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ABSTRACT 
 
Block transform coding using discrete cosine transform is 
the most popular approach for image compression. 
However, many annoying blocking artifacts are generated 
due to coarse quantization on transform coefficients 
independently. This paper proposes an effective blocking 
artifacts reduction method by estimating the transform 
coefficients from their quantized version. In the proposed 
scheme, we estimate the transform coefficients based on an 
image statistic model and non-local similarity among blocks 
in transform domain. The parameters used in our proposed 
scheme are discussed and adaptively selected. Extensive 
experimental results show that our proposed method 
significantly reduces blocking artifacts and improves the 
subjective and the objective quality of block transform 
coded images. 
 

Index Terms—Block transform coding, Quantization 
noise, Blocking artifacts, Structure similarity, Non-local 
similarity 
 

1. INTRODUCTION 
 
Block discrete cosine transform (BDCT) is widely adopted 
in the existing image and video compression standards, such 
as JPEG, MPEG-1/2/4 and H.261/263/264, to exploit the 
spatial correlation among neighboring pixels. In a typical 
BDCT coding scheme, input image is firstly divided into 
small blocks, transformed using discrete cosine transform, 
quantized and entropy coded individually for each block. 
Quantization maps transform coefficients with a wider range 
into a quantized value to achieve bit reduction in 
representing original signal [1] and it is the sole source of 
coding artifacts. At low bit rate, the quantization step is 
usually so large that for each block only DC and few AC 
coefficients are retained. The negative effect is loss of 
correlation between adjacent blocks and discontinuities on 
boundaries of blocks [2-3]. As a consequence, reconstructed 
images suffer from annoying visual effects known as 
blocking artifacts. 

There are two main categories of blocking artifacts 
reduction techniques in spatial and transform domain, 
respectively. In [4], Reeve et al. apply a 3×3 Gaussian filter 
to pixels around block boundaries in order to smooth out the 
blocking artifacts. However, due to the low-pass nature of 
spatially invariant Gaussian filter, this method may blur the 
true edges or texture details near block boundaries in images. 
To avoid undesirable over-smoothing of coded images, M. 
Karczewicz et al. [5] employed coding mode and 
quantization step to select suitable filters. But this method is 
limited with a special coding method, (e.g. H.264/AVC). A. 
Zakhor et al. [6-7] take advantage of the quantization 
intervals of transform coefficients as a convex set to limit 
the filtering strength based on the theory of projections onto 
convex sets (POCS). In [8], Stevenson et al. proposed the 
maximum a posteriori (MAP) estimation of the original 
image using Bayesian rule, employing Huber-Markov 
random field (Huber-MRF) as the image model. Since the 
blocking artifacts are caused by the quantization of the 
transform coefficients independently, some works tackle the 
problem in the transform domain [9-10]. Chen et al.[9] 
apply a low pass filter to the DCT coefficients of 
neighboring blocks. Although adaptively chosen, the filter 
remains constant with respect to all DCT sub-bands, which 
is essentially equivalent to applying this low pass filter in 
spatial domain. Choy et al. [10] estimate the original DCT 
coefficients from the quantized ones with its local mean and 
variance. Therefore, filter in [10] is adaptive based on the 
statistics of different DCT sub-bands. 

In this paper, we propose a novel scheme to acquire the 
maximum a posteriori (MAP) estimation of original DCT 
coefficients under Bayesian framework. In our scheme, the 
DCT coefficients for each band are adaptively estimated 
according to an image prior model and a quantization noise 
model. For image prior model, we assume the local 
similarity of neighboring blocks’ coefficients in each 
transform sub-band. In order to improve the rationality of 
image prior model and the efficiency of blocking reduction, 
we proposed to assign a weight for each sample block in 
neighborhood by comparing its DCT coefficients with those 
in current block to be estimated. For quantization noise, we 
assume it as Gaussian noise for each band. In order to make 
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the scheme more applicable, an effective parameter 
selection method is also proposed based on extensive 
statistics results. Finally, the scheme is conducted on 
overlapped blocks to further decrease the quantization noise.  

The remainder of this paper is organized as follows. In 
section 2, we first formulate blocking reduction as a 
maximum a posteriori estimation problem under Bayesian 
framework, and then probability distribution models and the 
calculation of sample weight for image priori model are 
described in detail. Finally, the closed-form optimization 
solution for our proposed scheme is derived. In section 3, an 
effective parameter selection method is introduced based on 
statistics results. In section 4, experimental results and 
comparative study is illustrated. Section 5 summaries and 
concludes this paper. 
 

2. DEBLOCKING WITH VALIDITY SIMILARITY 
 
2.1. Problem Formulation 
 
Suppose an image I of size H×W, where I(i, j) denotes a 
pixel in the image I and the indices i and j are the 
coordinates in the vertical and the horizontal directions, 
respectively. The size of discrete cosine transform (DCT) 
used for image coding is M×M. we use Bm,n(i, j) to denote a 
M×M block in I, with its top left pixel being I(m, n). To be 
specific, the pixels in this block are 

Bm,n(i, j) = I(m+i, n+j), i, j = 0, 1,…, M-1    (1) 
We use x to represent the original data (i.e. pixel intensity) 
of image I and use xB(i,j), i, j = 0, 1,…, M-1 and XB(u,v), 
u,v= 0, 1,…, M -1 to represent the data and the transform 
coefficients of a block B, respectively. X is the original 
image in DCT domain made up of XB(u,v). We call xB and 
XB data-block and transform-block of B, respectively. The 
DCT is denoted as T, then XB = TxB. These transform 
coefficients XB are then scalar quantized according to a 
quantization matrix Q and Q(u,v) represents the quantization 
step for the corresponding sub-band (u,v), u, v = 0, 1,…,M-1. 
The forward and inverse quantization can be illustrated in (2) 
and (3), respectively. 

( ) ( )( ) ( )
( )

u,v
u,v u,v round

u,v
= =

X
I X BQ

B BF
Q     (2) 

( ) ( ) ( )u,v u,v u,v= ⋅Y IB BQ       (3) 
Here IB(u,v) is the index of quantization interval and YB is 
the reconstruction value in that interval. The function, 
round(x), rounds x to the nearest integer. Therefore, 
blocking reduction can be regards as a MAP estimation 
problem based on the following assumption: 

YB = XB + NB    (4) 
In equation (4), NB is the quantization noise for a block. 
Then the MAP estimator for the original transform 
coefficients is given as follows, 

( )Prargmaxˆ ,= ∈
X

X X Y
B

B B B B       (5) 

{ }= 0 0m,n m H M , n W M≤ < − ≤ < −B      (6) 

Applying the Bayesian rule and taking logarithm, the 
problem in (5) is transformed to the following problem, 

( ) ( )logPr logPrargmaxˆ ,= ∈ +
X

X Y X X
B

B B B BB      (7) 

In problem (7), Pr(YB| XB, B� ) represents the conditional 
probability of the decompressed coefficients YB when the 
original transform coefficients is given, and Pr(XB) is a 
priori probability of the original transform coefficients. The 
two probability distributions will be illustrated in next 
subsection. 

Note that the interval of the original transform 
coefficients is available at the decoder based on the 
quantization matrix. Therefore, the MAP estimator should 
not exceed the interval constrained by quantization matrix 
and the MAP estimation can be formulated as follows 
finally. 

( ) ( ){ }
( ) ( ) ( )min max

Pr Pr
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argmaxˆ log , log

ˆ u,v u,v , u,v ,s.t.
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B
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Q
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2.2. Probability Distribution Model 
 
For the conditional probability in (8), we assume that the 
quantization noise is uncorrelated with XB(u,v). Then we 
substitute (4) into the conditional probability. 

( ) ( ) ( ) ( )Pr Pr Pr Pr| | |= + = =Y X X N X N X NB B B B B B B B   (10) 

In addition, we assume the quantization noise follows 
Gaussian distribution at each sub-band [11]. For simplicity, 
the variance of the conditional probability for each band in 
(8) is calculated by the following equation. 

( ) ( )2 21
12N u,v u,vσ = Q   (11) 

Therefore, the conditional probability density function is 
formulated as follows. 
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R
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R

B B

B B B B
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   (12) 

where RN is a diagonal matrix and diagonal elements consist 
of 2σ N . 

For the priori probability in (8), we assume that the 
transform coefficients are piecewise stationary, and then a 
priori distribution of coefficients in each quantization 
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interval is also assumed as Gaussian distribution [10]. In 
other words, the statistical characteristics of transform 
coefficients are similar for neighboring blocks. Therefore, to 
infer the coefficients of a certain block, we use the 
coefficients from its neighboring blocks as extra samples to 
form the priori distribution. For any block Bm,n, we define 
the set of its neighboring blocks (in a (2L+1)×(2L+1) 
window) as 

( ) { } { }L m,n k ,l m,nm L k m L,n L l n L= − ≤ ≤ + − ≤ ≤ + \N B B B (13) 
Then the priori probability in (8) used Gaussian distribution 
is formulated in (14)-(16) 
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L
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M
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X X Y R X Y
R
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R
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B
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N

N
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(14) 

( ) ( )1 L

L

i

iL

u,v u,v=Y YB

N
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   (15) 

( ) ( ) ( )( )22 1 L

L L

i

iL

u,v u,v u,vσ = −Y YB

N

N NN  (16) 

Here, ( )2
L

u,vσN is the variance of DCT coefficients in sub-
band (u,v) extracted from these neighboring samples and 
|NL| is the number of samples in the neighborhood.  
 
2.3. Sample Weight 
 
In the above discussion, we assume that transform 
coefficients are piecewise stationary in the neighborhoods 
and follow Gaussian distribution model. Here, we denote 
this assumption as stationary assumption. In (15)-(16), 
equal weight is assigned for each sample based on the 
assumption. However, this assumption is not valid for some 
areas in an image, especially for edge or texture regions 
which are different from the current block to be estimated 
distinctly. Therefore, in order to make the rationality of 
stationary assumption and improve the efficiency of 
blocking reduction, we assign a weight for each sample in 
the given neighborhood to measure its similarity with the 
original block XB in the center of neighborhood (described 
in (13)). The sum square difference (SSD) of transform 
coefficients between sample bock and original center block 
is employed to measure their similarity. Because the original 
block XB is unknown, we use the reconstructed block YB of 
XB instead. The sample weight for YBi can be illustrated as 
follows.  

( )
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2

2

1
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i
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Z h
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−
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The mean and variance of neighboring blocks are calculated 
with sample weight instead of (15) and (16). 
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Here, the sample weight is the same for all the sub-
bands in sample YBi. h is a smoothness factor to control the 
distribution of the sample weights and it also affects the 
final estimation accuracy for the original coefficients. This 
sample weight is not only depresses the negative effects of 
stationary assumption, but it also extends from local to non-
local stationary assumption. 
 
2.4. Optimization Solution 
 
The problem in (8) is a convex optimization. The 
optimization solution is acquired by making derivation of (8) 
equal 0, which is formulated as follows. 
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Therefore, the closed-form solution of MAP estimation in (8) 
is illustrated in (21)-(23). In (23), we project the MAP 
estimator X̂B

into the quantization interval. 

( ) ( )1 11 1 1 1 1 1
L L L L

ˆ − −− − − − − −= + + +N N NX R R R Y R R R YB BN N N N   (21) 
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3. ADAPTIVE PARAMETER SELECTION 

 
In our proposed scheme, two parameters need to be 
provided, local window size L in (13) and the smoothness 
factor h in (17). In order to acquire best parameters, we first 
fixed the local window size L =5 and search the best 
smoothness factor h for images include Airplane, Barbara, 
Cameraman, Cap, Elaine, Fishingboat, Lena. We try out 
smoothness factor from 5 to 60 with increment 5 for all the 
JPEG coded images with quality factor (QF) set to 10, 15, 
20… 40. Fig.1 shows the relationship between the best 
smoothness factor (in vertical axis) and average quantization 
step of quantization matrix Q (in horizontal axis). From 
Fig.1, we can see that the smoothness factor h decreases 
along with quantization step decreasing. Therefore, we use 
the average of all quantization steps in quantization matrix 
Q, denoted as QAvg, to predict best parameter h. The 
approximate relationship between QAvg and h can be 
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estimated by linear regression, illustrated in following. 
0 095 19 60Avgh . Q .= +   (24) 

In order to find the best local window size L in (13), we 
try out different window size L from 1 to 10 with best 
smoothness factor given in (24). Fig.2 illustrates the 
relationship between window size L and performance of our 
proposed scheme at different compression rates. The 
horizontal ordinate represents the window size, and the 
vertical ordinate represents the performance of our proposed 
scheme. We can see that our proposed scheme achieves best 
performance when window size is set 7 for many images. 
Due to limited space, only the results of two images are 
illustrated in Fig.2. At the same time, compression rate have 
little impact on window size comparing Fig.2 (a) and (b). 
Therefore, we set the local window size as 7 for our 
proposed scheme. 

 
Fig.1: the distribution of best smoothness factor h for the test 
images with different quantization steps. 

 
(a) 

 
(b) 

Fig.2: The relationship between local window size L and the 
performance of our proposed scheme. (a) Images coed with quality 
factor 10. (b) Images coded with quality factor 40. 
 

4. EXPERIMENTAL RESULTS 
 
In this section, we evaluate the performance of the proposed 
scheme. We use the popular Lena, Barbara, Elaine, 
Peppers, Fishboat, Cameraman and the Kodak image set as 
the test images, listed in Table 1-2. These images are coded 
by a JPEG coder [12] with quality factor (QF) set to 10, 15, 
20,…, 50, and then reconstructed using standard JPEG 
decoder [12], the SPL scheme [10], the nonlocal means 
filter (NLM) [13] and the proposed scheme. The parameter 
of smoothness factor h used in our proposed method is 
adaptively set based on equation (24) and local window size 
is set 7. The PSNR results for QF = 10 and QF = 40 (a low 
quality and a medium quality) are summarized in Table 1-2. 
We can see that the proposed scheme achieves 1.16dB, 
0.84dB and 0.31dB gain over the standard JPEG decoder, 
the SPL scheme and NLM scheme with QF =10 on average, 
respectively. When QF is set 40, our proposed scheme still 
achieves 1.05dB, 0.75dB and 0.72dB gain over JPEG 
decoder, the SPL and NLM scheme. It achieves up to 1.64 
dB gain over JPEG decoder for Elaine with QF = 10. 

Table 1 PSNR quality (in dB) of restored images using different 
methods for test images compressed with QF = 10. 

Image JPEG SPL NLM Proposed 
Airplane 28.47 28.61 29.15 29.44 
Barbara 27.60 27.90 28.39 28.64 

Cameraman 26.44 26.59 26.98 27.36 
Cap 29.74 30.20 30.77 31.00 

Elaine 29.52 29.97 30.82 31.16 
Fishboat 26.37 26.66 26.98 27.31 

Lena 28.02 28.38 29.01 29.34 
Parrot 29.62 30.08 30.51 30.83 

Peppers 28.39 28.68 29.39 29.87 
Girl 28.73 29.09 29.55 29.73 

Sailboats 28.26 28.59 29.05 29.42 
Sailboats2 28.21 28.53 29.00 29.18 
Window 27.42 27.66 28.24 28.47 
Average 28.21 28.53 29.06 29.37 

Table 2 PSNR quality (in dB) of restored images using different 
methods for test images compressed with QF = 40. 

Image JPEG SPL NLM Proposed 
Airplane 32.87 33.11 33.03 33.87 
Barbara 31.56 31.94 32.06 32.55 

Cameraman 30.89 31.14 30.76 31.87 
Cap 33.91 34.17 34.48 34.87 

Elaine 34.53 34.85 35.24 35.79 
Fishboat 31.12 31.48 31.20 32.13 

Lena 32.70 33.14 33.18 34.04 
Parrot 34.63 34.95 34.71 35.66 

Peppers 33.50 33.72 33.95 34.83 
Girl 32.85 33.18 33.23 33.74 

Sailboats 33.22 33.52 33.58 34.25 
Sailboats2 32.68 32.97 32.99 33.63 
Window 32.02 32.32 32.46 33.01 
Average 32.81 33.11 33.14 33.86 
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Fig.3 shows how the reconstruction quality and the 
improvement vary with JPEG quality factor. From Fig.3, we 
can see that the proposed scheme works well over a large 
quality (or bit rate) range. The PSNR improvement over the 
standard JPEG decoder and the SPL algorithm are similar 
for all the tested QF settings. Our proposed scheme achieves 
higher gain over the NLM at high bit rate. This is because 
NLM is a spatial filter without quantization constrain. At 
low bit rate (large quantization step), the quantization 
constrain is loose and its influence is insignificant. 
However, at higher bit rate (small quantization step), the 
quantization constrain is close and it plays an important role 
on preventing over-smoothing. 
 

 
(a) 

 
(b) 

Fig.3: The reconstruction PSNR (in dB) with different JPEG 
quality factors for the JPEG decoder, SPL [10], NLM [13] and the 
proposed scheme. 

In Fig.4 and Fig.5, we show the subjective quality of 
reconstructed images. Fig.4 shows the results of Elaine 
compressed using QF = 15 and Fig.5 shows the results of 
Lena compressed using QF = 40. The blocking artifacts are 
very obvious in the standard JPEG decoded image. Such 
artifacts are partially reduced by the SPL scheme, but some 
blocking artifacts remained in the image are still observed. 
The NLM scheme is remove almost all the blocking artifacts, 
but it also blurring the image details, especially in Fig.5 with 
QF=40. Our proposed scheme removes most of the blocking 
artifacts while persevering image details. From Fig. 5, we 
can see that the NLM method smoothes most textures of hat, 
which are well preserved in our proposed scheme. 
 

    
(a)                                                 (b) 

    
(c)                                                 (d) 

Fig.4: The reconstruction Elaine with different methods (QF=15), 
(a) JPEG decoder, (b) SPL [10], (c) NLM [13], (d) Proposed 
scheme. 
 

    
(a)                                                 (b) 

    
(c)                                                 (d) 

Fig.5: The reconstruction Lena with different methods (QF=40), 
(a) JPEG decoder, (b) SPL [10], (c) NLM [13], (d) Proposed 
scheme. 
 

5. CONCLUSION 
 
In this paper, we propose a new transform-domain approach 
for blocking artifacts reduction. In the proposed scheme, the 
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transform coefficients of a compressed image are restored 
from a maximum a posteriori estimation. The quality 
improvement of restored images is improved mainly from 
four aspects. First, an image prior model, that assumes local 
similarity of the neighboring blocks’ coefficients in each 
sub-band, is able to smooth the discontinuity around block 
boundaries efficiently. Second, sample weight is proposed 
to measure blocks’ similarity, which is able to depress the 
negative effects when the local similarity assumption is 
invalid. Third, a practical adaptive parameter selection 
method is proposed and it improves the practicability and 
estimation accuracy. Finally, the quantization constrain 
prevents MAP estimation over-smoothing and guarantee our 
proposed scheme efficient among a large range of 
compression rate. Experimental results demonstrated that 
the proposed approach can remarkably improve both the 
subjective and the objective quality of the block transform 
coded images. 
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