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Abstract Object segmentation is widely recognized as
one of the most challenging problems in computer vision.
One major problem of existing methods is that most of
them are vulnerable to the cluttered background. More-
over, human intervention is often required to specify fore-
ground/background priors, which restricts the usage of object
segmentation in real-world scenario. To address these prob-
lems, we propose a novel approach to learn complementary
saliency priors for foreground object segmentation in com-
plex scenes. Different from existing saliency-based segmen-
tation approaches, we propose to learn two complementary
saliency maps that reveal the most reliable foreground and
background regions. Given such priors, foreground object
segmentation is formulated as a binary pixel labelling prob-
lem that can be efficiently solved using graph cuts. As such,
the confident saliency priors can be utilized to extract the
most salient objects and reduce the distraction of cluttered
background. Extensive experiments show that our approach
outperforms 16 state-of-the-art methods remarkably on three
public image benchmarks.
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1 Introduction

Object segmentation is one of the fundamental problems in
computer vision. It can be used in many applications such as
visual object recognition, content-based image retrieval, and
object-based video coding. However, such task is made diffi-
cult by the wide variability of the object’s shape, appearance,
and the complexity of the surrounding scene. Therefore, in
spite of significant efforts, object segmentation still remains
an open problem.

To solve this problem, a feasible solution is to incorpo-
rate priors about the object’s shape, appearance and location
in the segmentation process. Typically, unsupervised object
segmentation methods such as (Liu et al. 2010; Borenstein
and Ullman 2004; Winn and Jojic 2005; Rother et al. 2006)
assume that object shape and color distribution patterns are
consistent within each class and the variance of object shape,
color and texture within a single object of a class is lim-
ited. These methods work well on simple scenes with unique
objects but often fail to handle complex scenes with multi-
ple foreground objects. As a consequence, some supervised
approaches propose to train the segmentation model from
pixel-level object masks. However, manually labelling such
masks for a large dataset is very tedious in practice. In some
other approaches, human intervention is used to bootstrap
the segmentation process by specifying some kinds of priors
(e.g., shape templates Zhao and Davis 2005, object part con-
figuration Yu et al. 2002, connectivity Vicente et al. 2008,
topology Lempitsky et al. 2009 or seed point/region Boykov
and Jolly 2001; Li et al. 2005). Clearly, such human inter-
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vention places restrictions on the wider applications of object
segmentation on large datasets.

In recent studies, visual saliency, which serves as a selec-
tion mechanism to pop-out important contents, has been used
to guide the automatic segmentation process. For example,
Itti et al. (1998) combined multi-scale features to produce
a saliency map and adopted a dynamical neural network
to select attended areas that roughly contained the salient
objects. Achanta et al. (2009) produced a frequency-tuned
saliency map which was then binarized by a threshold to
pop out salient regions. Hou and Zhang (2007) constructed
a saliency map by analyzing the log-spectrum of an image
and used a threshold to detect salient objects. Liu et al.
(2007) learned a Conditional Random Field (CRF) to gen-
erate a saliency map for salient object detection. For these
approaches, one fundamental assumption is that an accurate
saliency map is sufficient for segmenting the whole fore-
ground object. Unfortunately, saliency maps may become
inaccurate when processing complex scenes with cluttered
background. In such cases, it is often difficult to segment pre-
cise object boundaries since the priors derived from saliency
maps are somehow ambiguous (Ma and Zhang 2003; Walther
and Koch 2006; Liu et al. 2007; Gopalakrishnan et al. 2009).

Instead of assuming that saliency maps are always accu-
rate, we propose to learn complementary saliency priors for
foreground object segmentation. The overall framework of
our approach is illustrated in Fig. 1. The whole process is
divided into a learning component and a segmentation com-
ponent. In the learning step, we propose to learn two mapping
functions to generate two complementary saliency maps,
including an envelope map and a sketch map. The envelope
map always highlights a large area containing the objects
while the sketch map prefers to highlight small areas inside
each salient object. In the segmentation step, pixels with low
envelope saliency can be regarded as background seeds while
pixels with high sketch saliency can be treated as object
seeds. As such, only the most confident parts of comple-

mentary saliency maps are utilized for object segmentation.
This decreases the ambiguity of saliency priors in existing
saliency-based segmentation methods. For the sake of sim-
plicity, such priors extracted from complementary saliency
maps are denoted as complementary saliency priors. Finally,
foreground objects in each image are segmented using graph
cuts with the learned complementary saliency priors.

To validate the effectiveness of the proposed approach,
extensive experiments have been conducted on three pub-
lic image benchmarks. Experimental results show that our
proposed approach can adapt to various kinds of user labels
(e.g., accurate object masks and bounding boxes) and gains
remarkable improvements on several state-of-the-art seg-
mentation methods (e.g., Achanta et al. 2009; Li et al. 2010a;
Yu et al. 2010; Cheng et al. 2011; Jiang et al. 2011; Perazzi
et al. 2012; Li et al. 2013). It can even obtain comparable
results with the interactive method—Grabcut (Rother et al.
2004).

Our main contributions are summarized as follows:

1. The concept “complementary saliency priors” is first pro-
posed for segmentation. With such priors, the most con-
fident parts of saliency maps can be used to reduce the
distraction of cluttered background, making the segmen-
tation system work very well in complex scenes.

2. We propose a learning approach to generate complemen-
tary maps by combining various raw maps. The learning
task is casted as a ML-based optimization problem which
can be solved by the gradient-descent algorithm. Thus,
it can be easily applied to any dataset, as long as the
training samples are labeled with precise object masks or
approximate bounding boxes.

3. Object segmentation is formulated as a binary pixel
labelling problem and can be done using the graph
cuts technique. In particular, we improve the traditional
graph-cuts-based framework by incorporating comple-
mentary saliency priors. This results in a fully automatic

Fig. 1 System framework of
our approach. Aggregation
functions are first learned from
training images in a supervised
manner. The learned functions
are then used to generate
complementary saliency maps,
which will be used in the graph
cuts framework to assist the
segmentation of foreground
objects in testing images
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solution for foreground object segmentation without the
involvement of any human intervention.

The remainder of this paper is organized as follows: Sect. 2
briefly summarizes the related work. Section 3 formulates
the concept of complementary saliency priors and Sect. 4
presents the learning algorithm. Section 5 shows object seg-
mentation via graph cuts. Extensive experiments are pre-
sented in Sect. 6, and finally we conclude the work in Sect. 7.

2 Related Work

Roughly speaking, image segmentation can be categorized
into several related but different tasks: over-segmentation,
foreground object segmentation and semantic object seg-
mentation. In this study, we mainly focus on the foreground
object segmentation problem, which aims to detect and seg-
ment salient or foreground objects from an image (Zhao and
Davis 2005; Liu et al. 2007). Without risk of confusion, we
simply call it “object segmentation”.

Depending on whether human intervention is involved,
object segmentation can be divided into two categories:
unsupervised and supervised. Unsupervised methods do not
require training images or only require such images with-
out manual annotation. Usually, methods in this category try
to address both object class learning and object segmenta-
tion simultaneously (Liu et al. 2010; Borenstein and Ullman
2004; Winn and Jojic 2005), or co-segment a pair (set) of
images (Rother et al. 2006). Moreover, the segmentation is
often based on a specific assumption on the variance of object
shape and color/texture (Liu et al. 2010). For example, Liu
et al. (2010) and Winn and Jojic (2005) assume that the vari-
ability of color/shape in an object class is within a limited
range, while Rother et al. (2006) suggests the common parts
of all the segmenting images are required to have a similar
shape and color/texture distribution. Due to a lack of priors
about the object’s shape and appearance, these unsupervised
object segmentation methods are usually hard to have accu-
rate segmentation, especially for images that contain multiple
objects in a complex scene.

Comparatively, supervised methods seem to have
accounted for the majority of work on object segmentation
because more desirable results are obtainable. Besides man-
ually labelling object masks in training images, shape tem-
plates (Zhao and Davis 2005) or other kinds of shape priors
(e.g., object part configuration Yu et al. 2002, center-bias rec-
tangular contour Hua et al. 2006) are also specified manually
to bootstrap the segmentation process. For example, Zhao
and Davis (2005) combined shape template matching with
object segmentation in an iterative manner to enhance the
performances on both sides. One limitation of shape-based
approaches is that they can only handle specific kinds of

objects given a certain set of training images. Other super-
vised methods require either the initial positions of objects
(Li et al. 2005; Kass et al. 1988) or object/background mod-
els of visual features (e.g., color, texture) provided through
human interaction (Rother et al. 2004). For example, Kass
et al. (1988) introduced energy-minimizing splines (snakes)
that were driven towards image features (e.g., lines, edges) to
detect object contours, and Rother et al. (2004) exploited the
graph cuts technique in an interactive manner for object seg-
mentation. In practice, since an object segmentation system
has to handle large quantities of images, neither labelling a
number of training samples with various object classes nor
manually specifying priors for bootstrapping the segmenta-
tion process are feasible.

Since visual saliency can well accord with human visual
perception, and consequently serve as one type of selection
mechanism for important content, it has recently been used
for object segmentation in an unsupervised or supervised
manner. Typically, saliency-based methods employ different
visual models to compute saliency maps, and then analyze
these maps to pop out salient objects. Following the pio-
neer work (Itti et al. 1998), Achanta et al. (2008) used low-
level features (e.g., luminance, color) to determine salient
regions, and their later work (Achanta et al. 2009) produced
a frequency-tuned map which was then binarized by an adap-
tive threshold to pop out salient regions. Hou and Zhang
(2007) constructed a saliency map by analyzing the log-
spectrum of an image and adopted a simple threshold to detect
salient objects. Ma and Zhang (2003) generated a contrast-
based saliency map and extracted objects by fuzzy grow-
ing, and Cheng et al. (2011) also proposed an approach to
segment images into regions and computed visual saliency
using the regional contrasts. Perazzi et al. (2012) proposed
to divide images into super-pixels and adopt saliency filters
to detect salient objects. Similarly, Li et al. (2013) also pre-
sented an optimization framework to infer the superpixel-
based saliency over each single image. In (Jiang et al. 2011),
the context and shape priors were incorporated for detecting
salient objects. An image was first segmented and analyzed
over multiple scales and then an optimization framework was
used to pop-out the salient objects. Instead, Markov random
walks were performed on images by Gopalakrishnan et al.
(2009) to detect salient regions. By introducing supervised
learning techniques to model visual saliency, Liu et al. (2007)
learned a Conditional Random Field (CRF) to combine a
set of multi-scale features for salient object detection, while
Mehrani and Veksler (2010) proposed an approach to refine
the initial saliency-based segmentation by performing binary
graph cuts optimization.

Strictly speaking, visual saliency cannot guarantee the
accuracy of object segmentation. Typically, the computation
of visual saliency depends on local difference and is vulnera-
ble to noises. Moreover, saliency maps usually have low reso-
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lution and poorly defined borders (Achanta et al. 2009), such
that they may provide ambiguous priors for object segmen-
tation. For example, some saliency-based methods are sen-
sitive to local sudden changes in the background (e.g., Itti et
al. 1998; Achanta et al. 2009; Hou and Zhang 2007; Achanta
et al. 2008), and as a consequence distracters may be treated
as salient objects. This causes each segmentation result to
be an envelope-like area containing the objects. Meanwhile,
there are also other methods (e.g., Ma and Zhang 2003) that
prefer only to highlight some important parts of an object
(referred to as sketch). Although objects segmented by the
two kinds of saliency-based methods may independently suf-
fer some problems such as the inexactness of their outlines or
incompleteness of their internal bodies, it is possible to obtain
desirable results by integrating them in a unified framework.

Towards this end, our previous work (Yu et al. 2010) uti-
lized saliency maps from Achanta et al. (2009) and Liu et al.
(2007) to generate sketch and envelope maps, then built two
KD-trees as the object-background color model, and finally
used a color signature based classifier to obtain the segmen-
tation results. Although this method performs well on the
dataset from Achanta et al. (2009), it does not work well in
complex scenes since the ad hoc complementary maps can-
not been well generalized to different datasets. Therefore, this
study extends Yu et al. (2010) by learning to generate comple-
mentary saliency maps and utilizing the graph cuts technique
with complementary saliency priors for pixel labelling. We
use a supervised learning but interaction-free framework for
both complementary saliency prior learning and binary pixel
labelling. This makes the proposed approach more applica-
ble for large segmentation tasks while achieving an improved
performance.

It should be noted that our complementary saliency prior
learning algorithm is different with previous computational
models (e.g., Li et al. 2010b; Judd et al. 2009; Liu et al.
2011; Borji et al. 2012) that combine a set of feature maps
or raw maps to generate one saliency map. In our algorithm,
the “optimal” parameter matrices should be learned so as to
generate two best complementary maps that not only best fit
the ground-truth but also have statistically minimal comple-
mentary energy.

3 Complementary Saliency Priors

Intuitively, saliency maps can roughly highlight conspicuous
targets, while pixels with high and low saliency values are
likely to belong to an object (denoted by “Obj”) and back-
ground (denoted by “Bkg”), respectively. Thus saliency prior
is used here to signify the belief that a pixel belongs to “Obj”
or “Bkg” in a saliency map. Consider an image I with object
O and background B. Let S be one of its saliency map and
si = S(i) ∈ [0, 1] be the saliency value at pixel i ∈ I . For

each pixel i , there are two possible labels {“Obj”, “Bkg”} or
simply {1, 0}. Then the saliency prior for i can be expressed
as:

h̄i =
{

1 − S(i), f or li = 0,

S(i), f or li = 1,
(1)

where li is the label of pixel i . Without loss of generality,
the prior can be expressed as a function of two variables
h̄i = f (S, i).

However, the saliency prior in (1) may be far from being
exact due to inaccurate saliency map. Therefore, we propose
to extract saliency priors from two complementary saliency
maps which consist of an envelope map and a sketch map.
As such, pixels with low saliency in the envelope map can be
regarded as background seeds while pixels with high saliency
in the sketch map can be treated as object seeds. To quantita-
tively characterize envelope and sketch maps, we introduce
two types of energies for a saliency map S, namely envelope
energy Eenv and sketch energy Eske:

Eenv(S; G, I ) = −
∑
i∈O

log si +
∑
i∈B

si , (2)

Eske(S; G, I ) = −
∑
i∈B

log s̃i +
∑
i∈O

s̃i , (3)

where s̃i = 1 − si , G denotes the ground-truth of image I 1.
The first term in (2) forces a saliency map to highlight the
whole object part if small envelope energy is achieved. The
second term in (2) is used to ensure that the saliency map with
smaller envelope energy should contain as less background
pixels as possible. Note that different forms of penalty are
used in the two terms since a large penalty is expected for an
object pixel with saliency close to 0, while a small penalty
is assigned for a background pixel with saliency close to 1.
Similarly, the first term in (3) encourages a saliency map to
only highlight the objects if small sketch energy is sought.
The second term in (3) plays a role in punishing the map for
darkening too many object pixels.

Intuitively, the ground-truth should be the ideal envelope
map and sketch map simultaneously. That is, Eenv and Eske

reach their minima if and only if the saliency map S equals to
the ground-truth G. In this sense, we can use Eenv (or Eske) to
characterize the divergence between S and the ground-truth
G when S acts as an envelope map (or a sketch map).

Let 〈S+, S−〉 be an ordered pair of saliency maps of image
I . To give a quantitative measure that 〈S+,S−〉 is “com-
plementary,” we define the complementary energy Ecom

between S+ and S− as:

1 In our implementation, we add a very small positive number to the
value in every log function to avoid yielding infinity and make problems
have feasible solutions.

123

Author's personal copy



Int J Comput Vis (2015) 111:153–170 157

Ecom(〈S+,S−〉; G, I )

= Eenv(S+; G, I ) + Eske(S−; G, I ). (4)

Typically, small Ecom implies both small Eenv and Eske.
Here we call S+ the envelope map and S− the sketch map.
Note that exchanging the position of S+ and S− in (4) leads
to a different value of complementary energy. For simplicity,
we use Ecom(S+,S−) instead of Ecom(〈S+,S−〉; G, I ) in
the following discussion.

Moreover, the complementary energy has the following
two properties:

1. Ecom(〈S+,S−〉) ∈ [0,+∞), with its minima if and only
if S+ = S− = G;

2. For two maps S++ and S−− with Ecom(S+,S−) ≥
Ecom(S++,S−) and Ecom(S+,S−) ≥ Ecom(S+,S−−),
we have Ecom(S+,S−) ≥ Ecom(S++,S−−).

Following these properties, it is feasible to iteratively
search an optimal or near-optimal pair of saliency maps with
as lower complementary energy as possible. An illustration
of the complementary energy is shown in Fig. 2. For a “good”
envelope map S+∗, it is important to highlight all the pixels
in O with as less pixels in B as possible. The energy will
increase greatly if an envelope map misses some pixels in
O . While for a “good” sketch map S−∗, it is important to
highlight only the pixels in O . Any additional high-saliency
pixels in B will be largely punished. Therefore, the following
two facts can be intuitively inferred:

1. The dark pixels in any “good” envelope map S+∗ (i.e.,
pixels with the lowest envelope values) most likely belong
to B.

2. The bright pixels in any “good” sketch map S−∗ (i.e., pix-
els with the highest sketch values) have high probabilities
they will be part of O .

Fig. 2 Examples of complementary energy. a Original image, b
ground-truth, c three envelope maps, and d three sketch maps. The
map pair marked with green (red) line has the smallest (largest) com-
plementary energy, leading to the most (least) confident complementary
saliency priors

Here we use Ē to denote the regions with low envelope
values, T to denote the regions with high sketch values, and
X to denote the regions with high envelope values and low
sketch values simultaneously. Clearly, Ē∪X∪T = I and Ē∩
X = Ē∩T = T ∩X = ∅. Placing the above two facts into (1),
we can derive the complementary saliency prior for pixel i :

h̄i =

⎧⎪⎪⎨
⎪⎪⎩

f (S−∗
, i), f or i ∈ T,

f ((S+∗ + S−∗
)/2, i), f or i ∈ X,

f (S+∗
, i), f or i ∈ Ē .

(5)

Here we conduct an experiment to validate whether
smaller complementary energy contributes to better segmen-
tation performance. Given an image, four saliency maps are
generated by Achanta et al. (2009), Hou and Zhang (2007),
Goferman et al. (2010), and Seo and Milanfar (2009) to pro-
duce a pair of complementary saliency maps using our learn-
ing algorithm described in the next section. The four maps are
combined into five pairs, with some maps repeatedly used.
For each pair, we assume one map as the envelope map and
the other as the sketch map. Finally complement energies
of the five pairs are computed and their corresponding seg-
mentation results are also evaluated. From Fig. 3, we can see
that with increasing complementary energy, a pair has worse
“complementary” property in terms of capturing the salient
object (i.e., one is less like the envelope map while the other
is less like sketch map), and thus, the segmentation result is
more inaccurate.

4 Learning Complementary Saliency Priors

In this section, we will explore a feasible learning approach
to generate complementary saliency maps by combining
various raw maps generated with several predefined visual
saliency models. Some main notations in this section are as
follows:

Fig. 3 The relationship between complementary energy and segmen-
tation performance
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– Let T = {T (n) = (R(n), G(n), I (n))}1≤n≤N be the training
set, where R

(n) = {R(n,k)}1≤k≤K is the set of K raw maps
for the nth image I (n), with its ground-truth G(n) (gi =
1 if pixel i ∈ I (n) belongs to object, gi = 0 if it is a
background pixel).

– Let 〈S(n)+, S(n)−〉 be an ordered pair of saliency maps of
image I (n) where S(n)+ is the envelope map while S(n)−
is the sketch map.

– Let φ = {φ+, φ−} be two mapping functions with para-
meters Θ = {Θ+,Θ−} for combining raw maps to
generate S(n)+ and S(n)−, i.e., S(n)+ = φ+(R(n)) and
S(n)− = φ−(R(n)), where Θ+ = [θ(k)+

i ]Q×K and Θ− =
[θ(k)−

i ]Q×K are two Q × K parameter matrices, and Q is

the number of blocks in an image 2. Let θ+
i = [θ(k)+

i ]1×K

and θ−
i = [θ(k)−

i ]1×K be two row vectors respectively for
Θ+ and Θ−, then ‖θ+

i ‖1 = ‖θ−
i ‖1 = 1.

4.1 Problem Formulation

Here our task is to learn two functions φ = {φ+, φ−} from
T. This learning problem can be expressed as:

φ∗ = arg max
φ

L(T,φ), (6)

where the objective function is defined as:

L(T,φ) = log P(φ | T) ∝ log P(T | φ), (7)

where P(φ | T) is the conditional probability for inferring φ,
P(T|φ) is the likelihood that can be interpreted as the joint-
probability of different training samples given φ. Suppose
T = {T (n)} to be i.i.d, we have:

L(T,φ) ∝
∑

T (n)∈T

log P(T (n) | φ). (8)

Then (6) turns to a typical Maximum Likelihood (ML)
estimation problem.

Inspired by the Markov-Gibbs Equivalence, we model
P(T (n) | φ) using Gibbs distribution:

P(T (n) | φ) = 1

Z(φ, n)
exp

(
−E(T (n),φ)

)
, (9)

where E(T (n),φ) is some kind of energy determined by T (n)

and φ, and Z(φ, n) = ∑
G∈G E(T (n),φ) is the partition

function which ensures (9) is a probability.
Let E(T (n),φ) = Ecom(S(n)+,S(n)−) where S(n)+ =

φ+(R(n)) and S(n)− = φ−(R(n)), then the learning prob-
lem can be expressed as finding an “optimal” φ∗ from T, so
that for any training image in T, we can utilize φ∗ to gen-
erate two complementary maps with statistically minimal

2 As in many previous works, we divide images into macro-blocks and
all pixels in a block are assumed to share the same parameter. In our
experiments, each block covers 4 × 4 pixels for an image resized to the
resolution 320 × 240.

complementary energy. Following this, we first rewrite (4)
as follows:

Ecom(〈S(n)+,S(n)−〉; G(n), I (n)) = E(T (n),φ)

=
∑

i∈I (n)

(
g̃i · s+

i − gi · log s+
i + gi · s̃i

− − g̃i · log s̃i
−)

︸ ︷︷ ︸
U (gi ,i,φ)

,

(10)

where g̃i = 1 − gi , s̃i
− = 1 − si

−. It can then be found that
(9) is fortunately divisible:

P(T (n) | φ) =
∏

i∈I (n)

e−U (gi ,i,φ)∑
g′

i ∈{0,1} e−U (g′
i ,i,φ)

. (11)

Replacing P(T (n) | φ) with (11), the objective function
in (8) can be rewritten as:

L(T,φ) =
∑

T (n)∈T

∑
i∈I (n)⎛

⎝−U (gi , i,φ) − log(
∑

g′
i ∈{0,1}

e−U (g′
i ,i,φ))

⎞
⎠ .

(12)

To generate complementary saliency maps, another prob-
lem is to define mapping functions φ+ and φ−. Typically,
raw maps generated by different methods characterize the
saliency of a visual scene from various aspects. Moreover,
each raw map has a certain degree of confidence about the
belief of its block being salient in the envelope map S+ (or
sketch map S−). In our work, such a degree of confidence is
modeled as a weight and each raw map is supposed to assign
different weights to different locations. Recall that enve-
lope map tends to highlight all possible salient locations and
sketch map emphasizes only the most probable salient loca-
tions, for any block i ∈ I (n), φ+ and φ− can be modeled as:

φ+(R(n), i) =
∑

k

r (n,k)
i θ

(k)+
i ,

φ−(R(n), i) =
∏

k

(
r (n,k)

i

)θ
(k)−
i

, ∀i ∈ I (n),

(13)

where r (n,k)
i is the average saliency value at location i on

R(n,k) (the kth map in set R
(n)). Finally, bringing (10), (12)

and (13) together, the optimization problem can be written as:

max
θ+

i ,θ−
i

∑
T (n)∈T

∑
i∈I (n)⎛

⎜⎝−U (g(n)
i , i, θ+

i , θ−
i ) − log(

∑
g′

i ∈{0,1}
e−U (g′

i ,i,θ
+
i ,θ−

i ))

⎞
⎟⎠

s.t. ‖θ+
i ‖1 = 1, θ

(k)+
i ≥ 0,

‖θ−
i ‖1 = 1, θ

(k)−
i ≥ 0,

∀k = 1, 2, . . . , K , i ∈ I (n).

(14)
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Fig. 4 Visualization of the learned parameter matrices on MOCB. Here each subfigure depicts weights for a raw map

Note that to avoid overfitting, the convex combination con-
straints are used here such that all weights for each block are
non-negative and sum up to 1.

4.2 The Learning Algorithm

To solve (14), we first convert it to an unconstrained opti-
mization problem:

min
Θ

F(Θ) = −L(T,φ)

+
∑

i∈I (n)

(
ε ·

∑
k

1

θ
(k)±
i

+ 1

ε
· (‖θ±

i ‖1 − 1)2

)
,

(15)

where ε is a pre-defined small positive number and θ± denotes
both θ+and θ−. When all the constraints in (14) are satisfied,
it is easy to see that this problem is equivalent to (14); while
if any constraint is broken, F(Θ) will have a large value.
To find the minima of (15), the gradient-descent algorithm
(Boyd and Vandenberghe 2004) is used in our work:

∇F(Θ) =
(

∂ F(Θ)

∂θ
(k)±
i

)
i,k

. (16)

Since F(Θ) is a non-convex function as for the variable
θ

(k)±
i , only local minima of (15) can be found. In practice,

we randomly initialize the parameters for a fixed number of
times and find a solution for each time. We then pick the
solution that yields the minimum value of (15). At each step,
gradient descent operations are performed in turn for θ+

i and
θ−

i .
The computation complexity of the algorithm involves

four variables: N (the size of training data), Q (the block
volume of an image), K (the number of raw maps) and M
(the number of descent steps). For each descent step, it will
take O(N QK ) to compute the descent or search direction. It
can be assumed the search of each step length will be com-
pleted in a short constant time. Then the total time complexity
is (O(N QK ) + O(1)) × M . Given a certain tolerance error
for algorithm termination, it is proven that there is a constant

upper bound of M (Boyd and Vandenberghe 2004). There-
fore, the solution can be found in O(N QK ) time.

4.3 Discussions

In our algorithm, different blocks in each raw map are
assigned to different weights such that two Q × K parameter
matrices Θ+ and Θ− need to be learned. So one problem
is why not to learn one weight per raw map, instead of one
weight per block and raw map. As mentioned above, each
weight reflects a certain degree of confidence of each raw
map about the belief of its block being salient in S+ (or S−).
Following this, the training process is in fact a joint fitting
to the ground-truth. Obviously, a single weight can hardly fit
well simultaneously for thousands of blocks in a raw map.
As shown in Fig. 4, the Q elements for each raw map are
significantly diversified from each other. So it is impossible
to use only one weight to give a good approximation for all
Q elements (we will discuss this issue with experiments in
Sec. 6). Further with an in-depth analysis, we find that one
possible reason might be due to the center-bias prior that is
statistically significant in most image datasets (as shown in
Fig. 5). In this situation, some raw saliency maps are more
reliable in the center of the image, others in the image bound-
ary (e.g., as shown in Fig. 4, the 5th raw map totally shows a
larger weight in the image center than the other maps), lead-
ing to location-related weighting for different raw maps. In

Fig. 5 Location priors for a SOCB, b MOCB and c MSRA datasets,
each of which is constructed by counting object pixel occurrences in
the corresponding training data (Gould et al. 2007)
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Fig. 6 An example of
combining raw maps to generate
complementary maps given the
learned parameter matrices

the future work, we will explore a content-related weighting
mechanism in the learning algorithm.

A related question is about the potential overfitting risk of
our method. From (14), we can see that the parameter learning
problem can be solved for each block independently, under
the constraints of convex combination. So given a set of N
training images, there are only 2×K parameters to fit for each
block. Usually, N � 2× K . This reduces the overfitting risk
and makes the learning process computationally efficient. It
is shown in Sec. 6 that our learning algorithm can converge
in less than 50 iterations on average.

Given the learned parameter matrices, the remaining prob-
lem is how to predict complementary saliency priors for a new
image. As illustrated by Fig. 6, this process consists of three
steps. Firstly, a given set of raw maps are produced for the
input image. These maps are then combined to generate two
complementary saliency maps using the mapping functions
in (13). Finally, the complementary saliency priors for each
pixel in the image are predicted using (5).

5 Segmentation Via Graph Cuts with Complementary
Saliency Priors

Given the complementary saliency priors, we then segment
foreground objects by using graph cuts. In our approach,
object segmentation is modeled as a binary pixel labelling
problem.

When labelling a pixel p, three factors should be consid-
ered. The first one is prior h̄ p, indicating the label that p pos-
sibly belongs to. The second one is visual appearance mod-
els M that tell the feature distributions of objects and back-
ground. The last one is interaction between the neighborhood
Np, implying the influence of pixel labels from p’s neighbor-

hood. Therefore, object segmentation can be formulated as
finding a labeler Ψ

(
p|h̄ p,M,Np

) = l p, where l p ∈ {0, 1}.
Here we consider all these factors in a graph cuts frame-
work (Boykov and Jolly 2001). That is, we seek a labelling
assignment l that globally minimizes the following cost
function:

C(l) =
∑

p∈I (n)

[D(l p) +
∑

q∈Np

Vp,q(l p, lq)], (17)

where the first term considers the known appearance mod-
els for background and objects, and the second boundary
term guarantees that two neighboring pixels are likely to
have the same label. According to Kolmogorov and Zabih
(2004), only regular costs can be used as binary costs,
which must satisfy the inequality: Vp,q(0, 0)+ Vp,q(1, 1) ≤
Vp,q(1, 0)+Vp,q(0, 1). As such, all cost functions have their
global solutions.

In this study, we improve the graph cuts framework by
incorporating complementary saliency priors. First, a thresh-
old δ⊥ is used to cut the envelope map and sketch map to
obtain envelope regions (denoted by E) and sketch regions
(denoted by T ), respectively3. As such, the most confident
parts of complementary saliency maps (i.e., T and Ē , where
Ē = I − E) can be utilized to train appearance models for
objects and background, while less confident parts in E (i.e.,
X = E − T ) are excluded from the training of appearance
models. Once we have the models, the appearance likeli-
hood L(xp|l p) can be calculated using the feature vector xp.
Therefore, the cost D(l p) is defined as:

D(l p) = − log
[
h̄(l p)L(xp|l p)

]
, (18)

3 In our implementation, we use δ⊥ ∗ avg(S+) and δ⊥ ∗ avg(S−) to
perform the binarization.
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Fig. 7 Some examples from the three benchmarks. a SOSB, b MOCB, and c MSRA

where h̄(l p) (calculated by (5)) is the saliency prior of pixel
p if it is assigned to label l p. For visual appearance mod-
eling, we also use GMMs to characterize the color feature
distribution of objects and background. Intuitively, such cost
definition reflects the labelling belief indicated by comple-
mentary saliency priors. Specifically, for any pixel which has
a low value in the envelope map, if it is assigned with label
1, a large cost will occur; for any pixel with a high saliency
in the sketch map, a large cost will yield if it is labelled 0; if
a pixel has a low sketch value and a high envelope value, its
label is then determined by the appearance similarity. In this
way, we can reduce the ambiguity in a single saliency map.

Finally, the cost Vp,q(l p, lq) is defined as:

Vp,q(l p, lq) = γ �l p �= lq� exp(−β||xp − xq ||2), (19)

where �ϕ� denotes the indicator function taking values 0 and
1. γ is a constant to adjust the weight of penalty terms. β

is a constant to ensure that the exponential term switches
appropriately between high and low contrast. As such, a fast
max-flow algorithm (Boykov and Jolly 2001; Boykov and
Kolmogorov 2004) can be used to find the global solution of
(17).

6 Experiments

In this section, we conduct several experiments to show the
effectiveness of our approach. Toward this end, three bench-
marks are adopted in the experiments, including:

1. SOSB. This benchmark consists of 1,000 images labelled
with exact object masks (Achanta et al. 2009). As shown
in Fig. 7a, only one salient object is labelled in each image.
Thus this benchmark can be used as the “baseline” to
evaluate the effectiveness of various object segmentation
methods.

2. MOCB. This benchmark contains 1,474 images labelled
with precise object masks, in which 300 images are
selected from Movahedi and Elder (2010) while the others
are from PASCAL VOC09 (Everingham et al. 2009). As

shown in Fig. 7b, multiple objects co-exist in a cluttered
background in most of these images. This benchmark can
be used for evaluating the robustness of object segmenta-
tion methods in complex scenes.

3. MSRA. This benchmark contains 5,000 images from Liu
et al. (2007), while the salient objects in each image are
manually labelled by several bounding boxes (as shown
in Fig. 7c). This benchmark can be used to test whether
our learning algorithm still works even when the training
samples are approximately labelled with bounding boxes.

In the experiments, each benchmark is randomly parti-
tioned into ten equal subsets, while four of them are used
for training, one for validation and the other five subsets are
used for for testing. On these benchmarks, our approach is
compared with 16 state-of-the-art approaches, which can be
roughly categorized into three groups, including:

� Location-based Group: This group contains 8
approaches that only output saliency maps, while each
location (e.g., macro block) on a saliency map is assigned
a real saliency value. Approaches in this group include
Itti98 (Itti et al. 1998), Gould07 (Gould et al. 2007),
Harel07 (Harel et al. 2007), Hou07 (Hou and Zhang 2007,
Liu07 (Liu et al. 2007), Seo09 (Seo and Milanfar 2009),
Goferman10 (Goferman et al. 2010) and Li10 (Li et al.
2010b). In the comparison, we use two thresholds4 on the
saliency maps generated by these approaches to obtain
the highly reliable foreground and background pixels.
The same graph cuts framework as in our approach is
used to segment salient objects from these saliency maps
to demonstrate the performance of the learned comple-
mentary saliency maps.
� Object-based Group: This group contains 7
approaches that output the foreground objects, includ-
ing Achanta09 (Achanta et al. 2009), Carreira10 (Li et
al. 2010a), Yu10 (Yu et al. 2010), Cheng11 (Cheng et al.

4 The two thresholds are δs ∗avg(S) and 1
δs

∗avg(S), while δs ∈ (0, 1]
is learned via experiments on the validation set, in a similar way to δ⊥
in our approach.
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2011), Jiang11 (Jiang et al. 2011), Perazzi12 (Perazzi et
al. 2012), and Li13 (Li et al. 2013). Note that Carreira10
is not based on visual saliency, while Achanta09 and
Cheng11 output both the location-based saliency maps
and salient objects for each image. In our experiments, the
parameters of these approaches are manually fine-tuned
to reach the best performance on every benchmark.
� Interactive graph cuts: Grabcut (Rother et al. 2004)
employs the graph cuts framework for object segmenta-
tion by manually drawing a rectangle as the segmenta-
tion prior. As a result, precise “Obj-Bkg” models can be
derived for segmentation.

In the experiments, these approaches will be compared with
the proposed approach (denoted as OUR). In the comparison,
we adopt precision (PO ), recall (RO ), and F-measure (FO ) to
evaluate the similarity between the segmentation results and
the ground-truth. Precision is the ratio of correctly segmented
regions to all the segmented regions, while recall is the ratio
of correctly segmented regions to ground-truth regions. Then
the F-measure is defined as the weighted mean of precision
and recall:

FO = (1 + α)PO × RO

α × PO + RO
. (20)

Here we set α=1.0 to equally address both precision and
recall. Moreover, we also use overlap (OLPO ) (Everingham
et al. 2009) as an additional metric for possible compari-
son with related works. Here, overlap plays a similar role
with F-measure in penalizing both under-segmentations and
over-segmentations. In addition, we compute the improve-
ment (on FO ) of the proposed approach against all the other
approaches, denoted as IMP.

6.1 Parameter Selection

In practice, the selection of raw saliency maps is the first
concern of our approach. In this work, we generate eight raw
maps for each image using existing visual saliency estima-
tion methods (i.e., Itti et al. 1998; Achanta et al. 2009; Hou
and Zhang 2007; Walther and Koch 2006; Goferman et al.
2010; Harel et al. 2007; Seo and Milanfar 2009; Zhang et al.
2008) since they employ different strategies to capture salient
properties of a visual scene. In this experiment, Achanta09
and Harel07 were empirically used as the first two raw maps.
Then we increasingly added a saliency map into the raw map
set and evaluate the segmentation performance. In each step,
only the saliency map with the highest FO would be kept in
the raw map set. This process was terminated until there was
no performance improvement by adding all the remaining
saliency maps in turn. As shown in Fig. 8a, the optimal K val-
ues are different for the three benchmarks: 6 for MOCB (i.e.,
Harel07, Achanta09, Hou07, Goferman10, Seo09, Itti98), 5

for SOSB (i.e., Harel07, Achanta09, Hou07, Goferman10,
Seo09), and 4 for MSRA (i.e., Harel07, Achanta09, Hou07,
Seo09). So the three sets of raw maps will be used in all the
other experiments.

In our approach, there are three parameters in the graph
cuts component, including the saliency threshold δ⊥, the term
weight γ and the smoothness controller β in (19). As in
Rother et al. (2004), the parameter β can be set to an adap-
tive value 1/(2 ∗ aver_dis(i)), where aver_dis(i) is the
average of the squared distances between all pairs of neigh-
boring pixels. The parameters δ⊥ and γ are then determined
via experiments on the validation set. Since the two para-
meters are independent of each other, an iterated parameter
selection process can be used. As shown in Fig. 8b, the opti-
mal values of δ⊥ are 0.4 for SOSB, 1.7 for MOCB, 0.9 for
MSRA, respectively. For parameter γ , Fig. 8c shows that the
F-measure maxima appears at γ = 110 for SOSB, γ = 35
for MOCB and γ = 30 for MSRA. Thus we set γ to 110, 35
and 30 for the three benchmarks. It should be noted that the
graph cut parameters for all baseline methods are also tuned
in a similar way.

Furthermore, we conduct an experiment to verify whether
the learning is over-fitting or not. This experiment is car-
ried out by varying the number of training samples. For
each benchmark, we randomly divide the training set into 10
folds. In the experiment, the parameters are learned by incre-
mentally increasing the number of training samples, and the
learned parameters are then used for testing on the separate
testing set. Furthermore, we also add several special cases
with a very small training set (with 10, 20, 30/40 samples) to
evaluate the robustness of the proposed learning algorithm.
As pointed out in Sec. 3, a “good” pair of complementary
saliency maps should have as low complementary energy as
possible. Thus the complementary energy (denoted as Ecom)
can be directly used to evaluate the performance of our learn-
ing algorithm given different numbers of training samples.
Figure 9 shows the experimental results on the three datasets.
Note that each result is obtained by averaging results of three
independent runs.

From Fig. 9a–c, we can see that reducing the training data
to a limited number of training samples (30 for SOSB, 63 for
MOCB and 50 for MSRA, all less than 10% of the corre-
sponding training dataset or 5% of the corresponding whole
dataset) will not severely decrease the performance of our
learning algorithm. When given a certain number of training
samples (120 for SOSB, 315 for MOCB and 100 for MSRA,
all less than 50% of the corresponding training dataset or 25%
of the corresponding whole dataset), more training samples
don’t yield remarkably different results.

Figure 9d also shows the average training time of our
learning algorithm on a 4-core PC with 3.1GHz CPU and
3G RAM. We can see that the training time costs are almost
linearly correlated with the numbers of training samples.
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Fig. 8 Parameter selection for K , δ⊥ and γ through experiments on
the validation set. a FO by increasingly adding raw maps for different
datasets; b FO under different δ⊥ with γ = 110 for SOSB, γ = 35 for

MOCB, γ = 30 for MSRA; c FO under different γ with δ⊥ = 0.4 for
SOSB, δ⊥ = 1.7 for MOCB, δ⊥ = 0.9 for MSRA

Meanwhile, the average iterations are 20.5 for SOSB, 44.2
for MOCB, and 30.5 for MSRA, respectively. That is, our
learning algorithm will converge in less than 50 iterations on
average. All the experimental results show that our learning
algorithm is computationally efficient and has a low risk of
overfitting when given a certain number of training samples.

It should be noted that the average training time of our
learning algorithm on MOCB is nearly three times more than
that on SOSB. If without considering the training time costs,
we can also use the same parameter values for both the SOSB
and MOCB datasets. For example, the experimental result
show that the F-score of our approach on SOSB can also
reach 0.89 when directly using the same parameter values
trained on MOCB. It is only slightly lower than the F-score
of 0.91 shown in Table 1 when using the parameter values
trained on SOSB. This demonstrates the good applicability
of our approach in different kinds of datasets.

6.2 Performance on Object Segmentation

In this section, we conduct several experiments on three
benchmarks and the main objective is to demonstrate the
performance of our approach when processing various kinds
of scenes (e.g., simple scenes in SOSB and complex scenes

in MOCB). We will also show the robustness of our approach
when trained with different kinds of user labels (i.e., accu-
rate object masks and bounding boxes). Finally, comparisons
with an interactive segmentation approach are given to fur-
ther demonstrate the advantage of the proposed approach.

6.2.1 Performance on Simple Scenes

This experiment focuses on the object segmentation task on
simple scenes. The performances of various methods on the
SOSB benchmark are shown in Table 1 and some represen-
tative results are given in Fig. 10.

From Table 1 and Fig. 10, we can see that for all
approaches that utilize a single saliency map for each image,
the quality of saliency maps has a significant influence on
the segmentation performance. Intuitively, the saliency maps
of Itti98, Hou07 and Seo09 have badly defined borders and
incomplete internal bodies. As shown in Fig. 10b, e and f, they
perform poorly even on the simple SOSB dataset. Compara-
tively, Harel07 and Goferman10, perform much better since
their saliency maps can detect the salient regions more effec-
tively (See Fig. 10d, g). However, their saliency maps also
take on some ambiguity, consequently making the segmenta-
tion results miss important parts on salient objects (e.g., Fig.
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Fig. 9 The performances of the proposed learning algorithm when varying the number of training samples in dataset a SOSB, b MOCB and c
MSRA; d The average training time curve on the three benchmarks

Table 1 Performance on the
SOSB dataset Algorithm OLPO PO RO FO IMP (%)

Itti98 0.37 0.67 0.43 0.52 75.0

Gould07 0.76 0.89 0.84 0.86 5.8

Harel07 0.64 0.73 0.82 0.77 18.2

Hou07 0.35 0.72 0.38 0.50 82.0

Seo09 0.48 0.73 0.56 0.63 44.4

Goferman10 0.70 0.80 0.85 0.82 11.0

Li10 0.56 0.83 0.63 0.72 26.4

Achanta09 0.61 0.81 0.70 0.75 21.3

Carreira10 0.62 0.68 0.88 0.77 18.2

Yu10 0.74 0.83 0.88 0.86 5.8

Cheng11 0.53 0.83 0.58 0.63 44.4

Jiang11 0.71 0.87 0.78 0.82 11.1

Perazzi12 0.69 0.90 0.73 0.79 15.2

Li13 0.72 0.86 0.80 0.81 12.3

OUR 0.77 0.88 0.93 0.91

10(d4) and (g14)), or include redundant background regions
(e.g., Fig. 10(d14) and (g3)). Surprisingly, Gould07 obtains
pretty good performance on SOSB. This is mainly because

the strong photographer bias exists in SOSB (and its super-
set MSRA). Often, photographers tend to place the objects-
of-interest near the center of their composition in order to
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Fig. 10 Representative results on the SOSB dataset. a Original images
with ground-truth; b–o segmented results of Itti98, Gould07, Harel07,
Hou07, Seo09, Goferman10, Li10, Achanta09, Carreira10, Yu10,

Cheng11, Jiang11, Perazzi12, and Li13; p, q envelope and sketch maps;
and r segmented results of our approach

enhance their focus relative to the background (Tseng et al.
2009). However, there are also many extreme failures: in
totally 30 images (about 5.8% of the test images), none of
any object is detected by Gould07. Figure 10(c14) and (c15)
show two examples where this bias is not satisfied.

Overall, object-based methods perform better than most
of location-based methods. The proposed approach achieves
the highest FO of 0.91. Comparatively, Yu10’s results tend
to lack thin and sharp components (e.g., Fig. 10(k5), (k6)),
or miss some internal bodies of salient objects (e.g., Fig.
10 (k3), (k4), (k12)). More or less, we can also find sim-
ilar phenomena in the results of Cheng11, Jiang11, Per-
azzi12 and Li13 (e.g., Fig. 10 (l)-(o)). Instead, the proposed
approach can effectively preserve elongated parts and keep
the completeness of salient objects via graph cuts (e.g., Fig.
10 (r3)–(r6), (r12)). This validates our conjecture that the
graph cuts framework with two complementary saliency pri-
ors can indeed improve the segmentation over that with a
single saliency prior. We also noted that Carreira10 performs
not so well. As shown in Fig. 10 (j), Carreira10 tends to seg-
ment objects with high recall and relatively low precision. A

possible reason is that Carreira10 is originally designed to
produce one segment for each individual object, rather than
for foreground object segmentation.

Table 1 also presents the OLPO scores of various methods.
In terms of this metric, the proposed method still outperforms
all other methods, though the gaps are much smaller than
those measured by F-measure FO . Similar observations can
also found in Tables 2, 3 and 4.

To further demonstrate the effectiveness of our learning
algorithm, we conduct an experiment on SOSB. In the exper-
iment, we simply try another three methods to generate com-
plementary saliency maps, including: 1) VecWeight (learn
one weight per raw map); 2) MinMax (select the maximum
and minimum value across all raw maps to form the envelope
and sketch maps, respectively) and 3) AvgWeight (assign
equal weight for each raw map). We find that the F-scores
of VecWeight, MinMax and AvgWeight can only reach 0.84,
0.80 and 0.81, respectively. In particular, these three methods
have relatively low precision (0.80 for VecWeight, 0.76 for
MinMax and 0.74 for AvgWeight). This is because their sim-
ple methods for combining raw maps (i.e., max/min values,
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Table 2 Performance on the
MOCB dataset

Algorithm OLPO PO RO FO IMP (%)

Itti98 0.27 0.66 0.29 0.40 102.5

Gould07 0.55 0.84 0.61 0.70 15.7

Harel07 0.45 0.67 0.58 0.61 32.8

Hou07 0.29 0.68 0.31 0.42 92.9

Seo09 0.34 0.69 0.37 0.48 68.9

Goferman10 0.50 0.72 0.62 0.67 20.9

Li10 0.36 0.78 0.39 0.51 58.8

Achanta09 0.27 0.64 0.31 0.42 92.9

Carreira10 0.43 0.54 0.74 0.62 30.6

Yu10 0.52 0.73 0.63 0.68 19.1

Cheng11 0.33 0.76 0.39 0.46 76.1

Jiang11 0.43 0.77 0.50 0.61 32.8

Perazzi12 0.37 0.71 0.43 0.50 62.0

Li13 0.41 0.74 0.47 0.54 50.0

OUR 0.66 0.82 0.80 0.81

Table 3 Performance when trained by bounding boxes

Algorithm Evaluation with bounding boxes Evaluation with object masks

OLPO PO RO FO IMP (%) OLPO PO RO FO IMP (%)

Itti98 0.51 0.68 0.72 0.70 20.0 0.33 0.64 0.36 0.46 95.7

Gould07 0.69 0.86 0.79 0.82 2.4 0.58 0.83 0.93 0.88 2.3

Harel07 0.56 0.65 0.83 0.73 15.1 0.60 0.72 0.79 0.75 20.0

Hou07 0.53 0.73 0.71 0.72 16.7 0.33 0.69 0.36 0.47 91.5

Liu07 – 0.82 0.81 0.81 3.7 – – – – −
Seo09 0.56 0.74 0.72 0.73 15.1 0.41 0.70 0.46 0.55 63.6

Goferman10 0.63 0.77 0.80 0.78 7.7 0.70 0.80 0.85 0.82 9.8

Li10 0.50 0.88 0.32 0.47 78.7 0.58 0.81 0.64 0.72 25.0

Achanta09 0.52 0.70 0.71 0.71 18.3 0.58 0.76 0.68 0.72 25.0

Carreira10 0.57 0.67 0.82 0.74 13.5 0.62 0.68 0.88 0.76 18.4

Yu10 0.61 0.79 0.72 0.76 10.5 0.73 0.83 0.88 0.85 5.9

Cheng11 0.55 0.72 0.77 0.74 13.5 0.53 0.82 0.59 0.63 42.9

Jiang11 0.66 0.80 0.80 0.80 5.0 0.72 0.88 0.79 0.83 8.4

Perazzi12 0.64 0.70 0.90 0.79 6.3 0.69 0.90 0.73 0.79 13.9

Li13 0.66 0.78 0.82 0.80 5.0 0.73 0.86 0.80 0.81 11.1

OUR 0.73 0.84 0.84 0.84 0.78 0.86 0.95 0.90

a single weight per map, or arithmetically averaging) can-
not guarantee the exactness of the generated complementary
maps. As a result, some redundant regions in the background
are included in the segmentation results. This also implicitly
validates the effectiveness of our learning algorithm in gen-
erating complementary saliency maps.

6.2.2 Performance on Complex Scenes

On the MOCB dataset, multiple salient objects co-exist in a
complex scene, and sometimes the contrast between objects

Table 4 Performance of Grabcut with different δ

OLPO PO RO FO

Grabcut δ = 0 0.87 0.94 0.95 0.95

δ = 0.1 0.85 0.92 0.96 0.94

δ = 0.2 0.84 0.90 0.96 0.93

δ = 0.3 0.80 0.86 0.96 0.91

δ = 0.4 0.77 0.82 0.96 0.89

δ = 0.5 0.73 0.78 0.96 0.86

OUR 0.77 0.88 0.93 0.91
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and the background is low. Thus, this experiment is to eval-
uate the robustness of the proposed approach in real-world
segmentation tasks. Experimental results are given in Table
2, and some representative results are illustrated in Fig. 11.

From Table 2, we can see that our approach also outper-
forms all the other methods on MOCB. This fact reveals
that the proposed approach not only works really well on
simple datasets, but also keeps a relatively higher robustness
on complex scenes. We also find that the performances of
all the methods decrease significantly from simple scenes to
complex scenes, with reasons varying for different methods.
Itti98, Seo09 and Goferman10 rely on the center-surround
difference of visual features. However, this strategy is hardly
reliable when the background is cluttered (e.g., Fig. 11b, f,
g). Hou07 uses the spectral residuals to pop out the salient
objects, while in complex scenes, it is difficult to accu-
rately locate residuals (e.g., Fig. 11e). Gould07 performs
much worse on MOCB than on SOSB since objects in com-
plex scenes exhibit much larger variability in pose and loca-
tion (e.g., Fig. 11c). Li10 learns the task-related “stimulus-
saliency” mapping functions and various fusion strategies
for different scenes. However, when applied to the com-
plex scenes with large intra-class variance (e.g., Fig. 11 (h4)
vs. (h12)), it is difficult to find an optimal solution that
can fit well for all scenes in a category. Achanta09 com-
putes the difference between a pixel’s feature and the aver-
age feature on the Gaussian-blurred image. When colors are
mixed, the results are undesirable (e.g., Fig. 11i). The reason
for Yu10’s decrease is because it uses ad hoc complemen-
tary saliency maps which cannot directly adapt to complex
datasets. As shown in Fig. 11k, most segmented objects miss
some internal bodies. Similarly, the other four salient object-
based approaches, including Cheng11, Jiang11, Perazzi12,
and Li13, also perform poorly on MOCB (e.g., Fig. 11 (l-
o)).

Note that the performance of the proposed approach also
significantly decreases, mainly owing to the fact that some
raw maps are inaccurate and even misleading. Despite this,
our learning process makes it possible to integrate these inac-
curate raw maps to generate two more reliable complemen-
tary maps. Given the two maps, our approach can segment
objects with complex structures (e.g., Fig. 11 (r7), (r10)).
Even when the contrast between objects and background is
low, our approach still yields a satisfying result (e.g., Fig.
11 (r1–r3), (r6), (r8)). However, it should be acknowledged
that the object segmentation task on complex scenes remains
very challenging. Thus there is still a much room to improve
the performance of the proposed method.

6.2.3 Performance when Trained by Bounding Boxes

In practice, manually labelling images with precise object
masks is very tedious. Thus, this experiment is designed

to show whether roughly annotated samples are applicable
for training if precisely-labelling samples are not available.
Although the training samples are labelled with approximate
bounding boxes, we also wish our learning algorithm remain
unchanged and the final segmentation outputs still in the form
of object masks. We can quantitatively compare our results
with others in the forms of boxes and object masks. When
using boxes, a rectangle with the smallest area is simply
drawn to enclose at least 98% of object pixels in each of
the segmented results. In this experiment, we use the MSRA
dataset since it offers bounding boxes enclosing the salient
objects as the ground-truth. The SOSB dataset, a subset of
MSRA, is also used for performance evaluation in terms of
object masks.

Table 3 presents the performances of various methods,
respectively evaluated by boxes or object masks. Here the
performance of Liu07 is directly cited from Liu et al. (2007).
We notice that the output form of bounding boxes narrows the
performance gaps between different methods. Nevertheless,
our approach still outperforms the others, with an F-measure
of 0.84 (evaluated by boxes) or 0.90 (evaluated by object
masks). As shown in Fig. 12, our results are very satisfying.

Interestingly, when trained by bounding boxes, all saliency-
based methods can obtain comparable or slightly lower
results with those trained by object masks. Clearly, this
should be mainly attributed to the generalization of the graph
cuts framework. However, the robustness of our saliency
learning algorithm is also an important factor. Clearly, other
forms of ground-truth such as ellipses can also be directly
applied to our approach as training data.

6.2.4 Comparisons with Grabcut

In the last experiment, we want to verify whether our
approach can obtain comparable results with the popular
interactive method, Grabcut (Rother et al. 2004). This exper-
iment is performed on SOSB because each image in this
dataset has both forms of ground-truth data. Usually, Grab-
cut needs the user to drag a rectangle around an object to
bootstrap the segmentation. However, given the same image,
different people may draw different rectangles and the pre-
cision of these rectangles is crucial to segmentation. For a
fair comparison, we simulate six interactive cases by form-
ing rectangles of different sizes based on the bounding-box
ground-truth data, where the size difference δ is set to [0, 0.5].
We evaluate the performances of Grabcut in different cases.
The results are listed in Table 4, and some representative
results are shown in Fig. 13.

Table 4 shows that our approach can obtain comparable
results in terms of F-measure with Grabcut when δ = 0.3.
The recalls of Grabcut in all cases are very high since
each interactive rectangle can almost enclose all parts of an
object (see Fig. 13b). However, with larger δ, more redun-
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Fig. 11 Representative results on the MOCB dataset. a Original
images with ground-truth; b–o Segmented results of Itti98, Gould07,
Harel07, Hou07, Seo09, Goferman10, Li10, Achanta09, Carreira10,

Yu10, Cheng11, Jiang11, Perazzi12, and Li13; p, q Envelope and sketch
maps; and r Segmented results of our approach

Fig. 12 Representative results of the proposed approach on the MSRA dataset when trained by bounding boxes. a Original images with ground-
truth; b Envelope maps; c Sketch maps; d Segmentation results in object masks; e Segmentation results in bounding boxes

dant background will also be included in the segmented
results, leading to a rapid decrease of Grabcut’s segmentation
precision.

In some cases, our approach will identify some back-
ground regions as objects, since they may be indeed visu-
ally “salient” (e.g., Fig 13 (i6)). Nevertheless, with the help
of interactive rectangles to confine the possible range of

objects, Grabcut can avoid such regions being included in the
results (e.g., Fig. 13 (c6)–(f6)). In other cases, if some parts
of an object are not identified as “salient” by all of the used
raw maps, the learned complementary maps cannot perfectly
highlight this object, consequently leading to an incomplete
segmentation (e.g., Fig 13 (i5)). In fact, these cases are diffi-
cult for nearly all automatic saliency-based methods.
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Fig. 13 Some representative results when compared with Grabcut. a
Original images with object-mask ground-truth; b “Precise” interactive
rectangles for Grabcut; c–h Grabcut’s results given different sizes of

interactive rectangles, respectively with δ = 0, 0.1, 0.2, 0.3, 0.4, and
0.5; i Segmented results of the proposed approach

7 Conclusion

In this paper, we propose a novel automatic approach for
foreground object segmentation based on complementary
saliency priors. We learn to generate complementary maps
according to the Maximum Likelihood estimate, making
saliency priors general and robust for the purpose of fore-
ground object segmentation. We then solve the segmentation
task using graph cuts with complementary saliency priors.
Experimental results show that our approach outperforms
several state-of-the-art methods and can even obtain compa-
rable results with the popular interactive method Grabcut.

In future work, we will extend the graph cuts framework by
incorporating more visual features (e.g., shape and texture).
This will lead to better visual appearance models for objects
and for the background, and consequently make the proposed
approach more robust in real-world segmentation tasks.
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