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ABSTRACT

With the rapid advancement of 3D applications, depth map
super resolution has been a serious problem to be solved.
Many researches has proposed depth map super resolution
methods focusing on spatial domain which can’t produce
clear edges in the super resolution results. However, different
from color images, depth maps have clear edges along them
with internal smoothness. In this paper, we propose a nov-
el multiresolution contourlet transform fusion based depth
map super resolution method to enhance the quality of depth
maps with preserving more contour information. We first
transform the depth maps of multiple views via contourlet
transform (CT) into multiresolution coefficients. Then we
fuse the coefficients of same resolution to get the fused co-
efficients. Finally the target depth map is upscaled utilizing
the prevalent upscaling framework JBU or WMF. Depth map
fusion in transform domain is first proposed to improve the
quality of the target depth map. A CT based depth map fusion
model can not only produce sharper edges, but alleviate the
noise in the depth map. Experimental results demonstrate
that our proposed method outperforms many state-of-the-art
algorithms in both objectively and subjectively.

Index Terms— contourlet transform, fusion, depth map,
super resolution

1. INTRODUCTION

With the rapid advancement of the 3D applications, such as
3D navigation, freeview TV, virtual reality, the quality of
depth map has a significant effect on 3D applications. In gen-
eral, methods of depth map acquisition can be divided into
two categories: passive acquisition and active acquisition.
Passive methods aim to acquire depth map from several color
images in the process of stereo matching. On account of the
poor matching performance in occluded or untextured region,
the quality of acquired depth map may be degraded.

Depth maps acquired by active methods are generally
sensed by depth sensor devices, such as Microsoft Kinect [1]
and Time of Flight (ToF) cameras [2]. Generated depth maps
are usually with low resolution, noise corruption and holes
phenomenon. Fig.1(a) shows the high resolution color image
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Fig. 1: (a) Color image obtained from the optical camera, and
(b) the corresponding low resolution depth map with holes
and with noise.

and Fig.1(b) shows the corresponding low resolution(LR)
depth maps with holes of the same view. However, in many
3D applications, depth map need to have same resolution
with the color image. Therefore, depth map super-resolution
(SR) has become a hot issue for researchers to explore.

In order to enhance the quality of the depth maps, depth
map SR methods are applied. Common depth map super-
resolution methods can be divided into two categories. One
is single depth map SR methods which upsample the depth
value using the depth map itself or guidance of the corre-
sponding color image. For example, filter based method-
s [3–7] aim to construct upsampling filters to enhance the
depth map resolution with the guidance of the registered col-
or image. Leveraging the HR color image and the given low
resolution depth map, Kopf et al. [3] propose joint bilateral
upsampling method (JBU) which combine a range filter and a
spatial filter to produce very good full resolution results. Pa-
per [5] proposes a weighted mode filter (WMF) by seeking
a global mode on the histogram which uses the weight con-
sidering color similarity between reference and neighboring
pixels of the color image to super-resolve the depth map. In
addition to filter based methods, there are optimization based
methods to upsample the depth map. A typical example is
Markov Random Fields (MRF) [8–13] based depth map SR
model. In [8], Diebel and Thrun first formulate the depth map
SR as a multi-labeling optimization problem based on MRF
model. [9] develops an extension of MRF based method by
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proposing a novel data term to adaptively determine appro-
priate depth reference value of the target pixel.

The other category of depth map SR methods is multiple
depth map SR methods [14–16] which fuse low resolution
depth maps from a view point at different time or multiple
views at the same time to get a high resolution depth map.
Hahne et al. [14] utilize some LR depth maps of ToF sen-
sors at different exposures to obtain a high resolution(HR)
depth map. Choi et al. [15] propose a novel depth map SR
framework by taking interview coherence into account. Most
recently in [16], Lei et al. proposed a credibility based multi-
view depth maps fusion strategy, which considers the view
synthesis quality and interview correlation.

For single depth map SR methods, they may produce
texture copy artifacts when the color discontinuities and the
depth discontinuities at the corresponding location are not
consistent. To tackle the texture-transfer problem, researcher-
s proposed multiple depth map SR methods. Considering
the characteristics of clear edges with no texture of depth
map, preserving more contour information is the key to the
depth map super resolution. To the best of our knowledge,
multiple depth map SR methods concentrate on the spatial
domain, which only take local pixels into account rather than
local edge structure. Inspired from the color image fusion
in transform domain, we propose to fuse the LR depth maps
via contourlet transform in transform domain on depth map
SR for the first time. CT [17] can not only isolate the dis-
continuities of contours, but retain the smoothness along the
contours, especially suitable for depth map. Simultaneously,
multiple depth maps fusion in transform domain can mitigate
the noise while retaining more high-frequency details.

In this paper, we propose a multiresolution contourlet
transform fusion based depth map super resolution frame-
work. We first transform LR depth maps of multiple views
into multiresolution contourlet coefficients via contourlet
transform. Then we fuse the CT coefficients of same reso-
lution to get the fused coefficients. Finally we upscale the
target depth map utilizing the prevalent upscaling framework
JBU or WMF. Experimental results on benchmark depth
map dataset demonstrate that our method outperforms many
state-of-the-art methods in both objective and subjective per-
formance.

The rest of this paper is organized as follows. We will give
a revisit of contourlet transform in Section 2. The proposed
CT based depth map super-resolution algorithm is presented
in Sections 3. Experimental results are presented in Section 4
and Section 5 contains the conclusions.

2. A REVISIT TO CONTOURLET TRANSFORM

This section will give a revisit of contourlet transform. CT
consists of two parts as Fig.2 described: Laplacian pyramid
structure and directional filter banks (DFB). Laplacian pyra-
mid structure filters the image into low frequency subband-

s and high-frequency subbands, and directional filter banks
transform the 2-D frequency plain into directional subbands.
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Fig. 2: The overall structure of contourlet transform: lapla-
cian pyramid structure and directional filter banks (DFB), y1-
y4 is the four chanel of Laplacian pyramids

Laplacian pyramids are constructed by iterated two-
channel 2-D filter banks. They achieve a subband decompo-
sition by low-pass filter H0(z) and high-pass filter H1(z)=1-
H0(z) [18]. G0(z) and G1(z) are the corresponding synthe-
sis low-pass and high-pass filters respectively. The perfect
reconstruction condition is given as

H0 (z)G0 (z) +H1 (z)G1 (z) = 2

H0 (z + π)G0 (z) +H1 (z + π)G1 (z) = 0
(1)

A two-channel 2-D Laplacian pyramid decomposition with
3 level is illustrated in Fig.3. At the j-th level, the ideal
subband region of the low-pass filter is [−(π/2j), (π/2j)]2

, and the ideal subband region of the high-pass filter is
[−(π/2j−1), (π/2j−1)]2 \ [−(π/2j), (π/2j)]2.
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Fig. 3: Laplacian pyramid decomposition with 3 levels

Directional filter banks (DFB) composed of fan filters
achieve a directional filter of different frequency parts. Fig.4
shows a four-channel DFB by cascading two level fan filters.
The equivalent filter of channel k in DFB is given in (2),

Ueqk (z) = Ui (z)Uj
�
zQ0Q1

�
, i, j ∈ {0, 1} (2)
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where Ui and Uj are the fan filters, and Q0 and Q1 represen-
t sample matrixes, referring to the rotation operators. More
details can be referred in [17].
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Fig. 4: Four-channel directional filter bank constructed with
two-channel fan filter banks. (a) Two-level fan filtering banks
structure. (b) Corresponding frequency directional decompo-
sition.
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Fig. 5: The fusion process based on contourlet transform of
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3. MULTIRESOLUTION CONTOURLET
TRANSFORM FUSION BASED DEPTH MAP SUPER

RESOLUTION

In this section, we will give an introduction of the proposed
multiresolution contourlet transform fusion based depth map
super-resolution algorithm.

Due to the actual arrangement of the multiple views, they
usually lie alongside every fixed distance. There’s a disparity
d between the left view Di and the right view Dj in the hor-
izontal direction. To simplify, we use two views to illustrate
the formulation of disparity as in [19]

d = xi − xj =
Bf

Z
, (3)

where d is the disparity between Di and Dj , xi and xj refer
to the horizontal coordinates of Di and Dj respectively. B
is the baseline distance between depth sensors. f is the focal
length, and Z is the actual depth of field.

Firstly, we can find the common region Ω of the low res-
olution depth maps by shifting multiple views corresponding
disparities to view i as (3). Then we transform Ω of multiple
views by CT. The transform coefficients Ψp,qn of view n can
be obtained by (4),

Ψp,qn = Uδ
�
Hφ

�
DLR
n

��
, δ ∈ {0, 1} & n ∈ {1, 2, . . . , N}

(4)
where p is the level of Laplacian pyramids, and q is the direc-
tion number of DFB. Next we fuse the transform coefficients
of the target depth map. The fusion process is depicted in
Fig.5. Since CT is a multiresolution transform, depth map
can be transformed into various grained coefficients, such as
from coarse grained Ψ ci to fine grained Ψfi of view i. The co-
efficients of multiple views with same grained such as Ψ ci and
Ψ cj , Ψ

f
i and Ψfj , are fused respectively according to the max

Coefficient Absolute Value (mCAV) rule as (5).

Ψ̃p,qi (x, y) = arg max
Ψp,q

n (x,y)

���Ψp,qn (x, y)
��� , n ∈ {1, 2, . . . , N}

(5)
where (x, y) is the pixel coordinate.Then we can get a low
resolution fused depth map ôDLR

i with more contour informa-
tion by inversely transforming the fused coefficients Ψ̃i as (6).

ôDLR
i =

X
δ∈{0,1},φ∈{0,1}

�
Gφ

�
U−1δ

�
Ψ̃i
���

, (6)

The fused depth map ôDLR
i has the same size as region Ω. In

order to gain a complete fused depth map of the target view i,
we incorporate the uncommon region in view i into the fused
depth region as in (7),

D̃LR
i (x, y) =

(ôDLR
i (x, y) , if (x, y) ∈ Ω

DLR
i (x, y) , otherwise

(7)

where D̃LR
i is the refined depth value of view i.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our method quantitatively and
qualitatively comparing to several state-of-the-art methods.

4.1. PARAMETERS SETTING

We implement our experiments on computer with Intel
2.8GHz CPU, 12GB RAM, 64-bits Windows 7 and MAT-
LAB R2014a. The raw depth maps are from Middlebury
Dataset [20], which is widely used in a large number of re-
searches in 3D applications. Among the Middlebury Stereo
Dataset, we use eight sets of color images and depth map-
s. They are Art, Books, Dolls, Laundry, Midd1, Moebius,
Monopoly, and Reindeer.

To get the LR depth map, we downsample the correspond-
ing HR depth map with the scaling factor 4. View 1 is chosen
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to be the target view, and view 5 is chosen to be the match-
ing view. The parameters are set as follows. The number of
views N is 2. The level of Laplacian pyramids is set as 3. The
numbers of directions at each level are 2, 4 and 8 from low-
er to higher level respectively. Considering actual condition
that depth maps are corrupted by external and internal noise,
we conduct Gaussian noise on the depth map. For Gaussian
noise, the standard deviations on the left view and the right
view are 4 respectively.

Table 1: Comparison of SR experiments by R-method,
MDMF and our method under JBU framework

images JBU[3] R-JBU MDMF proposed gain[15] +JBU[16] +JBU

Art 28.37 28.42 29.18 30.38 1.20
Books 30.22 30.35 30.97 32.39 1.42
Dolls 31.60 31.65 32.69 33.76 1.07
Laundry 30.32 30.48 31.63 32.31 0.68
Midd1 31.14 31.23 32.92 33.34 0.42
Moebius 31.00 31.27 32.00 33.08 1.08
Monopoly 31.66 31.74 32.71 33.89 1.18
Reindeer 31.80 31.94 32.77 32.91 0.14

average 30.76 30.89 31.86 32.76 0.90

Table 2: Comparison of SR experiments by R-method,
MDMF and our method under WMF framework

images WMF R-WMF MDMF proposed gain[3] [15] +WMF[16] +WMF

Art 28.44 28.51 29.32 31.27 1.95
Books 30.49 30.55 31.29 32.54 1.25
Dolls 31.76 31.93 32.80 35.91 3.11
Laundry 30.57 30.71 31.85 34.39 2.54
Midd1 31.30 31.41 33.20 35.01 1.81
Moebius 31.16 32.16 32.42 35.98 3.56
Monopoly 31.80 31.84 32.90 34.60 1.70
Reindeer 31.87 31.93 32.89 33.84 0.95

average 30.92 31.13 32.08 34.19 2.11

4.2. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the performance of the proposed contourlet trans-
form based fusion method, we compare our method with the
state-of-the-art fusion method MDMF [14] and R-method[19]
with the common upscaling frameworks JBU[9] and WMF
[20]. From Table.1 and Table.2, we have an average gain
of 0.90dB, most 1.42dB in the JBU framework, and an av-
erage gain of 2.11dB, most 3.56dB in the WMF framework
over the latest MDMF methods. Meanwhile, we exceed R-
method 1.87dB in the JBU framework, and 3.06dB in the

WMF framework on average. Comparing with R-method and
MDMF visually in Fig.6, our method successfully avoids tex-
ture copy artifacts beyond the other two methods, while al-
leviating the noise and completing the holes. Simultaneous-
ly, our method preserved more contour information and pro-
duced sharper edges of the target depth map without jagged
artifacts.

(a)

(h)(g)(f)

(e)(d)(c)

(b)

Fig. 6: Visual comparison of SR results by R-method, MDM-
F, and our method of image Dolls. (a-b) The LR depth maps
of left view and right view, (c) R-JBU, (d) MDMF-JBU, (e)
CT-JBU, (f) R-WMF, (g) MDMF-WMF and (h) CT-WMF.

5. CONCLUSION

In this paper, we have proposed a multiresolution contourlet
transform fusion based depth map super resolution method.
Inspired from image fusion in transform domain, we present
to fuse LR depth maps of multiple views in multiresolution
via contourlet transform to get a HR depth map of the target
view. Contourlet transform can retain the smoothness along
the contours and isolate the discontinuities of contours, espe-
cially suitable for depth map. Comparing with conventional
depth map SR methods which concentrate on spatial domain,
our method can preserve more contour information and avoid
texture-copy artifacts, while mitigating the external and inter-
nal noise. Experimental results on Middlebury Stereo Dataset
demonstrate that our method is superior to several state-of-
the-art algorithms objectively and subjectively.
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