the
nonperfect representation is probably acceptable to the tasks.

However, the requirement of conference videos is different
from surveillance videos. To blend a conferee’s figure into a
virtual environment, his contour should be very accurate to
avoid the artifacts on the boundary. In this case, as the pure
background is often available, the foreground figures could
be accurately segmented by automatic algorithm. Thus, the
AOT method is a good choice to represent the contour with a
high precision (for virtual conference synthesizing purpose).
Although AOT needs a larger additional bitrate cost than FCB,
it is still practicable since the coding efficiency of HEVC on
conference videos is very high.

IV. TEST SEQUENCES

In the HEVC call for proposal [8], there are totally 15 video
sequences in five classes (corresponding to five typical reso-
lutions: 2560 x 1600, 1080P, WVGA, WQVGA, and 720P).
Among them, three 720P conference videos (Class E) were
replaced with three new ones in 2012 [10].

To generate the ground truth for this study, we need to seg-
ment the foreground objects manually from the videos. So we
select the 1080P and 720P sequences, which are normally used
in practice, as the representative testing videos in our experi-
ments. The selected sequences include three of the five 1080P
sequences in Class A which contain one or more persons, and
three 720P conference videos containing 1—4 persons. Table IV
shows the detailed information of all these sequences, including
the sequence name, frame count, frame rate, and foreground fea-
tures. To conduct our experiments, all the foreground persons in
each sequence are manually segmented!.

IThe binary descriptions for each sequence used in our experiments is publi-
cally available at http://mlg.idm.pku.edu.cn/resources/dataset.html.

HUANG et al.: REPRESENTING VISUAL OBJECTS IN HEVC CODING LOOP

FourPeople (720p)

Fig. 4. Key frames and the shape masks of the foreground objects in the six
experimental video sequences.

For better visualization purpose, one key frame and the cor-
responding segmented shape of the foreground objects in each
sequence are shown in Fig. 4. We can see that these sequences
used in our experiments can cover a wide spectrum of video
scenes in real-world scenarios.

+ Interms of scene types, two sequences were originally col-
lected from outdoor movies (i.e., Kimono and ParkScene),
one was from sports videos (i.e., BasketballDrive), and the
remaining three were from conference videos.

+ In terms of scene complexity, two sequences contain rel-
atively more complex scenes (i.e., BasketballDrive and
FourPeople), each with four or more persons; while the
other four correspond to simple scenes.

+ In terms of foreground object sizes, three sequences con-
tain persons of large size (i.e., Kimono, Johnny, and Kris-
tenAndSara), one contains several persons of middle size
(i.e., FourPeople), and the remaining two contain persons
of variable size.

Therefore, these selected videos are fairly representative, and

consequently the experimental results on these videos can be
well generalized to other cases.

V. EXPERIMENTAL RESULTS

In this study, four experiments are designed on the sequences
to investigate the potentialities of utilizing the variable-size
blocks in HEVC to represent foreground objects.

Fig. 5. Partition of a picture with CTBs and CBs.

+ The first experiment is to evaluate the overall cost for ob-
ject representation using the three methods, in terms of the
total bitrate increase and Bjontegaard distortion rate (BD
rate) increase on each sequence.

* In the second experiment, we aim to experimentally ana-
lyze the potential correlation between the object represen-
tation cost and the foreground proportion.

* In the third experiment, three methods are compared in
terms of the precision of object representation.

* Finally, we compare the proposed methods with a straight-
forward way to represent foreground objects, namely the
ACE (Alpha Channel Encoding) method that encodes the
binary alpha plane utilizing the HEVC coding tools as a
supplemental channel to the original video stream [5].

In our experiments, HEVC test model HM12.0 with random-ac-
cess configuration [11] is used as the basic experimental plat-
form and the anchor. To compare the three methods FCB, AOT,
and CBS in the same common conditions, this paper adopts
the CTBs+CBs combination to form a complete partition of a
picture in the experiments. The object shapes shown in Fig. 4
are all partitioned by CTBs and CBs. As an example, Fig. 5
shows a clearer version of the partition of a picture from the
“KristenAndSara” sequence.

A. Overall Bitrate Cost and BD-Rate Increase

Experimental results in Table V shows the overall object rep-
resentation cost of the three proposed methods. It is easy to no-
tice that, although the absolute bitrate increase in Class E is
much lower than that in class A, the relative percentage of BD
rate in Class E is much larger than in class A. This is mainly due
to the HEVC’s high coding efficiency for conference videos.
As we can see from Table V, the average coding bitrate of the
HEVC anchor is as small as 1009.17 kb/s for the three 720p con-
ference videos. As a result, the corresponding BD rate increase
reaches a relatively large value.

Also as shown in Table V, FCB, AOT, and CBS averagely uti-
lizes 1.57%, 3.27%, and 5.93% of the total bitrate to represent
foreground objects for sequences in class A, whereas employing
4.57%, 17.23%, and 26.93% for sequences in Class E. Among
them, FCB needs the lowest additional bitrate, while CBS pays
the highest cost for object representation. Compared with CBS,
AOT needs a reasonable bitrate increase. These results show
that in CBS, the additional shape constraint will tend to select

12 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

TABLE V
OVERALL OBJECT REPRESENTATION COSTS IN THE THREE METHODS

Anchor FCB vs Anchor (kbps) AOT vs Anchor (kbps) CBS vs Anchor (kbps)
Video Bitrate .Bitrate BD rate Abitrate BD rate Abitrate BD rate
increase increase increase increase increase increase
Kimono 2190.65 19.84 1.40% 38.89 3.10% 61.65 5.30%
ParkScene 3184.74 15.15 0.80% 26.61 1.50% 37.11 2.20%
BasketballDrive 7359.27 106.81 2.50% 190.90 5.20% 335.07 10.30%
Average results for Class A 4244.887 47.27 1.57% 85.47 3.27% 144.61 5.93%
Johnny 761.77 27.20 5.70% 79.14 19.20% 120.02 30.00%
KristenAndSara 989.05 31.03 4.50% 103.85 17.80% 162.05 28.30%
FourPeople 1276.68 33.40 3.50% 118.67 14.70% 178.92 22.50%
Average results for Class E 1009.17 30.54 4.57% 100.55 17.23% 153.66 26.93%
TABLE VI BasketballDrive
DETAILS ON THE CODING BITRATES UNDER DIFFERENT QPS — 40
(ABSOLUTE BITRATE INCREASE (KB/S) AS WELL AS BD RATE INCREASE) =
= 39
Video [QP Ar}chor [FCB vs Anchor] AOT vs An- [CBS vs Anchor g
Bitrate (%) chor (%) (%) & 38
22| 4895.96 | 26.66 (0.5%) | 40.64 (0.8%) | 64.65 (1.3%) 7
X 27| 2237.46 | 21.40 (1.0%) | 39.20 (1.8%) | 60.73 (2.7%)
K‘;‘;"' 32| 1086.65 | 17.18 (1.6%) | 38.19 (3.5%) | 61.29 (5.6%) 36
37| 542.52 | 14.13 (2.6%) | 37.51 (6.9%) |59.95 (11.1%) 35
BD rate increase 1.40% 3.10% 5.30%
22] 7390.40 [20.10 (0.3%) | 28.80 (0.4%) | 38.05 (0.5%) 34
parksel2] 320125 117.10 0.5%) | 2725 (0.9%) [36.75 (1.1%) .
oo 132] 146656 | 13.41 (0.9%) [25.85 (1.8%) | 36.66 (2.5%) 0 so00 10000 15000 20000
371 680.75 | 10.01 (1.5%) | 24.53 (3.6%) | 36.99 (5.4%) Bitrate (kbps)
BD rate increase 0.80% 1.50% 2.20% FOI]]'P(!O].]IC
22| 18236.98 [156.24(0.9%) | 195.26(1.1%) |344.11 (1.9%) 45
Bas- [77] 6558.14 [116.91 (1.8%)] 191.04(2.9%) |337.35 (5.1%) 2
b;?gri 32] 3051.60 [87.58 (2.9%) [189.15(6.2%) B29.48 (10.8%) =;= a3
ve 37| 1590.34 | 66.53 (4.2%) |188.16(11.8%)}329.34(20.7%) ¥
BD rate increase| 2.50% 5.20% 10.30%]
22] 1778.14 | 38.57 (2.2%) | 79.79 (4.5%) [120.25 (6.8%) -
27] 699.96 |[27.63 (3.9%) [79.02(11.3%) [119.49 (17.1%), ’
Johnny[32] 363.25 [22.76 (6.3%) [78.86(21.7%) [119.89 (33.0%) - s
37| 205.73 | 19.82 (9.6%) | 78.88(38.3%) [120.46 (58.6%) //
BD rate increase| 5.70% 19.20% 30.00% 35 peeeths et
— [22]2202.90 [45.42 2.1%) [104.81 (4.8%) [174.18 (7.9%)
Kris- [57] 955.95 | 31.97 (3.3%) |103.99(10.9%)|163.31(17.1%) 33 . " P s S
m_ 32| 508.05 [25.30(5.0%) [103.37(20.3%)]156.87(30.9%) : i (i :) = -
Sara 1371 289.29 | 21.42(7.4%) [103.25(35.7%)[153.83(53.2%) P
BD rate increase 4.50% 17.80% 28.30% Fig. 6. Rate-distortion curves for BasketballDrive and FourPeople.
22| 2702.70 | 49.01(1.8%) | 119.67(4.4%) [185.36 (6.9%)
27| 1283.94 | 35.32(2.8%) |118.52(9.2%)|178.22(13.9%)
FourPe|
ople 33 Z(l)g'gi ;Zggg 222‘3 i}g;ggggiﬁ; 1;7‘;28;322; Combining the results shown in Tables V and VI, we can also
5D rate inorease| - 3.50% 14.70% 22.50% find that for all the three methods, the additional bitrate increases

a block partition that does not have the minimal RD cost, in-
evitably leading to a slight increase of BD rate (2.66% for 1080P
and 9.7% for conference videos). Despite of this, the additional
bitrate paid for object representation by the three methods keeps
very low and is at the acceptable level.

Table VI further shows the details on the coding bitrates under
different QPs. Similarly, for all the three methods, the higher the
QP is used, the larger the relative percentage of bitrate increase
is paid for object representation, despite the absolute bitrate in-
crease becomes smaller. This is reasonable because the HEVC
encoder can employ much fewer bits to code a picture under a
higher QP, but the bits for object representation cannot be re-
duced significantly.

on sequences with more complex scenes (e.g., BasketballDrive
and FourPeople) are significantly larger than those on the other
sequences. As two examples, Fig. 6 shows the rate-distortion
curves for BasketballDrive and FourPeople. This finding moti-
vates us to further investigate the potential correlation between
the overall object representation cost and the foreground pro-
portion in the next experiment.

B. In-Depth Analysis According to Foreground Proportions

We have seen that the bitrate increase varies between Class A
and Class E, and also is very different for diverse sequences
within each class. For example, FCB averagely utilizes 106.81
kb/s for object representation in BasketballDrive and 19.84 kb/s
in Kimono; similarly, 190.90 kb/s and 38.89 kb/s for AOT, and
335.07 kb/s and 61.65 kb/s for CBS. That is, for all the methods,

HUANG et al.: REPRESENTING VISUAL OBJECTS IN HEVC CODING LOOP

TABLE VII

BD RATE INCREASE AND THE AVERAGE FOREGROUND PROPORTION
Video FcB | aor | cps | Foreeround
proportion

Kimono 1.40% | 3.10% 5.30% 13.26%

ParkScene 0.80% 1.50% 2.20% 2.63%

BasketballDrive 2.50% | 5.20% | 10.30% 17.06%

Johnny 5.70% | 19.20% | 30.00% 31.64%

KristenAndSara 4.50% | 17.80% | 28.30% 40.30%

FourPeople 3.50% | 14.70% | 22.50% 23.57%

there is a large bitrate gap between two sequences in a class.
Intuitively, this is because these sequences have different pro-
portions of foreground and background pixels, consequently
leading to the difference in the bitrate increase of object rep-
resentation. To validate this conjecture, we further conduct an
experiment to check whether there is a correlation between the
foreground proportion and the object representation cost for
each method.

Table VII summarizes the BD rate increase and the average
foreground proportion for each sequence. Clearly, the results to-
tally support our conjecture that the larger foreground propor-
tion a sequence has, the higher object representation cost each
method will pay. One exception is that for all the three methods,
the BD rate increase on the sequence Johnny (with 31.64% fore-
ground proportion) is larger than that on the sequence Kriste-
nAndSara (with 40.30% foreground proportion). This is mainly
due to the very low bitrate that is used for the sequence Johnny
by the HEVC encoder.

Fig. 7 plots the foreground proportions every second (totally
10 s for better visualization) for all sequences and the corre-
sponding bitrate increases for all methods. From Fig. 7, we can
further find that there is a strong correlation between the fore-
ground proportion and the corresponding bitrate increase for
each method. This indicates that the bitrate increase, on all these
sequences, varies strictly following the changes of the fore-
ground proportion every second. Despite very intuitive, this ex-
perimental observation can enlighten us to take the foreground
proportion into account as an important variable when jointly
optimizing the compression distortion and the representation
precision.

C. Comparison of Representation Precision

From Table V, we have seen that FCB needs the lowest ad-
ditional bitrate, AOT needs more bits than FCB, while CBS
pays the most cost for object representation. That is, let R(z)
be the rate cost of method z, we have R{(FCB) < R(AOT) <
R(CBS). However, here we cannot conclude that FCB is the
best choice for object representation, since the bitrate cost is
just one side of a coin. The precision of object representation is
also an important side for each method. Thus in the last exper-
iment, we further compare three methods in terms of the object
representation precision.

In the field of image segmentation and foreground subtrac-
tion, there are many metrics to evaluate the quality of the seg-
mentation results with respect to the ground-truth. Following the
segmentation task in the well-known PASCAL VOC challenge
[12], we adopt a scale-invariant metric, overlap, to measure the
precision of the object representation with different methods in

2 kbps FCB (Kimono) 30%

1.5

10%
0s

4

0 0%,
23456789108 ° I 23 456 7 8 9 10§
Fourground QP22 -#-QP27 —+QP32 QP37 Forcground —-QP22 -8-QP27 ~+-QP32 QP37

Kbps AOT (Kimono) Kkbps -
3 Kbps 30% | OPS AOT (ParkScene) o
f= 20% 2 6%
2 s
4%
1S o | ! |
1 0.5
05 0% | |0 o
1 23456 7 8910 b 123 4 5 6 7 8 9108
Fourground <+-QP22 QP27 QP32 =-QP37 Foreground —-QP22 -8-QP27 QP32 ==QP37
P CBS (Kimono) 0% [3KPPs CBS (ParkScene) o
3
4 20% 25 %4
2
i i 4%
) 0% |
05 -
0 0% | |0 0%
1 2 3 4 5 6 7 8 69 10s 1 23 4 5 6 7 8 9 10s
Fourground ~+-QP22 -8-QP27 QP32 —=-QP37 Foreground —-QP22 -#-QP27 QP32 QP37

(2) (b)

30% ‘ kbps

kbps FCB (BasketballDrive) 0.8

Vi FCB (Johnny)
3 20% [06
2

/

. /—m\._:\/\ 10%

0% o,
45678 9108 0 30%

. . 2 e 12345678 9108
Fourground ~+- QP22 -8QP27 ~+-QP32 +-QP37 Fourground ~-QP22 -8-QP27 ~+ QP32 =—QP37
o v kbps ;

4s AOT (BasketballDrive) 30% |15 s AOT (Johnny) 33
4
200 |14 S
p-5 13
3 04, 31%
25 0%

1234567809 w05 1 " 30%
Fourground+QP22-8-QP27 -+ QP32--QP37 firound QP2 QU7 QP2 QST
el ive kbps !

- CBS (BasketballDrive) . | KPS CBS@ohmny) 4y,

8

7 20! 2 ._..M 329
v

s 10 1 31

5

4 0 0 . 30°

12345678910 123 456 7 8 9 108
Fourground ~+-QP22 QP27 QP32 QP37 Fourground ~+-QP22 -8-QP27 ~+-QP32 ~-QP37

(©) d)

Jops FCB (KristenAndSara) ., |

.8
0 \/\,\ > i
o6 ‘\A’.\‘\‘_‘/

i .
o4 SRR L LR *™

0.2 36% 02 20%

1 23 4567 8 910s ll}liln?x‘lll)s‘
Fourground QP22 -#-QP27 ~+-QP32 =+~QP37 0 round ~+-QP22 -#-QP27 -+-QP32 +=QP37
kbps _ AOT (KristenAndSara) ., | ,I“*'“ AOT (FourPeople) 26%
1.9 0% | 2 24%
1.8
g% |19 22%
1.7
vl |18 20%
L6 3% 122345678 9 10s

34567 85105
Fourgrouad ~-QP22 -#-QP27 QP32 QP37 Fourground—+QP22-#-QP27 -+ QP32-+QP37

kbps CBS (KristenAndSara) e CBS (FourPeople)
34 429 34 26%

2.2 36% 2.6 20%
1234567809108 1'2345678910s
Fourground ~+-QP22 -8-QP27 ~+QP32 ~-QP37 Fourground --QP22 -#-QP27 —+ QP32 ~-QP37

(©) ®

Fig. 7. Foreground proportion and bitrate increase every second. (a) Kimono.
(b) ParkScene. (c) BasketballDrive. (d) Johnny. (e) KristenAndSara.
(f) FourPeople.

our experiments. For a give frame, let G be the set of the ground
truth, S be the set of pixels which are marked by the object rep-
resentation method as foreground, then the overlap can be cal-
culated by

_[Gns|

Overlap(S,G) = GUS|

2

14 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

Overlap (Kimono) Overlap (ParkScene)

2 27 32

BFCB ®AOT & CBS

L00%

5% Q0%
W

K5%
85%

K%
§0%
5% 75%
0% 70%

2 27 12

BFCB ®AOT & CBS

7 O

Overlap (BasketballDrive)

95% 95%

0% W

R5% §5%

80% 507

75% 75%

0% W
2 27 32

37 Qr

Overlap (Johnny)

2 27 32

®FCB mAOT & CBS

37 QP
®FCB ®AOT & CBS

Overlap (KristenAndSara)

& Y
95% 95%
0% W
83% §5%
B0Ph 0%
7% 75%
0% e

22 27 32

®ICB®AOT & CBS

Overlap (FourPeople)

22 27 32

BICB ®mAOT & CBS

37 Qr

Fig. 8. Histograms of average overlaps for different methods on each sequence
under different QPs.

where | X | denotes the number of elements in the set X . Then
we can calculate the representation precision for each method
on a given sequence by averaging the overlaps on all frames in
that sequence.

Following this, we further conduct an experiment to evaluate
the precision of object representation for each method. Fig. 8
shows the histograms of average overlaps for different methods
on each sequence under different QPs, while Table VIII sum-
marizes their average values of all QPs. We can see that AOT
and CBS have the same precision of object representation, both
much better than FCB. This is because FCB determines the
CB size by the mode decision process with minimizing the RD
cost. Therefore, the decided CB might contain both foreground
and background pixels. In such a case, no matter what it was
marked as foreground or background CB, the overlap would
be decreased. Instead, AOT and CBS can describe the objects
shape exactly. The reason for the precision is not 100% is that
the smallest block employed in the experiments is 8 x 8 CB.
Theoretically speaking, the precision of AOT and CBS is 100%
if the smallest block employed is one pixel. Similar observa-
tions can be found in Fig. 8, where the representation precision
of AOT and CBS keeps unchanged for different QPs, while that
of FCB decreases gradually with the increase of QP.

By summarizing the above two cases, we can safely conclude
that O(AOT) = O(CBS) > O(FCB), where O(x) denotes
the overlap of method = and can be used to measure its object
representation precision.

In summary, FCB is a straightforward method to extend the
HEVC framework to represent visual objects, with the lowest
additional bitrate. Instead, both AOT and CBS can be used to
more accurately represent visual objects in the HEVC coding
loop, despite they consume slightly more additional bits than

TABLE VIII
AVERAGE OVERLAPS FOR DIFFERENT METHODS ON EACH SEQUENCE
Video FCB AOT CBS
Kimono 93.68% 97.42% 97.42%
ParkScene 86.88% 93.14% 93.14%
BasketballDrive 90.24% 95.91% 95.91%
Johnny 93.27% 97.83% 97.83%
KristenAndSara 91.77% 97.69% 97.69%
FourPeople 84.32% 96.25% 96.25%
Average 90.03% 96.37% 96.37%
TABLE IX
OVERALL BIT COSTS AND OVERLAPS OF ACE AND FCB
ACE vs Anchor FCB vs Anchor
Video .Bitrate BD rate .Bitrate BD rate
increase increase Overlap | increase increase Overlap
(kbps) (kbps)
Kimono 7.61 0.60% | 85.51% | 19.84 | 1.40% | 93.68%
ParkScene | 8.20 0.40% |59.68% | 15.15 | 0.80% | 86.88%
Basket- | 3, 65 1 0.60% | 71.03% | 106.81 | 2.50% | 90.24%
ballDrive
Johnny 9.94 2.30% |94.84% | 27.20 | 5.70% | 93.27%
Kris- 11110 | 1.70% [93.51%| 31.03 | 4.50% | 91.77%
tenAndSara,
FourPeople| 11.41 1.30% | 88.02% | 33.40 | 3.50% | 84.32%
Average | 13.313 | 1.15% |82.10% | 38.905 | 3.07% |90.03%

FCB. Moreover, since the block splitting procedure is to jointly
optimize compression efficiency and object representation, CBS
provides a potential choice for further enhancing the object-
based coding in HEVC (e.g., using a smaller QP for objects than
background).

D. Comparison With the Alpha Channel Encoding Method

As discussed in Section II, despite several methods were pro-
posed to represent visual objects in the coded stream such as
MPEG-4 boundary coding [1] and ST-SPIHT [7], there is few
work so far that utilizes the quadtree structures in HEVC for the
purpose. Similar to [5], we implement a straightforward method
that encodes the binary alpha plane utilizing the HEVC coding
tools as a supplementary video stream of the original video.
Here we call this method as ACE (Alpha Channel Encoding).
Thus, the final experiment is to compare the proposed methods
with ACE. The experimental result is shown in Table IX. For
simplicity, here we use only FCB as the representative in the
comparison since FCB is also a straightforward method to ex-
tend the HEVC framework for object representation.

From Table IX, the average bitrate increase in ACE is
smaller than FCB because ACE utilizes the techniques of
intra-/inter-picture prediction, quantization and scaling, trans-
form, etc. However, ACE also induces a significant loss in
object representation, especially on the videos of Class A.
On all the sequences, the representation precision of FCB
outperforms that of ACE by about 8% on average. For the
purpose of representing objects, the precision is more important
if the bit cost is not large. Therefore, FCB should be a more
appropriate method than ACE for visual objects representation
in HEVC. Similar conclusion can also be applied to AOT and

HUANG et al.: REPRESENTING VISUAL OBJECTS IN HEVC CODING LOOP

Video [Frame ID| Picture FCB
60 | ‘ | -
B : -
Basket- T
ballDrive
365
i e -
90 - - -
- -
Four
People
426 ’
u
B -

Fig. 9. Subjective quality comparison of different representing methods.

CBS because their representation precision is even better than
FCB.

To subjectively compare the representation quality among the
proposed three methods and ACE, Fig. 9 visualizes some object
representation results of different methods on several frames
from two testing sequences with complex scenes (e.g., Basket-
ballDrive and FourPeople). We can see that among the four
methods, the representation quality of AOT and CBS is def-
initely the best on all these frames. Meanwhile, the represen-
tation quality of FCS is significantly better than ACE on the
frames of BasketballDrive; but on the frames of FourPeople,
their difference is visually imperceptible. It should be noted
that on the frames of both two videos, the representation results
of ACE have a remarkably serrated border. Clearly, these ob-
servations are consistent with the quantitative results shown in
Tables VIII and IX.

VI. CONCLUSION

This paper proposes to reuse the key coding tools in HEVC
originally designed for compression to represent the foreground
objects with arbitrary shape. By employing the variable-size

EIEIEERE P

AOT

CBS ACE

EIEIEERE P
EEEEEE D

blocks and the entropy coding tool, we have investigated three
methods which can represent and encode the object shape in the
HEVC coding loop with a small bitrate cost. The main contri-
butions of this paper can be summarized as follows.

1) For the first time, we discovered the new usage of the
HEVC coding besides the compression. That means HEVC
can be extended to represent the shape of visual objects in a
video without additional coding tools, at a reasonably low
cost on bitrate increase.

2) Three specific methods are proposed to represent visual ob-
jects in the HEVC coding loop. The experimental results on
six manually segmented 1080P or 720P videos show that
all the methods can be potentially applicable for different
practical applications.

From a more general view, FCB, AOT, and CBS proposed in
this paper are three typical methods to accurately represent vi-
sual objects in the video pictures (at the smallest block level). If
the distortion on the representation is allowed to a larger vari-
able range, the bitrate cost can be further reduced, especially
when the representation precision is considered as a parameter
in the distortion model for the whole picture.

16 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 1, MARCH 2014

Moreover, in our experiments, the smallest block flagged as
inside-block is the 8 x 8 CU. It is possible to employ 4 x 4
blocks by flagging leaf TUs or PUs to better fit the object shape.
If necessary, the object tree can be further split till to the pixel
level to perfectly fit the object contour. This is another valuable
area to study in the future.

For the applications sensitive to the bitrate cost, there are
many ways to reduce the bitrate. One straightforward method
is to make use of the correlation between the shapes of objects
in the neighbor pictures with the intra-/inter-picture prediction
tools. Another way is to optimize the HEVC entropy coding
tool. Currently, to compress the additional bits for object rep-
resentation, the context model for the coding tree is reused with
the same initial parameters. Obviously, a better context model
that reflects the statistical characteristics can further reduce the
bitrate cost.

Even though this study is based on the manually-segmented
ground truth, the experimental results can still inspire us to in-
vestigate the relation between video compression and visual
object recognition such that they can share the same coding
module at the representation level. As the cost for the object
representation in HEVC is relatively low, it is worth taking into
account the automatic object detection and representation in the
high efficient coding framework. One solution is to merge the
precision of object representation and the distortion of object
region coding into a unified criteria for picture distortion eval-
uation, thus the coding efficiency, the object representation and
the visual quality of the object regions can be jointly optimized
in a new rate-distortion model.

According to the evidence revealed in this paper, the visual
object representation is worth being one of the prior options for
the extension of the HEVC standard. The new capability will
enlarge the applications of HEVC from compression to a wide
spectrum of machine vision tasks.

REFERENCES

[1] Coding of audio-visual objects—Part 2: Visual Apr. 1999, ISO/IEC
JTC 1, ISO/IEC 14496-2 (MPEG-4 visual ver. 1).

[2] H. G. Musmann, M. Hotter, and J. Ostermann, “Object-based anal-
ysis-synthesis of moving images,” Image Commun., vol. 1, no. 2, pp.
117-138, 1989.

[3] High Efficiency video coding (HEVC) text specification draft 10 (for
FDIS & consent) Jan. 2013, JCT-VC, doc. JCTVC-L1003.

[4] G.J.Sullivan,J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[5] M. Naccari and M. Mrak, “Binary alpha channel compression for
coding of supplementary video streams,” in Proc. IEEE Int. Workshop
Multimedia Signal Process., Sep. 2013, pp. 200-205.

[6] F.Pereira and T. Ebrahimi, The MPEG-4 Book. Upper Saddle River,
NJ: Prentice-Hall, Jul. 2002.

[7] K. Martin, R. Lukac, and K. N. Plataniotis, “SPIHT-based coding of
the shape and texture of arbitrarily shaped visual objects,” IEEE Trans
Circuits Syst. Video Technol., vol. 16,no. 10, pp. 1196-1208, Oct. 2006.

[8] X. Zhang, Y. Tian, T. Huang, and W. Gao, “Low-complexity and
high-efficiency background modeling for surveillance video coding,”
in Proc. IEEE Int. Conf. Vis. Commun. Image Process., Nov. 2012,
pp. 1-6.

[9] Joint call for proposals on video compression technology Jan. 2010,
ITU-T and ISO/IEC JTC 1, ITU-T SG16/Q6 VCEG-AM91 and
ISO/IEC MPEG doc. N11113.

[10] Common conditions and software reference configurations Feb. 2012,
JCT-VC, joint collaborative team on video coding (JCT-VC) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, doc. JCTVC-H1100.

[11] High efficiency video coding (HEVC) test model 12 (HM12) encoder
description Aug. 2013, JCT-VC, JCT-VC N1002.

[12] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, The PASCAL visual object classes challenge 2009
(VOC2009) results [Online]. Available: http://www.pascal-net-
work.org/challenges/VOC/voc2009/workshop/index.html

Tiejun Huang (M’01-SM’12) received the B.S.
and M.S. degrees in computer science from Wuhan
University of Technology, Wuhan, China, in 1992
and 1995, respectively, and the Ph.D. degree in
pattern recognition and intelligent system from
Huazhong (Central China) University of Science
and Technology, Wuhan, China, in 1998.

He is a Professor of the School of Electronic
Engineering and Computer Science, the Director of
the Institute for Digital Media Technology, Peking
University. His research area includes video coding,
image understanding, digital right management (DRM), and digital library. He
published more than 100 peer-reviewed papers and three books as author or
co-author.

Prof. Huang is a member of the Board of Directors for Digital Media Project,
the Advisory Board of IEEE Computing Now, and the Board of Chinese Institute
of Electronics.

Siwei Dong received the B.S. degree from
Chongqing University, Chongqing, China, in
2012. He is currently working toward the Ph.D.
degree at the School of Electrical Engineering and
Computer Science, Peking University, Beijing,
China.

His research interests include surveillance video
coding and multimedia learning.

Yonghong Tian (M’05-SM’10) received the Ph.D.
degree from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China, in
2005.

He is currently a Professor with the National
Engineering Laboratory for Video Technology,
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China. His re-
search interests include computer vision, multimedia
analysis, and coding. He is the author or coauthor
of over 100 technical articles in refereed journals

—
and conferences. He is currently a Young Associate Editor of the Frontiers of
Computer Science in China.

Dr. Tian a member of the IEEE TCMC-TCSEM Joint Executive Committee
in Asia (JECA).

