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ABSTRACT

In this paper, we propose a novel light field image compres-
sion scheme by exploiting the intrinsic similarity of light field
images with deep learning. In particular, instead of convey-
ing all LF sub-views, only sparsely sampled LF sub-views are
compressed and the remaining sub-views are reconstructed
from the coded sub-views in the neighbourhood with convo-
lutional neural network (CNN). To jointly suppress the arti-
facts induced in compression and reconstruct the un-coded
views with high geometric accuracy, a multi-view joint en-
hancement network is introduced to improve the coding per-
formance. Extensive experiments show the superior compres-
sion performance of our scheme compared with the state-of-
the-art methods.

Index Terms— Light field, image coding, view recon-
struction, deep learning

1. INTRODUCTION

Recently, the Light Field (LF) images have attracted tremen-
dous attentions due to its capability in representing abundant
information of the 3D environment. In particular, LF images
record the intensity of the light ray at each direction as well
as each spatial position. As such, the rich information about
the light rays beyond the traditional imaging methods pro-
vides amazing imaging functionalities, such as digital refo-
cusing and viewpoint changing. Moreover, numerous regular
image processing methods [1] can also benefit from the depth
or other geometric information derived from LF images.

However, one major obstacle regarding the application of
LF images is that the recorded information of the light rays
in the LF images is represented in an inefficient way. Two
major LF imaging devices are the camera array [2] and the
lenslet-based cameras(e.g., Lytro [3]) where micro-lens are
introduced to capture individual lights rays. These imaging
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Fig. 1. Illustration of the original lenslet image and the de-
composed sub-views.

devices store plenty of redundant information about the light
rays in the same scene, leading to strong inter-view correla-
tion. This is creating a grand challenge for the storage and
transmission of the LF images. Hence, the high efficiency
compression methods of LF images are highly desired.

With the standardization progress of JPEG Pleno [4],
there is a tremendous interest in developing the compres-
sion algorithms of the LF images. As shown in Fig. 1, the
captured LF images can be decomposed into multiple sub-
views to better express the intrinsic structure of the LF im-
ages. Liu et al. [5] reordered the sub-views into a pseudo se-
quence which can be efficiently compressed by the advanced
video compression methods such as HEVC [6]. To fully ex-
ploit the intrinsic geometry between the LF sub-views, Chen
et al. [7] proposed a disparity guided sparse coding method.
Zhao et al. [8] proposed a sparse sampling method with the
linear approximation prior to utilize the similarity between
the sub-views, which achieves significant compression per-
formance improvement. However, the linear prior is not ac-
curate enough to describe the correlation between the view-
points, such that better characterization of the relationship
between the sub-views is desired to further improve the com-
pression performance.

Recently, deep learning has presented amazing advan-
tages in dealing with the complex non-linear tasks such as im-
age classification [9], image super-resolution [10], etc. More-
over, the deep neural network has also been recognized as a
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Fig. 2. The architecture of the proposed deep learning based light field images compression.

powerful tool for image and video compression. Yu et al. [11]
proposed a deep learning based method in order to reduce
various compression artifacts, which achieves significant vi-
sual quality improvement. In [12], the performance of the
loop filter is further boosted using deep neural network. Re-
garding LF images, Kalantari et al. [13] presented a CNN-
based approach for view synthesis from a sparse set of in-
put views, which shows great potential for the application of
deep learning in LF sub-views rendering. Wang et al. [14]
presents a temporal interpolation method of the LF sub-views.
However, in these methods the influence of the coding distor-
tion [15, 16] introduced by video compression has not been
taken into consideration, such that it is impractical to directly
apply these approaches in the LF image compression.

In this paper, we propose a deep-learning based coding
scheme to improve the performance of the LF images com-
pression. By taking advantage of the similarity between
neighbouring viewpoints, the sparsely sampled sub-views are
rearranged into a pseudo sequence and encoded by the video
codec. The other un-coded sub-views are reconstructed non-
linearly via convolutional neural networks. Considering only
the reconstructed sub-views are obtained at the decoder, a
multi-views joint enhancement network is applied to sup-
press the compression artifacts. The proposed enhancement
network and the view synthesis network are combined into
an end-to-end learning-based LF image compression scheme.
Experimental results show the superior compression perfor-
mance compared with the state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2
describes the proposed scheme in details. Experimental re-
sults are presented in the Section 3. Finally, we conclude the
paper in Section 4.

2. PROPOSED LF COMPRESSION FRAMEWORK

In this section, we detail the proposed light field image com-
pression framework. As shown in Fig. 2, the proposed LF im-

ages compression algorithm is composed of three major mod-
ules: light field sparse sampling, deep learning based sub-
view synthesis and multi-view joint enhancement, which are
elaborated respectively in the following subsections.

2.1. Light Field Sparse Coding

In order to better express the intrinsic characteristic of the
light field images, the original light field image with the res-
olution 7728 × 5328 are firstly decomposed into a 5-D LF
structure with the MATLAB toolbox [17]. The decomposed
LF images are composed of 15 × 15 sub-views with the res-
olution 432 × 624 × 3. Each sub-view embodies the light
intensity in one direction.

Due to the similarity of these sub-views, it may not be
necessary to compress all of them equivalently. Therefore,
we divide all of the sub-views into two categories, i.e., Scode

and Sgenerate, as described in [8], where the sub-views in
Scode are compressed while the others are generated from the
reconstructed sub-views in Scode. Firstly, the sub-views in
Scode are rearrange into a pseudo sequence and a video codec
is applied to compress them. Then, the corresponding decod-
ing operation is applied to these compressed sub-views to ob-
tain the decoded sub-views in Scode. Finally, each sub-view
in Sgenerate is generated from the neighbouring views, which
are decoded views in Scode to reconstruct all the decomposed
lenset images.

2.2. Deep Learning based Sub-view Synthesis

2.2.1. Network Architecture

In this paper, we design a six-layer convolutional neural net-
work S(x) to generate the skipped views in coding process
from the neighboring reconstructed frames as shown in Fig. 2,
where the i-th layer is denoted as L(i). The first layer L(0) ac-
cepts a multi-channel tensor where each channel corresponds
to the luma component of a neighbouring sub-view. It is



worth noting that the channel amount of the input is variant,
which is determined by the number of surrounding accessible
sub-views. All the accessible decoded sub-views are arranged
into a queue according to the clockwise order from current
viewpoint. The last layer outputs an non-linear approxima-
tion of the current un-coded view.

In our network, each convolutional layer consists of 64
convolutional kernels with the spatial resolution 3 × 3. The
rectified linear unit (ReLU) [18] f(x) = max{x, 0} is
adopted as the non-linear activator for these convolutional
layers except for the last layer. Each layer extracts multiple
features by convoluting these features in the following non-
linearly strategy:

L(i+1) = max{W (i) ⊗ L(i) + b(i), 0}, (1)
i = 0, 1, · · · , 4,

where the W (i) and b(i) correspond to the convolutional ker-
nel and bias in the ith convolutional layer. The symbol ⊗
represents the convolution operation.

Some recent research [8] has utilized the linearity of light
field images in angular domain to approximate the un-coded
sub-views with the average of the surrounding viewpoints.
However, the relationship among different sub-views is ob-
vious nonlinear due to the illuminance changes, the disparity
caused by the angular displacement and sub-view decomposi-
tion distortions. Therefore, we propose a convolutional neu-
ral network to characterize the non-linearity between these
sub-views. In order to make full use of the non-linear trans-
formation of the neural network, a skip connection adds the
average of the surrounding sub-views in the input layer to the
output layer. Moreover, the skip connection also can boost the
convergence speed of the neural network training and achieve
better performance in some other applications [9, 10]. The av-
erage of the neighbouring sub-views is added to the non-linear
residuals derived from the proposed network to generate the
un-coded sub-views in the set Sgenerate.

2.2.2. Parameter Updating

The convolutional kernels are initialized with the method de-
scribed in [18] and the biases in the proposed network are set
to zero at the beginning of the training. Since the network
takes the surrounding coded views as the inputs to generate
the un-coded sub-views, the parameter updating is formulated
by minimizing the distance between the original dropped sub-
views and the output of the neural network. Given a collection
of N training instances, the mean squared error is used as the
loss function to measure this distance. The training procedure
can be formulated as:

min
W(i),b(i)

1

N

N∑
j=1

‖S(Iuncodej )− Iorigj ‖22 (2)

Fig. 3. The difference between the CNN based synthesis per-
formance and the linear approximation with the quantization
parameters.

where the Iorigj is the corresponding dropped sub-views and
the Iuncodej is the decoded sub-views around Iorigj .

The derivation of the trainable parameters in the neural
network is calculated by the back-propagation. The learning
rate is fixed to 0.001. We use the Adam algorithm [19] with
the default hyper-parameter settings to update the convolution
kernels and biases.

2.3. Multi-view joint enhancement

2.3.1. Performance analysis for Compressed Videos

In general, the trained network is sensitive to the change of the
data characteristics. However, the compression artifacts intro-
duced by video coding usually can change the statistical prop-
erties of the sub-views, and further degrade the performance
of the neural network especially in low bit-rate scenario. In
Fig. 3, we show the performance variation of the CNN based
un-coded sub-view synthesis along with quantization param-
eters, where the X-axis represents the quantization parame-
ters and the Y-axis represents the quality improvement of the
CNN based sub-view synthesis compared with the average
of the surrounding sub-views. The performance degeneration
indicates that the coding distortions play an obvious negative
influence on the trained convolution network.

2.3.2. CNN based Multi-view Joint Enhancement

To depress the influence of the compression artifacts, we de-
sign a quality enhancement convolution network to reduce the
compression artifacts before the sub-view generation. Con-
sidering the variant distortion characteristic in different re-
constructed sub-views, we can take multiple sub-views to en-
hance the sub-view quality by reducing the compression ar-
tifacts. To deal with the complicated non-linear correlation
between these lossy sub-view images, a convolutional neural
network E(·) is utilized to jointly suppress these artifacts.



The multi-view joint enhancement network E(·) has sim-
ilar structure with the sub-view synthesis network S(·). The
E(·) is composed of six convolution layers and each layer
contains 64 convolution kernels with the shape 3 × 3. The
number of the output channels is the same as that of the input
layers. The tensor in the input layer is added to that in the
output layer to improve the performance [10].

2.3.3. Training of the Enhancement Network

Since the training data plays an important role in the training
process, we collect a large scale and diverse training samples
by downsampling more than a hundred lenslet images from
the JPEG Pleno [4]. The decomposed 5-D LF images are
sparsely sampled as the Scode and these sub-views are rear-
ranged into a pseudo sequence, which is further compressed
using HEVC (reference software HM16.5). The un-coded
sub-views and its surrounding sub-views in set Scode are used
as the training labels and the corresponding inputs. These im-
ages are cropped into the size 32 × 32 to enrich the diversity
of each training batch. All of the image values are normalized
to the unit interval [0, 1] for stable training process.

The loss function is another important factor to ensure the
CNN converge to an optimal result. In this paper, we utilize
the L2 norm distances between the enhanced sub-views and
the dropped viewpoints as the loss function to generate high
quality dropped sub-views, which can be formulated as:

distance(Ii, I
orig) =

1

N

N∑
j=1

‖E(S(Icodej ))− Iorigj ‖22 (3)

where Iorigj is the dropped views in the set Sgenerate and
Icodej is the tensor where each channel denotes one of the
neighbouring accessible coded sub-views. S(·) and the E(·)
are the sub-view approximation network and multi-view joint
enhancement network respectively. The sub-view synthesis
network S(·) works as a part of the differentiable loss func-
tion.

When training the enhancement network E(·), the mul-
tiple convolution layer in the synthesis network S(·) are ini-
tialized with the training parameters which are described in
the Section 2.2. The trainable parameters in the enhancement
network E(·) are initialized using the random method [18]
and are updated with the same gradient descent method
Adam [19]. The parameters in the synthesis network S(·)
do not change during the training process of the enhance-
ment network. The synthesis network S(·) and the enhance-
ment network E(·) are combined into an end-to-end network
framework, which enhances the coded sub-views in the set
Scode and make full use of the self-similarity between these
sub-views to reconstruct the dropped sub-views in the set
Sgenerate.

Table 1. Quality improvement of the proposed scheme com-
pared with the algorithm with the linear prior [8] (dB).

Test Images QP=22 QP=27 QP=32 QP=37

Vespa 0.44 0.34 0.26 0.23

Bikes 0.56 0.38 0.28 0.23

Color Chart 1 0.79 0.61 0.52 0.59

Danger de Mort 0.49 0.35 0.25 0.22

Desktop 0.45 0.35 0.24 0.18

Flowers 0.46 0.33 0.24 0.16

Friends 1 0.15 0.12 0.09 0.08

ISO Chart 12 0.91 0.85 0.73 0.62

Magnets 1 0.25 0.22 0.22 0.24

Stone Pillars

Outside
0.30 0.19 0.11 0.08

Ankylosaurus &

Diplodocus 1
0.27 0.20 0.15 0.17

Fountain &

Vincent 1
1.02 0.73 0.47 0.28

3. VALIDATIONS

3.1. Testing Condition

The test images are from the JPEG Pleno Call for Pro-
posal [20] and all test images are downloaded from the EPFL
LF dataset. It is worth noting that there is no overlap be-
tween training data and testing data. The lenslet images are
decomposed into multiple sub-views with the spatial shape
15 × 15 × 434 × 542 × 3 using the MATLAB Light Field
(LF) toolbox 0.4 [17]. Only the internal 11 × 11 sub-views
are adopted because of the significant decomposed distortion
of the other sub-views. The bit depth of these sub-views is 10
bits and the color space is RGB 422.

To demonstrate the performance of the proposed scheme,
we compare the proposed scheme with two state-of-the-art
methods. The first one (anchor-1) is rearranging all sub-
views into a pseudo sequence following the serpentine or-
der [5], such that the LF image can be compressed in terms of
video sequences. Another compared algorithm (anchor-2) is
the light field compression with the linear approximation [8],
which achieves the state-of-the-art compression performance
of the Light Field images. The pseudo video sequences are
encoded by the reference software (HM-16.15) of the HEVC
standard with the encoder lowdelay main10 (LDB) config-
uration.

Instead of compressing all sub-views, our proposed
method reorders only 61 sub-views in the set Scode into a
pseudo video sequence, such that only half of the sub-views
are compressed. The pseudo sequences are encoded with the



same testing condition as the above anchor algorithms. The
sub-view synthesis network and the multi-view joint enhance-
ment network are trained with the Caffe package and the net-
works are called with the trained convolution kernels and bi-
ases for our proposed scheme. The proposed neural network
is only responsible for generating the luminance component
and the chroma components are obtained by averaging the
surrounding corresponding components.

We compare different algorithms with the average PSNR
measure, which is calculated following JPEG Call for Pro-
posal [20],

PSNRY UV (I, Iref ) =
6

8
× PSNRY (I, Iref ) (4)

+
1

8
× PSNRU (I, Iref ) +

1

8
× PSNRV (I, Iref )

3.2. Experimental Results

The rate-distortion performance of our proposed scheme is
shown in Fig. 4. From Fig. 4, we can observe that the deep
learning based sub-view synthesis scheme performs signif-
icantly better than the pseudo sequence compression algo-
rithm. The multi-view joint enhancement network can well
reconstruct the sub-views, such that the influence of the com-
pression artifacts can be alleviated and the performance can
be boosted beyond the sub-view synthesis network, which il-
lustrates the efficiency of our proposed scheme. More de-
tailed experimental results are elaborated in the Table 1. The
comparisons are carried out between our proposed scheme
and the state-of-the-art compression algorithm via the linear
prior [8]. The results provide useful evidence on the high effi-
ciency of our deep learning based scheme, and it is shown that
our scheme can achieve up to 0.78 dB and 0.36 dB objective
quality improvement upon the linear approximation methods
at the same bit-rate. Benefiting from the powerful non-linear
representation of the convolutional neural network, our pro-
posed non-linear sub-view synthesis can well characterize the
correlation between the sub-views than the linear approxima-
tion, such that significant performance improvement of the LF
image compression can be achieved.

4. CONCLUSION

In this paper, we have proposed a CNN-based light field im-
age compression scheme. Our proposed scheme takes ad-
vantage of the intrinsic high redundancy of LF images, and
applies a non-linear deep-learning-based view synthesis net-
work to boost the performance of the LF images compres-
sion. In particular, we investigate the influence of the coding
distortion on the quality of the generated sub-views, and a
multi-views joint enhancement network is combined with the
sub-view synthesis network as an end-to-end system to gen-
erate the remaining sub-views. Experimental results demon-
strate that the proposed compression scheme can obviously

(a)

(b)

(c)

Fig. 4. Rate-distortion performance comparisons for the
testing sequence.(a) ISO Chart 12; (b) Bikes; (c) Foun-
tain & Vincent 1.



improve performance of the light field images compression
over the state-of-the-art methods.
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