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Abstract

Traditional nonlinear feature selection methods map
the data from an original space into a kernel space to
make the data be separated more easily, then move back
to the original feature space to select features. How-
ever, the performance of clustering or classification is
better in the kernel space, so we are able to select the
features directly in the kernel space and get the direc-
t importance of each feature. Motivated by this idea,
we propose a novel method for unsupervised feature s-
election directly in the kernel space. To do this, we u-
tilize local discriminative information to find the best
label for each instance with L2,1-norm minimization,
then select the most important features in the kernel s-
pace using the labels predicted. Extensive experiments
demonstrate the effectiveness of our method.

1. Introduction

In recent years, feature selection has received an in-
creased interest in the machine learning community.
Given huge of features, it will take a long time for clus-
tering and classification. However, some of the fea-
tures can even be noise which will hurt the performance.
With feature selection, we can remove irrelevant and re-
dundant features for data analysis.

Based on whether the label information is available
or not, feature selection problems can be classified into
unsupervised feature selection and supervised feature s-
election. Supervised feature selection algorithms usual-
ly evaluate the importance of each feature according to
the label information [6]. With label information, they
can select discriminative features. However, in practice,
unlabeled data is massive thus labeling them is expen-

sive. Thus unsupervised feature selection algorithms
are paid more and more attention for its unnecessary
cost of labeling data manually. In unsupervised learn-
ing algorithm, selecting the features to preserve the da-
ta similarity is a common criterion [2]. However, dis-
criminative information is always neglected though it
has been demonstrated important in data analysis [4].
Yang et al. [9] tried to use discriminative information in
unsupervised feature selection and it works well.

As a linear feature selection algorithm, [9] is con-
ducted in the original input space, but can not work well
on the nonlinear data. So we want to use kernel methods
to improve it. Kernel methods [1][5] map the data from
an original space into a kernel space to make the data
be separated more easily, then move back to the origi-
nal feature space to select features. As the performance
of clustering or classification is better in the kernel s-
pace, we are able to select the features directly in the
kernel space and get the direct importance of each fea-
ture. FSGP[3] tries this approach and works well, but it
can only deal with the supervised learning problem.

In this paper, we propose a novel method for unsu-
pervised feature selection directly in the kernel space.
To do this, we utilize local discriminative information
to find the best label for each instance with L2,1-norm
minimization, then select the most important features
directly in the kernel space using the labels. Finally, we
cluster the data in the kernel space with the selected fea-
ture set to evaluate our approach. We conduct extensive
experiments over several datasets to prove the effective-
ness of the proposed algorithm.

The paper is organized as follows. In Section 2, we
briefly review the unsupervised discriminative method.
In Section 3, we introduce our newly proposed kernel
method. The experimental results are provided in Sec-
tion 4, and a brief conclusion is presented in Section 5.



2. Unsupervised Discriminative Feature Se-
lection

The unsupervised discriminative method UDFS [9]
incorporates discriminative analysis and L2,1-norm
minimization into a joint framework for unsupervised
feature selection. It handles the feature-dependency
problem successfully. In the following, we briefly re-
view UDFS, then present our algorithm to extend it in a
kernel space in Section 3.

Denote X = {x1, x2, ..., xn} as the training set,
where xi ∈ Rd(1 ≤ i ≤ n) is the i-th datum
and n is the total number of training data. Y =
[y1, y2, ..., yn]T ∈ {0, 1}n×c is the label matrix. The
total scatter matrix St and between class scatter matrix
Sb are defined as follows [4].

St =

n∑
i=1

(xi − µ)(xi − µ)T = X̃X̃T

Sb =

c∑
i=1

ni(µi − µ)(µi − µ)T = X̃GGT X̃T

where µ is the mean of all samples, µi is the mean of
samples in the i-th class, ni is the number of samples in
the i-th class. Hm = I − 1

m1m1Tm ∈ Rm×m and X̃ =
XHn is the data matrix after being centered. Denote
G = [G1, ..., Gn]T = Y (Y TY )−1/2 as the scaled label
matrix.

In the unsupervised problem, there is no label infor-
mation. Hence, UDFS assumes that there is a linear
classifier W ∈ Rd×c which classifies each data point
into a class. So define the scaled label matrix as

Gi = WTxi (1)

If some rows ofW shrink to zero,W can be regarded as
the combination coefficients for different features that
best predict the class labels of the training data. L2,1-
norm ‖W‖2,1 minimization [6] can achieve this.

Define the local discriminative score DS =
Tr[(St + λI)−1Sb]. Clearly, a larger DS indicates a
higher discriminative ability of W . UDFS intends to
train a W corresponding to the highest discriminative
scores for all the training data x1, ..., xn. Therefore
the objective function is minWTW=I{Tr(GTHnG) −
DS+γ‖W‖2,1} where ‖W‖2,1 =

∑r
i=1

√∑p
j=1 w

2
ij .

Taking local discriminative information into accoun-
t, we denote Xi = [xi, xi1 , ..., xik ] for each data point
xi as the local data matrix. Si ∈ {0, 1}n×(k+1) is the
selection matrix to choose the k nearest points.

Finally, the objective function is shown as

min
WTW=I

Tr(WTMW ) + γ‖W‖2,1 (2)

where

M = X[

n∑
i=1

(SiHk+1(X̃T
i X̃i + λI)−1Hk+1S

T
i )]XT

Denote wi as the i-th row of W . UDFS ranks each fea-
ture fi|di=1 according to ‖wi‖2 in a descending order
and selects top ranked features. More details can be
found in [9].

3. Unsupervised Discriminative Feature Se-
lection in a Kernel Space

3.1. Objective Function

Now we discuss how to extend UDFS into a kernel
space. We want to map the data from an original space
into a kernel space as ϕ : x −→ F , making the data
be separated more easily, then perform feature selection
directly in the kernel space.

Denote ϕ(X) = [ϕ(x1), ϕ(x2), ..., ϕ(xN )], and as-
suming that the transformation matrix in (2)

W = [ϕ(x1), ϕ(x2), ..., ϕ(xN )]W̃ = ϕ(X)W̃ (3)

As we know, k(xi, xj) = ϕ(xi)
T ·ϕ(xj) is the inner

product of data pairs, and K = ϕ(X)Tϕ(X) is the ker-
nel Gram matrix with Kij = ϕ(xi)

T · ϕ(xj). For (2),
we have:

WTMW = (ϕ(X)W̃ )TM(ϕ(X)W̃ ) = W̃T M̃W̃

where M̃ = ϕ(X)TMϕ(X).
Based on kernel matrix K, we can calculate the dis-

tance d(i, j) = K(i, i) + K(j, j) − 2K(i, j) in the
kernel space. Based on distance d, we can find the
k-nearest instances and get ϕ(X̃i). Then we denote
K̃i = ϕ(X̃i)

Tϕ(X̃i). So the objective function (2) can
be rewritten as

min
W̃T W̃=I

Tr(W̃T M̃W̃ ) + γ‖W̃‖2,1 (4)

where

M̃ = K[

n∑
i=1

(SiHk+1(K̃i + λI)−1Hk+1S
T
i )]K

3.2. Feature Selection

We can select features directly in the kernel space
using W̃ . Now we get the optimal W̃ , and

Gi = WTϕ(xi) = [ϕ(X)W̃ ]Tϕ(xi) = W̃Tψ(xi)



where ψ(xi) = ϕ(X)Tϕ(xi).
Based on ψ, we map the instances into a kernel s-

pace, and select features directly in the kernel space.
Actually, the ith feature inψ kernel space is the similari-
ty between the ith instance and each of all the instances.
Then we sort each feature according to the ith row of W̃
in a descending order and select the top ranked ones in
the ψ kernel space.

3.3. Optimization

In this section, we use the approach [6] to solve the
optimization problem shown in (4). We describe the
details in Algorithm 1 as follows.

Algorithm 1:
for i = 1 to n do
Bi = (K̃i + λI)−1

Mi = SiHk+1BiHk+1S
T
i ;

end
M = K(Σn

i=1Mi)K;
Set t = 0;
Initialized D0 ∈ Rd×d as an identity matrix;
repeat
Pt = M + γDt;
W̃t = [p1, ..., pc] where p1, ..., pc are the
eigenvectors of Pt corresponding to the first c
smallest eigenvalues;

Dt+1 =


1

2‖w̃1
t ‖2

. . .
1

2‖w̃dt ‖2

;

t = t+ 1;
until
Sort each feature f̃i|di=1 according to ‖w̃i

t‖2 in
descending order and select the top ranked ones in
the kernel space.

4. Experiments

To evaluate the proposed method, we compare it
with the linear approach (UDFS[9]), and other nonlin-
ear algorithms (Kernel PCA[8], Kernel Kmeans[7]), on
3 real-world datasets downloaded from DAT Reposito-
ry1 (the data are given in 100 predefined splits), name-
ly, thyroid, german, diabetis, and 3 datasets down-
loaded from UCI Machine Learning Repository2, name-
ly, Wisconsin Diagnostic Breast Cancer (wdbc), Johns

1http://ida.first.fhg.de/projects/bench/benchmarks.htm
2http://archive.ics.uci.edu/ml/
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Figure 1. Distance Ratio

Hopkins University Ionosphere database (ion), SPECT
heart data (spect). All the datasets have two classes.

In our experiment, each feature selection algorith-
m is first performed to select features. Then K-means
clustering algorithm is performed based on the selected
features. It is repeated 10 times with random initializa-
tions, and we report the average results. For calculating
accuracy (ACC) of clustering, we choose the best map-
ping that permutes clustering labels to match the ground
truth labels using the Kuhn-Munkres algorithm. A larg-
er ACC indicates better performance.

4.1. Distance Ratio

We first use distance ratio [3] to show that our
method uses much discriminative information. The s-
maller the distance ratio is, the easier it is for the data
to be separated.

The experiment is done on the dataset ion. We apply
our method to RBF kernel, with σ = 1. Figure 1 shows
the relationship between the number of features and the
distance ratio. The red line shows the distance ratio
against the number of selected features in the dataset.
After using our method, we sort the features according
to the predict importance in descending order, and the
blue line shows the ratio against the number of selected
ordered features. Taking all the features in the kernel
space into account, we draw the dashed line.

From blue line, we can see that the distance ratio is
very small against the first few features. It approves that
the first few ordered features contain more discrimina-
tive information than the unordered ones.

4.2. Comparison with Linear Methods

In this experiment, we compare our method with the
linear approach UDFS[9] to show that it can work better
on nonlinear datasets.

For UDFS and our method, we fix k, which spec-
ifies the size of neighborhood, at 5, and γ = 10−3,
λ = 103 (the values are default in the code download-



ed from Yang[9]’s website) for all the datasets. We ap-

ply our method to RBF kernelK(xi, xj) = e
−‖xi−xj‖

2

2σ ,
with σ = const ∗D, where D is the maximum distance
between samples and const varies in the range of [0.1,
2.0].

Here we only set the number of selected features as
{1, 2, ..., d} for all the methods, and d is the dimension
of original space. Actually, the dimension of kernel s-
pace is far more than d. Hence better accuracy in the
result proves the effectiveness of our method. We report
the best results of all the algorithms using different pa-
rameters. Table 1 shows the accuracy for each dataset.
We can see that our method achieves better performance
than the linear approach UDFS.

Table 1. Accuracy of Clustering
Dataset All Features UDFS Ours
thyroid 78.7 78.5 92.8
german 53.6 67.1 69.6
diabetis 68.3 68.6 69.6
wdbc 85.4 88.7 90.8
ion 71.2 71.2 76.6
spect 56.1 60.6 84.2

4.3. Comparison with Nonlinear Methods

In this experiment, we compare our method with
other nonlinear approaches (Kernel PCA[8] and Kernel
Kmeans[7]) to show that it can work better.

We consider all the features for Kernel-Kmeans and
select features using Kernel PCA and our method. To
fairly compare different nonlinear unsupervised algo-
rithms, we use the RBF kernel with σ = 1 for all the
methods, and we only tune the parameters γ and λ from
{10−3, 1, 103} for our method.

Figure 2 shows the accuracy for each dataset. The
X-axis is the number of selected features, and the Y-
axis is the predictive accuracy of clutering. From these
experimental results, we observe that using the first few
features can indeed improve the clustering accuracy and
the proposed method works better than other nonlinear
approaches.

5. Conclusion

In this paper, we propose a novel method for unsu-
pervised feature selection directly in the kernel space. It
works well based on the importance of each feature in
the kernel space. The experimental results demonstrat-
ed that the proposed algorithm performs well in both
selecting relevant features and removing redundancy.
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Figure 2. Accuracy of Clustering
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