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Abstract—Block transform coded images usually suffer from
annoying artifacts at low bit rates, caused by the coarse quan-
tization of transform coefficients. In this paper, we propose a
new method to reduce compression artifacts by the overlapped-
block transform coefficient estimation from non-local blocks. In
the proposed method, the discrete cosine transform coefficients
of each block are estimated by adaptively fusing two predic-
tion values based on their reliabilities. One prediction is the
quantized values of coefficients decoded from the compressed
bitstream, whose reliability is determined by quantization steps.
The other prediction is the weighted average of the coefficients in
nonlocal blocks, whose reliability depends on the variance of the
coefficients in these blocks. The weights are used to distinguish
the effectiveness of the coefficients in nonlocal blocks to predict
original coefficients and are determined by block similarity
in transform domain. To solve the optimization problem, the
overlapped blocks are divided into several subsets. Each subset
contains nonoverlapped blocks covering the whole image and is
optimized independently. Therefore, the overall optimization is
reduced to a set of sub-optimization problems, which can be easily
solved. Finally, we provide a strategy for parameter selection
based on the compression levels. Experimental results show that
the proposed method can remarkably reduce compression arti-
facts and significantly improve both the subjective and objective
qualities of block transform coded images.

Index Terms—Block transform coding, compression artifacts,
block similarity, denoising, post-processing.
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I. INTRODUCTION

ISCRETE cosine transform (DCT) is widely adopted

in the existing image and video compression standards,
such as JPEG, MPEG-1/2/4, H.261/263/264, etc., to exploit the
spatial correlation among neighboring pixels. At the encoder
of such schemes, the input image is usually divided into a
group of small image blocks, each of which is transformed
into the frequency domain using block-DCT (BDCT). For
each transformed block, the DCT coefficients are then com-
pressed into a binary stream via quantization and entropy
coding. At the decoder, the image is reconstructed by inversely
transforming the quantized DCT coefficients extracted from
the bitstream. A problem in block transform coding is that,
due to the coarse quantization of transform coefficients, the
images compressed at low bit rate usually suffer from visually
annoying artifacts [1], including the blocking and ringing
effects.

In order to reduce the compression artifacts while main-
taining compatibility with the existing coding standards, var-
ious post-processing techniques have been proposed in the
literatures. These methods mainly include filtering approaches
[2]-[6], iterative approaches based on the theory of projections
onto convex sets (POCS) [7], [8], maximum a posteriori
(MAP) estimation methods [9], [10] and wavelet-based meth-
ods [11]. Reeve and Lim [2] applied a 3 x 3 Gaussian
filter to the pixels around block boundaries to smooth out
the blocking artifacts. Ramamurthi and Gersho [3] employed
nonlinear space-variant filters based on edge-oriented classi-
fiers to smooth out blocking artifacts. Buades et al. [4], [5]
proposed the nonlocal means filter to predict each pixel
by a weighted average of its surrounding pixels, where the
weights are determined by the similarity of the corresponding
image patches located at the source and target coordinates.
Takeda er al. [6] proposed a signal-dependent steering kernel
regression framework for denoising. The above methods only
considered the smoothness or the regularity in pixel intensi-
ties, but did not exploit the information in the compressed
bitstream. Therefore, the true edges or texture details might
be smoothed out undesirably in the reconstructed images.
To avoid this issue, Zakhor et al. [7], [8] utilized the quan-
tization intervals of transform coefficients as a convex set,
resulting in an algorithm which applies low pass filtering and
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projection onto quantization convex set alternately. There are
also many approaches based on probability estimation
[9], [10]. Rourke and Stevenson [9] employed Huber-Markov
random field (Huber-MRF) as an image prior model to seek the
MAP estimation of the original image. The Gibbs distribution
therein models both the smoothness and the discontinuities of
images in the spatial domain. Sun and Cham [10] modeled the
original image as a high order Markov random field (MRF)
based on the field of experts (FoE) framework. In some
other approaches, the a priori knowledge is expressed by the
statistical characteristics of coefficients in transform domain,
e.g. wavelet, contourlet. Wu et al. [11] proposed a deblocking
algorithm by adaptively shrinking the wavelet coefficients.

Since the compression artifacts are solely caused by
the quantization of transform coefficients, some previous
works tackle the problem in the DCT domain [12]-[16].
Chen et al. [12] applied a low pass filter to the DCT
coefficients of neighboring blocks. The DCT-domain filtering
method was also adopted in [13]. Although the filter was
adaptively chosen, it remains constant with respect to all
subbands. Therefore, the filtering operation in DCT domain
is essentially equivalent to the corresponding filter in spatial
domain. Choy et al. [14] estimates the original DCT coef-
ficients from the quantized ones with the local mean and
variance of the coefficients in each subband. Lee et al. [15]
proposed to reduce artifacts by first low pass filtering the
decoded image and then predicting the image by a linear
regression model in transform domain. Foi et al. [16] utilized
a point wise shape adaptive DCT for denoising.

In this paper, we propose a new approach to reduce
compression artifacts by estimating the original image from
transform domain. This is achieved by estimating the DCT
coefficients in all the transform-blocks located at any pixel
position. For each block, the DCT coefficients are estimated by
adaptively fusing two prediction values according to their reli-
abilities. One prediction is the quantized values of coefficients
decoded from the compressed bitstream, whose reliability is
determined by quantization steps. The other prediction is the
weighted average of coefficients in non-local blocks which are
similar with the estimated blocks. Its reliability depends on the
variance of coefficients in these similar blocks. The weights
are utilized to distinguish the effectiveness of coefficients in
similar blocks to predict the original coefficients. They are
determined by block similarity in transform domain. In order
to depress the negative effects of noise in similarity cal-
culation, we take the Euclidean Distance of low frequency
coefficients in transform-blocks to measure their similarities.
Furthermore, we employ quantization steps to exclude out-
lier coefficients in similar blocks, which are far away from
the estimated original coefficients. The proposed framework
needs to optimize transform coefficients in all the transform-
blocks in image, which are overlapped. It involves a large set
of dependent variables. To tackle the optimization problem,
the overlapped blocks are divided into several subsets. Each
subset contains non-overlapped blocks covering the whole
image and is optimized independently. Therefore, the overall
optimization is reduced to a set of sub-optimization problems
that can be easily solved. A method is also proposed to
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enforce the quantization constraint for each of these sub-
optimization problems. Finally, we provide a strategy for para-
meter selection according to the compression levels or quan-
tization steps, which can be extracted from the compression
bitstream.

The remainder of this paper is organized as follows.
Section II briefly reviews block-transform image coding and
introduces some notations. Section III formulates the compres-
sion artifact reduction as a MAP estimation problem under the
Bayesian framework. The proposed image prior models are
described in detail, and the performances of different prior
models are compared in this section. Section IV describes
the optimization solution of the proposed algorithm and the
enforced quantization constraint method. Experimental results
are reported in Section V and Section VI concludes the

paper.

II. REVIEW OF BLOCK-TRANSFORM IMAGE CODING

In this section, we briefly review a few concepts and
notations in block transform image coding for the convenience
of later discussion. Suppose we have an image Z (a two-
dimensional grid) of size H x W, where Z(i, j) denotes a pixel
and the indices i and j are the coordinates in the vertical and
the horizontal directions, respectively. Suppose that the size of
block-DCT used for image coding is N x N. We use B, , to
denote an image block of size N x N in Z, with its top left
pixel being Z(m, n). To be specific, the pixels in this block
are

Bln,n(l9]):I(m+lan+])9 la]:05159N_1 (1)

For the block-DCT based image coding, the input image 7 is
divided into a group of non-overlapped blocks of size N x N.
The data in each block is transformed, quantized and entropy
coded into the compressed bitstream. We call these blocks
coding blocks. Obviously, a block By, , is a coding block only
when m and n are multiples of N. We define

Qcp = {By,nlm,n = 0(modN)}. 2)
The complete set of blocks in image Z is defined as
Q={B,,0<m<H-N,0<n<W-—N} 3)

The blocks in Q are obviously overlapped. The blocks in
QOneg = Q\Qcp are called non-coding blocks. Although the
data in non-coding blocks are not directly acquired from the
bistream by inverse transform and quantization, they can be
retrieved from the bitstream when the image is reconstructed.

We use x to represent the original data (i.e. pixel intensity)
of image 7 and use xB and Xp to represent the data and
the transform coefficients of a block B, respectively. They
are related by the block-DCT 7, X = 7(xp), (inverse
transform xg = 7' (Xg)). The transform coefficients in Xz
are quantized according to a quantization matrix Q of size
N x N

Y (u,0)=0 X (u,0)). 4)

Yn(u,0) is the reconstructed coefficients in the block B.
This is achieved by In(u,0) = round Xp(u,0)/Qu,0)) and
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Yn(u,w) = Qu,0)In(u,w). Here, In(u,v) is the index of
the quantization interval for the block B and Q(u,0) is a
quantization step.

III. FRAMEWORK OF COEFFICIENT ESTIMATION
WITH BLOCK SIMILARITY

In a standard decoder, the image is reconstructed simply
by inversely transforming the quantized coefficients for each
coding block. In this paper, we seek a better image recovery
from the view point of statistical inference. This is formulated
as follows: given the quantized transform coefficients Yz for
each coding block Be Qcg, find the image x which has the
maximum a posteriori probability:

X = argmax Pr (x| {YB}BEQCB) . (&)
X

Based on the Bayesian rule, the problem can be reformulated
as

X = argmax logPr ({YB}BEQCB ’ x) + logPr (x) . (6)
X

Here, the first term in (6) is the likelihood and the second
term is the prior model of image x. In the literatures, many
image prior models have been proposed (e.g. [17]-[20]).
In this paper, we propose a block similarity prior model
(BS-PM), which infers the coefficient distribution of an image
transform-block utilizing the coefficients of similar blocks
in a nonlocal area of the image. This is mainly based on
the assumption that the coefficients in similar blocks usually
have similar statistical properties. The quantization noise prior
model (Q-PM) is also used in this paper, which employs
the quantization version of coefficients as an estimation of
the original ones. Based on the two models, the optimization
problem in (6) is rewritten as,

X = argmax logPr ( {YBlBecacs ’ x)
X
+ logPr, (x) + logPrzg (x). (7
Here, Prp(x) and Prpgs(x) represent the probability distribu-

tions of Q-PM and BS-PM, respectively. These probability
distributions are described in the following subsections.

A. Quantization Constraint

Since the quantization is independent for each coding block
([21]-[23]), the conditional probability for quantization

value is
Pr ({YB)Beaes | X) = BE% Pr (Yg| X5)
CB
1, Ye=9(X
where  Pr (Y5|X5) = Ho, Y5~ Q((XZ)) @®)

Since log(0) approaches negative infinity, each of the estimated
coefﬁcients in (7) should be in the quantization interval
(Y5 (u, 0), YE*(u, 0)]

: 1
Y%m(ua D) = YB(”» Z)) - 5 Q(ua D) (9)

4615
M & & 4 111 A a A A L 1 10
& & 4 1 1 o o4 A A A 4 Lo
A 4 4 4 1 4 a1 A A 4 4 o0
O O N R S | A oo b
) O U U S S O S G S S S B |
[ U e ) Y U S U G U U U S B
B S G S G S S U S S U S U |
| S N O R S T | T U U U Y R |
() (b)

Fig. 1. The histogram of quantization noises in the coding blocks (a) and
the non-coding blocks (b) for Lena compressed by JPEG at quality factor 15.
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with exponent function.

Y5, 0) =Ygu,v) + %Q(u, D). (10)

This requirement is referred as quantization constraint.
It can be implemented by a projection operation,
(X5 = Po(XB, YR), defined as,

Xig(u, )
YE"(u,0), if Xp(u,0) <Yg"(u,v)
=1 XB,v), if Yg"(u,v)<Xpu,v)<Yg"(u,0v)
Y5 (u,0), if Xp(u,v)>YE"(u,v).
(11

B. Image Quantization Noise Prior Model

In compressed image, the noises in the coding blocks
and the non-coding blocks are both caused by quantizing
coding block coefficients. In this paper, we refer to them
as quantization noise together. With the reconstructed coef-
ficients in quantization intervals, the distribution of quan-
tization noise can reflect the distribution characteristic of
original coefficients in quantization intervals and is denoted as
Pro(x) = Pr(X—9Q(X)). There are many quantization noise
models in the literatures (e.g. [9], [10], [24]-[26]).
Robertson and Stevenson [24] utilize the Laplacian quantiza-
tion noise model for quantized DCT coefficients equal to zero
and uniform quantization noise model for nonzero quantized
DCT coefficients. Sun and Cham [10] employed Gaussian
distribution for quantization noises in the spatial domain.

In Fig. 1, we illustrate the histogram of the quantization
noises for the coding blocks and the non-coding blocks in
Lena compressed by JPEG. From Fig. 1, we can see that
the quantization noises resemble Gaussian distribution in low
frequency bands and resemble Laplacian distribution in high



4616

x10?
10000

—&—Zero-mean Laplacian model prediction
—8—Local average with neighborhood 7x7
1000

—H&-Local average with neighorhood 11x11
—S—Weighted average (BS-PM) with neighborhood 7x7
—e—Weighted average (BS-PM) with neighborhood 11x11

100

Mean square of prediction errors

0.1 ; . . ‘ : :
1 11 21 31 41 51 61
Frequency Index (Zig-Zag order)
Fig. 3. The mean square error of the prediction for different image prior

models on uncompressed images.

»
N3
o
3

X Datawith QF=10
© Datawith QF=30
40 | |==Fit function with QF=10)
| = Fit function with QF=30)

)

===Fit function with QF=30)

2
3
w

0

for band (0,0)
forband (1,1)
8

10

Mean square of prediction errors
Mean square of prediction errors

0 50

100 150 200 250 300 350 400
Difference of blocks

0 50

100 150 200 250 300 350 400
Difference of blocks

Fig. 4. The relationship of the mean square of the prediction errors and the
L, norm distance between blocks (over 30,000,000 blocks) in compressed
images at different quality factors.

frequency bands. Therefore, we take the generalized Gaussian
distribution (GGD) [38] to approximately model quantization
noises with different parameters for different bands. The quan-
tization noise distribution is formulated as follows,

Vv v
Pro(x)= 11 { ——expl— (7' Xg-Y
0(x) Ao | AT (3 P{ (ﬁ X5 BO }
00 (XB,YnB), 12)
d0 XB,Yn)
1, XBE[YB—%Q,YB—i—%Q] and B € Qcp
= 1, Be QNCB (13)
0, others.

In principle, the parameter, v, in the GGD model should
be estimated from a large volume of compressed image block
samples. However, it is easy to observe from Fig. 1 that the
quantization noise distributions in low frequency bands are
close to Gaussian distribution while the quantization noise
distributions in most high frequency bands can be approxi-
mated well by Laplacian distribution. Therefore, we utilize a
hybrid Gaussian-Laplacian noise model in this paper. To be
specific, we adopt the Gaussian model for the quantization
noises in the first N, bands and use the Laplacian model for
the quantization noises in the remaining high frequency bands
based on the Zig-Zag order.

C. Image Block Similarity Prior Model

Since the above Q-PM is a global prior model for natural
images, it cannot reflect the variation of image local structure
efficiently. Choy et al. [14] proposed a local smoothness prior
model using the average of local coefficients as the expectation
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Fig. 5. The mean square error of the prediction for local average model
and weighted average prediction (BS-PM) on JPEG compressed images at
QF = 20.

of original coefficient distribution. The prior distribution of
original coefficient in [14] can be formulated as,

Pros()= I | ——>
s fowe)|
1 — \T._ —
X exp [—5 (Xp—Xg) C /\/’I(B) (XB—XB)”,
(14)
— 1
Xg=——+- > Xg, (15)
WV B) BeN((B)
N(Bm,n)z{Bk,l m—-—L<k<m+1L,
n—L<l<n+L}\{Bun}. (16)

Here, N (B,,.,) is the neighborhood of block B, , with
radius L. |N'(B)| is the number of blocks in this neighborhood.
Cnrs) is a diagonal matrix with the variance of neighboring
coefficients, ajz\f(B) (u,v), as its diagonal element, which is
calculated by,

< 2
7w ) = ) B/GZN(B) (Xp (,0) = X5 @, )"
(17)

Unfortunately, this assumption is not reasonable for some
regions, e.g. edges or textures.

To better infer the coefficient distribution, we propose to
employ the transform-blocks with different weights as extra
samples to form a prior distribution of original coefficients.
In fact, it utilizes the weighted average of the coefficients in
non-local blocks as the expectation of the original coefficient
distribution. Here, we define the estimated transform-block as
target block, and the ones used to infer the distribution of
coefficients in the target block as sample blocks. The weight
reflecting the block similarity between sample block and target
block, is called sample weight. Based on the central limit
theorem (CLT) [27], the proposed block similarity prior model
is formulated as,

|
Prps (X) = 1II ’71/2
Beal |Cyp)|

1 — _
Xexp ’—5 (XB — XB) TCX/—I(B)(XB — XB) ] ] R
(13)
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Xp= > wpXg, (19)
BeNB)
< 2
oxp )= D wg (Xg @,0)-Xp@,0))"  (20)
BeN((B)

Here, wys is the sample weight for block B’ and the variance
of coefficients in sample blocks, 0/2\[ (u,v), is calculated
from equation (20). Based on the assumption that the similar
blocks have similar statistical characteristics for transform
coefficients, the more similar blocks can provide better pre-
diction for the distribution of coefficients in farget blocks.
Therefore, higher weights should be assigned to the sample
blocks that are more similar with the target block. On the other
hand, lower weights should be assigned to sample blocks that
are less similar with the target block, because the dissimilar
sample blocks usually provide less meaningful information for
the distribution.

In order to find reasonable sample weights, the relation-
ship of block similarity and prediction accuracy needs to be
investigated. Motivated by the well-known nonlocal means
filter ([4], [5]), we employ the square root of difference of
transform-blocks (i.e. L, norm distance in DCT domain)
to measure their similarity. When the L, norm distance of
two transform-blocks is smaller, the two blocks are more
similar, vice versa. In addition, we utilize the mean square of
prediction errors to measure the prediction accuracy for target
block. In Fig. 2, the relationship between the mean square of
prediction errors and block similarity is illustrated based on
the uncompressed images. The horizontal axis represents the
L, norm distance between sample blocks and target blocks
in DCT domain. The vertical axis represents the mean square
of prediction errors. From Fig. 2, we can see that the mean
square of prediction errors increases rapidly along with the
increase of the distance between sample blocks and target
blocks, and their relationship can be fitted with an exponent
function very well. Therefore, the sample weights for blocks
in neighborhood N (B) are defined,

1 X5 —X
|Xs" - X35],
Z= Z expi———— — (22)
BeN(B)

Here, Z is the normalization constant. The parameter,
h, is a smoothness factor to control the distribution of
sample weights.

In order to analyze the efficiency of our proposed block
similarity image prior model, we compare its prediction
performance with the other two image prior models. One is
the local image prior model in [14] utilizing the average of
local coefficients as the expectation of the original coefficients.
The other one is a global image prior model that assumes the
DCT transform coefficients following zero-mean Laplacian
distribution, which takes zero as the expectation of original
coefficients. We take some common test images, i.e. Barbara,
Elaine, Motor, Lena, and Peppers, to calculate mean square
error (MSE) of the predictions using different prior models
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Fig. 6. The mean square error of the prediction for the weighted average
prediction (BS-PM) on JPEG compressed images at different quality factors.

for all the bands in 8 x 8 transform-blocks. Fig. 3 illustrates
the MSE comparison results with the three models. We can
see that the local average prior model and our proposed

BS-PM achieve better prediction performance in low
frequency bands than that of the Laplacian prior model,
which cannot adapt to image local variants. The proposed
BS-PM also has better prediction performance than that of
the local average model due to the block similarity also
varying in local areas. In addition, along with the increase
of the neighborhood size, more and more sample blocks with
different structures are employed in prediction. However, they
have little positive effects or even have negative effects in
predicting original coefficients. They degrade the prediction
performance of local average model. In the proposed BS-PM,
the sample blocks are employed distinctively based on block
similarity and the negative effects of dissimilar sample blocks
are depressed by assigning small weights. Therefore, the
BS-PM achieves the best prediction results in the three
models, and the neighborhood size has little effects on its
performance as illustrated in Fig. 3.

D. Block Similarity Prior Model With Compressed Images

Although the block similarity prior model has been pro-
posed, there are still some problems when applying them
to the compression artifact reduction application, where only
compressed images exist. There are two variations compared
with that in original images. First, we employ the reconstructed
coefficients in similar transform-blocks to predict the original
coefficients, but the accuracy of block similarity measure-
ment is impaired by the presence of compression noises.
Therefore, the coefficients only in low frequency bands are
used to calculate the block similarity, which are not sensitive
to noises. Second, we take advantage of the reconstructed
values to distinguish coefficients used in prediction. Since
the original coefficients lie in the quantization interval indi-
cated by the reconstructed values, some outlier coefficients in
sample blocks, which are far away from the reconstructed
values, should be excluded to improve the prediction accuracy.
Based on the two discussions, the sample weight for each band
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is rewritten as,
M M
vy -vil,

1
Wy (u,0) = Eexp — Y

'5}/ 0 (YB/ (u, 0) 5 YB (u’ D))

Here, the step function J, o(:) is utilized to exclude outliers,

(23)

and y is a constant. Yﬁé is a vector composed of M low
frequency coefficients in the left top of the transform-blocks
to depress the negative effects of compression noises in block
similarity measurement.

To analyze of the proposed BS-PM on compressed images,
the similar experiments are carried out on images compressed
by JPEG coder at different compression quality factors. Here,
the quality factor (QF) is a parameter indicating the quality
of compressed images, which is in the range of [0,100].
The smaller quality factors are corresponding to larger quan-
tization steps and higher compression ratio. The relationship
of the block distance in DCT domain and the mean square
of prediction errors are illustrated in Fig. 4. The exponent
function also can fit their relationship well at different quality
factors.

In Fig. 5, we compare the prediction performance of the
BS-PM and local average model on the same test images in
III-C, which are compressed by JPEG at QF = 20. The sample
weight used in Fig. 5 is calculated from equation (23).
From Fig. 5, we can see that the prediction performance of
the proposed BS-PM is still much better than that of local
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Fig. 8. The performance of our proposed method with different overlapped
step sizes. The images are compressed by JPEG at QF = 15.

average model on compressed images and is more robust
to the neighborhood size due to employing block similarity
and the outlier exclusion with the step function in (23).
In addition, we also test the performance of BS-PM at different
QFs illustrated in Fig. 6. It shows another advantage of the
proposed model that the MSE of the prediction decreases along
with the increase of QF. This is mainly because more and
more coefficients in similar blocks are regarded as outliers
and excluded along with the decrease of the quantization
step.

IV. OPTIMIZATION SOLUTION
A. Separation of Optimization Function

Under overlapped framework, the number of blocks
involved in (7) equals to the total number of blocks in the
image 7 and these blocks are dependent. Therefore, to make
the optimization feasible, we divide the block set Q into
several subsets:

Q" (i, j) = {Bunlm=i;n=j(modN)} (24)

Obviously, there are a total of N x N subsets (by setting
i, j=0,1, ..., N-1). Each subset forms a complete coverage
of the image Z with non-overlapped blocks except at image
boundaries. To find the solution to the problem (7), we
perform N x N sub-optimizations which minimizes (7) w.r.t.
the variable Xz in a block subset Q**?(i, j) while keeping
the estimated Xp in other subsets temporarily constant and
irrelevant. Since the blocks in each subset are non-overlapped,
the optimization problem (7) can be solved by optimizing Xz
in each subset separately. Assuming prior distributions being
independent for different bands, the optimization solution to
subset Q*“?(i, j) for each band can be derived by setting
the deviation of (7) to zero. The final solution is illustrated
in (25)-(28) as shown at the bottom of the next page. The
solution (25) is used for estimating the coefficients in bands
with Gaussian quantization noise distribution, and the solution
(26) is used for estimating the coefficients in bands with
Laplacian quantization noise distribution. From equations (25)
and (26), we can see that the estimation of original coefficients
is generated by adaptively fusing two prediction values based
on their reliability.
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B. Enforcement of Quantization Constraint

According to (25)-(28), the optimization in (7) for each sub-
set can be easily solved. However, the quantization constraint
in (28) is limited to the sub-optimization solution of Q**(0,0).
When i and j are not zero simultaneously, the blocks in
Q*“b(i,j) correspond to non-coding blocks. In this case, to
enforce the quantization constraint, the optimization solution
to each subset can be obtained as follows: (1) for every block
in Q*“?(i, ), find the optimal estimation X/B via equation (25)
and (26); (2) construct the whole estimated image by inversely
transforming all the estimated blocks in this subset; (3) divide
the estimated image into blocks as Q*b(0,0) and convert them
to block-DCT domain; (4) apply the quantization constraint
operation in (28) to blocks generated in stage (3); (5) convert
estimated blocks in stage (4) to the spatial domain, and get
the estimated image for the subset.

C. Adaptive Parameter Selection and Algorithm Description

In image process algorithms, different parameter sets may
affect the performance of algorithms significantly. For practical
algorithms, the parameters should be constant or decided
adaptively. In our proposed scheme, there are six parameters to
be decided, i.e., the first N;, bands with Gaussian quantization
noise distribution, the parameter M and y in (23) used in
sample weight, the variance of the quantization noises o2, the
neighborhood size L, and the smoothness factor 2 in (23).
We set Np as 10 for all the experiments empirically. For the
parameters M and y, we simply set them as 16 and 6 for 8 x 8
blocks respectively, which do not have significantly influence
on the performance. For the variance of quantization noises,
we estimate it from the quantization step in this paper,

03 (0.0) = 0 (u,). (29)
o

For JPEG compressed images, we set o set as 7 and 0.5 for
Gaussian quantization noise and Laplacian quantization noise
respectively.

For the parameters, L and A, which have obvious influence
on the final performance, we employ some test images to find
the reasonable parameter values. The test images, Airplane,
Barbara, Motor, Elaine, Lena and Peppers, are compressed
by JPEG at different QFs. Firstly, we test the effect of the
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Algorithm 1 Our Proposed Algorithm for Compression
Artifact Reduction

Input: Compressed image: Y;

Output: Denoised image: %,
1: Parameter Initialization: L, h, M, «,
2:if  subset is (0,0 do

3: Estimate all the transform blocks in current subset via (25) and (26},
4: Apply quantization constraint to all the estimated blocks via (28),
5: Transform all the blocks obtained in step 4 into the spatial domain to

generate the estimated image z(0,0);

6: end

7: For each subset Q**(ij) i +7#0) do

8: Estimate all the transform blocks in current subset via (25) and (26),

9: Transform all the estimated blocks into the spatial domain to generate
the estimated image 2'(G,7);

10: Divide the estimated image into non-overlapped blocks as the ones in
Q(0,0), and apply quantization constraint to these blocks via (28);

11: Transform all the blocks obtained in step 10 into the spatial domain
to generate the estimated image z(i.7);

12: end

13: Combine all the estimated images z(7/) to generate the output image X .

neighborhood size according to objective quality of estimated
images measured by peak signal-noise ratio (PSNR). In Fig. 7,
we illustrate the results of Lena with size of 256 x 256 and
Airplane with size of 384x256, for different neighborhood
sizes and QFs with the same smoothness factor A. It can be
easily observed that the performance of our proposed scheme
is improved along with the increase of the neighborhood size,
L, at different QFs. When L is beyond 8, the performance is
almost stable. Considering the performance and complexity,
we take the parameter L as 8 in our scheme.

Secondly, we search for the best smoothness factor, &, given
the neighborhood size parameter as 8. Based on the previous
research, e.g. nonlocal means filter [4], [5], the smooth-
ness factor is closely related to compression noise levels.
For simplicity, in this paper, we take quantization step of DC
band, Q(0,0), as a measurement of compression noise levels,
which can be obtained from the compressed bitstream. In order
to find the relationship between 4 and Q(0,0), we try out &
from 5 to 60 with increment one for the test images, Barbara,

O’?\/’(B) (u9 U)YB(M7 U)

0% ,0) s ;)

X/B(u’ b) = on(u, v) + sz\f(B) (u,v) 02Q (u,v) + 0'3\/'(3) (u,v)’ (2)
‘_{/\/’(B) (u,v) — % ?N(B) u,v) =Yg (u,v) > %
X () = | Y5 (u,0) PR vy )~ Vs () < B0 (6
Yy @) (u,0) + 7\/5?2;/((530(;"@ Y ) (u,0) =Yg (u,0) < —7\/5?2;[((53;;"0)
Yam w,0) = D Wg ) Yg (u,0) 27)
BeN(B)
X5 = Po (X, YB) - (28)
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Fig. 9. The quality of the reconstructed images with different methods at
different compression quality factors. (a) Barbara. (b) Motor. (c) Parrot.

Elaine, Lena, Pepper with size 512 x 512 and Motor with size
768 x 512, compressed by JPEG at QFs in {5, 10,
15, 20 90}. The relationship between h and QF is
approximately expressed by linear regression in Eqn. (30)

_ 1025460 (0,0) + 12.557 ©Q(0,0) > 16

h 16.63 0(0,0) < 16.

(30)
Based on the above discussion, our proposed algorithm is
described in Algorithm 1.

V. EXPERIMENT RESULTS

In this section, we first test the performance of the over-
lapped strategy. The overlapped step size is defined as the
distance between two adjacent blocks to be estimated. If the
overlapped step size is the same as the block size, all the
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Fig. 10. The mean square error of coefficients in coding blocks for Lena
reconstructed by the proposed method and JPEG.

blocks are non-overlapped. If the overlapped step size is 1,
there is only one column of pixels are different between the
two adjacent blocks in horizontal direction. In Fig. 8, the
performance of different overlapped step sizes for images,
Lean, Peppers with size of 512 x 512 and Parrot with size
of 768 x 512 compressed by JPEG at QF = 15 is tested.
The results illustrate that the smaller overlapped step size
provides the higher quality of restored images. This is mainly
because more predictions are generated for the image with
smaller overlapped step sizes. In addition, the overlapped
strategy takes advantage of the correlations between blocks
to depress the blocking artifacts.

We also evaluate the performance of the proposed method
with state-of-the-art compression artifact reduction algorithms
and denoising algorithms, including Choy’s method [14],
the nonlocal means filter (NLM) [5], BM3D method [28],
PSW [29], Nosratinia’s method [30], steering kernel regression
(SKR) [6], KSVD [31], Sun’s method [10] and PLOW [32].
The test images in our experiments includes popular images
Barbara, Fishingboat, Lena, Peppers with size of 512 x 512,
Cameraman with size of 256 x 256 and Kodak image set,
as listed in Table I. These gray images are first encoded by
a JPEG coder [33] with different quality factors and then
reconstructed using standard JPEG decoder and different com-
pression artifact reduction methods. For our proposed method,
the parameter L is set as 8 and the smoothness factor % is set
according to (30). For the compared methods, we also try out
many parameters with some test images to find the reasonable
ones under different compression ratios. Table I illustrates
the PSNR results of the reconstructed images with different
methods. Our proposed scheme outperforms all of the other
methods and achieves up to 1.19 dB gain over JPEG decoder
on average. Compared with other artifact reduction methods,
our proposed method also achieves about 0.25 ~ 0.75 dB
on average. Especially, our method achieves up to 1.50 dB
gains over JPEG for image Parrot. In table II, we illustrate
the Structural Similarity Index Metric (SSIM) results of the
reconstructed images. The SSIM is another image quality
assessment method, which is known to be able to provide a



ZHANG et al.: COMPRESSION ARTIFACT REDUCTION

[/

Orlglnal JPEG decoder Choy’s method

[ [/

NLM

SKR

Fig. 11.

Nosratinia’s method

4621
Sun’s method

/ /

Our proposed method

The reconstructed images with different methods. The test image, Airplane, is compressed by JPEG at QF = 15.

TABLE I
PSNR RESULTS OF RESTORED IMAGES USING DIFFERENT METHODS FOR TEST IMAGES COMPRESSED BY JPEG AT QF = 15 (UNIT: dB)

TestImages JPEG Choy’s | Nosratinia’s PSW Sun’s NLM BM3D SKR KSVD PLOW | Proposed
Barbara 27.14 27.59 27.97 27.49 27.80 27.95 27.90 28.15 27.91 28.01 28.60
Cameraman 27.71 27.84 28.24 27.93 28.45 28.14 28.33 28.38 28.26 28.37 28.67
FishingBoat 29.53 29.93 30.28 29.94 30.43 30.19 30.41 30.41 30.22 30.44 30.57
Lena 31.94 32.63 32.93 32.71 33.10 32.95 33.11 33.12 32.95 33.22 33.34
Peppers 31.54 32.16 32.43 32.20 32.78 32.43 32.59 32.57 32.58 32.65 32.94
Hats 32.09 32.58 32.80 32.59 33.07 33.04 33.07 32.76 33.03 32.74 33.32
Kodim04 31.22 31.70 31.86 31.65 32.03 31.92 32.07 31.84 31.81 31.77 32.15
Motor 26.34 26.63 26.95 26.67 27.10 26.93 27.10 27.31 26.94 27.20 27.39
Window 31.36 31.91 32.29 31.89 32.56 32.43 32.58 32.25 32.39 32.26 32.74
Sailboats 31.58 32.00 32.37 31.96 32.62 32.37 32.47 31.65 32.45 32.19 32.75
Sailboats2 31.20 31.56 31.96 31.54 32.15 32.05 32.21 31.84 31.93 31.89 32.46
Statue 30.52 30.94 31.21 30.96 31.35 31.19 31.38 31.29 31.14 31.09 31.48
Tower 29.13 29.44 29.81 29.56 29.92 29.73 29.90 29.81 29.72 29.89 30.19
Airplane 30.92 31.15 31.41 31.22 31.71 31.50 31.67 31.41 31.50 31.29 31.91
Parrot 33.40 34.09 34.38 34.06 34.61 34.41 34.42 34.39 34.29 33.88 34.90
Average 30.37 30.81 31.13 30.83 31.31 31.15 31.28 31.15 31.14 31.12 31.56

more consistent measurement of image quality with human
eye perception [36]. Our proposed method also achieves
better performance compared with other methods on average.
The best results are highlighted for each image in Table I
and Table II. Fig. 9 shows the reconstruction quality and the
improvement vary with JPEG quality factors. We can see
that our proposed scheme works well over a wide quality
(or bit rate) range. Especially, for the image Barbara, the
performance of our proposed method is much better than
that of others due to lots of similar patches existing in this
image.

To evaluate the influence of noise models, we compare
the performance of two alternative quantization noise mod-
els with the hybrid Gaussian-Laplacian noise model used
in our proposed method. The other two quantization noise
modeling schemes use the Gaussian distribution alone and
the Laplacian distribution alone, respectively. We denote the
compression artifact reduction method with Gaussian quanti-
zation noise model alone as Method-G and the other method
with Laplacian quantization noise model alone as Method-L.
Table III illustrates PSNR results of the three methods.
We can see that the three methods achieve very similar
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Fig. 12. The reconstructed images with different methods. The test image, Motor, is compressed by JPEG at QF = 15.

TABLE II
SSIM RESULTS OF RESTORED IMAGES USING DIFFERENT METHODS FOR TEST IMAGES COMPRESSED BY JPEG AT QF = 15

TestImages JPEG Choy’s | Nosratinia’s PSW Sun’s NLM BM3D SKR KSVD PLOW | Proposed
Barbara 0.816 0.824 0.830 0.830 0.832 0.841 0.845 0.833 0.838 0.843 0.844
Cameraman | 0.836 0.845 0.854 0.844 0.863 0.858 0.858 0.852 0.850 0.858 0.862
FishingBoat | 0.804 0.815 0.825 0.813 0.823 0.823 0.828 0.824 0.807 0.826 0.827
Lena 0.852 0.872 0.876 0.873 0.878 0.878 0.879 0.877 0.870 0.881 0.882
Peppers 0.817 0.838 0.843 0.839 0.849 0.845 0.845 0.845 0.842 0.847 0.850
Hats 0.859 0.875 0.880 0.875 0.884 0.885 0.883 0.880 0.880 0.877 0.887
Kodim04 0.809 0.824 0.828 0.822 0.828 0.827 0.831 0.826 0.815 0.824 0.831
Motor 0.808 0.818 0.829 0.817 0.831 0.831 0.838 0.835 0.822 0.836 0.836
Window 0.889 0.908 0.916 0.908 0.921 0.921 0.920 0.916 0.915 0.915 0.923
Sailboats 0.867 0.880 0.887 0.878 0.890 0.890 0.887 0.885 0.885 0.882 0.893
Sailboats2 0.846 0.860 0.869 0.858 0.871 0.873 0.875 0.869 0.861 0.870 0.876
Statue 0.838 0.858 0.864 0.859 0.867 0.866 0.867 0.866 0.855 0.863 0.869
Tower 0.811 0.820 0.825 0.819 0.824 0.823 0.826 0.821 0.811 0.822 0.827
Airplane 0.873 0.879 0.884 0.878 0.887 0.886 0.886 0.883 0.878 0.882 0.888
Parrot 0.884 0.907 0.910 0.907 0.915 0.913 0.910 0.910 0.905 0.906 0.916
Average 0.841 0.855 0.861 0.855 0.864 0.864 0.865 0.861 0.856 0.862 0.867

performance (with difference smaller than 0.2 dB and average the overall performance. The reason is that in our framework,
difference smaller than 0.02 dB), which suggests that the three ~ we estimate the original coefficients by adaptively fusing the
quantization noise models do not have significant difference on  two predictions, i.e., predicted coefficients from the decoded
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TABLE III
PSNR RESULTS OF RESTORED IMAGES USING DIFFERENT QUANTIZATION NOISE MODELS FOR TEST IMAGES COMPRESSED BY JPEG (UNIT: dB).

Testlmages QF=15 QF=25 QF=35 QF=45
Method-G | Method-L | Proposed |Method-G|Method-L | Proposed |Method-G|Method-L | Proposed |Method-G|Method-L | Proposed
Barbara 28.54 28.62 28.60 31.26 31.40 31.39 33.03 33.15 33.14 34.20 34.29 34.30
Cameraman 28.69 28.66 28.67 30.27 30.23 30.22 31.49 31.44 31.42 32.39 3230 32.28
FishingBoat 30.57 30.56 30.57 32.20 32.18 32.19 33.28 33.26 33.26 34.02 33.99 33.99
Lena 33.34 33.34 33.34 34.85 34.84 34.84 35.72 35.71 35.70 36.39 36.38 36.37
Peppers 32.94 32.94 32.94 34.12 34.12 34.12 34.79 34.79 34.78 35.30 35.29 35.29
Hats 33.31 33.31 33.32 34.91 34.92 34.92 35.98 3597 3598 36.85 36.83 36.84
Kodim04 32.15 32.13 32.15 33.67 33.65 33.67 34.62 34.59 34.60 35.32 35.27 35.28
Motor 27.38 27.38 27.39 29.18 29.17 29.17 30.53 30.48 30.48 31.51 31.43 31.42
Window 32.72 32.73 32.74 34.59 34.60 34.61 35.75 35.74 35.75 36.67 36.65 36.66
Sailboats 32.77 32.74 32.75 34.45 3443 34.44 35.57 35.53 35.53 36.38 36.34 36.34
Sailboats2 32.44 3245 32.46 34.24 34.25 34.25 35.42 35.42 3542 36.23 36.21 36.22
Statue 31.48 31.48 31.48 33.14 33.12 33.13 34.23 34.21 34.21 35.06 35.01 35.01
Tower 30.19 30.17 30.19 31.80 3177 31.77 32.86 32.81 32.81 33.66 33.61 33.61
Airplane 31.91 31.91 31.91 33.50 33.49 33.50 34.56 34.53 34.53 35.34 35.29 35.29
Parrot 34.90 34.88 34.90 36.60 36.58 36.59 37.70 37.67 37.67 38.49 38.45 38.44
Average 31.56 31.55 31.56 33.25 33.25 33.25 34.37 3435 34.35 35.18 35.16 35.16
TABLE IV

image and from the group of similar blocks. The weights of
the two predictions are determined by their variance. Since
coefficients from the group of similar blocks with current
block fall into a small range constrained by quantization
intervals, their variance in general is much smaller than that
of coefficient quantization errors in current block, which is
formed by all possible image blocks. Therefore, the prediction
from the group of similar bocks will dominate the ultimate
prediction result.

In Fig. 10, we illustrate the mean square error of coefficients
for Lena, reconstructed with our proposed method and JPEG
for different bands. We can see that our proposed method can
significantly reduce the mean square error of coefficients in
low and middle frequency bands.

In Fig. 11 and 12, we show the subjective quality of the
reconstructed images which are also compressed at QF = 15.
From the subjective quality comparison, we can see that the
compression artifacts are obvious in the images reconstructed
by the standard JPEG decoder. The compared methods are
able to reduce the compression artifacts partially, but some
blocking and ringing artifacts are still observed obviously in
the images, e.g. on the airscrew in Fig. 11 and on the back
of the rider in Fig.12. Our proposed method produces more
pleasing visual quality than that of other methods, especially
in the region of the red box. It does not only reduce most
of the compression artifacts significantly, but also preserves
image edges very well.

In the following experiment, we compare our proposed
method with the in-loop filter of H.264/AVC [35]. The soft-
ware of H.264/AVC is JM18.2 [36]. The sequences are com-
mon test sequences with WQVGA format widely used in
video coding standards, BaskeballPass, BQSquare, Blowing-
Bubbles, RaceHorses. These sequences are compressed with
intra coding method of H.264/AVC, in which we make only
8 x 8 block partition enable for convenience. The quantization
parameters are set as 37 and 47 respectively. The parameter o
in (29) is set as 25 for Gaussian quantization noise distribution
and 20 for Laplacian quantization noise distribution, because
the transform coefficients of the prediction residuals are

OBJECTIVE QUALITY OF RESTORED IMAGES USING DIFFERENT
METHODS FOR TEST IMAGES COMPRESSED WITH H.264 INTRA
CODING AND QP =37

H.264 w/o Deblocking|H.264 Deblocking| Proposed

Test Images
PSNR SSIM | PSNR | SSIM | PSNR | SSIM
BQSquare 28.68 0.843 28.79 | 0.849 | 28.88 | 0.859
BasketballPass 31.94 0.844 32.21 | 0.852 | 32.45 | 0.857
BlowingBubbles 29.98 0.815 30.15 | 0.822 | 30.34 | 0.827
RaceHorses 30.25 0.839 30.46 | 0.847 | 30.77 | 0.855
Average 30.21 0.835 30.40 | 0.843 | 30.60 | 0.850

TABLE V

OBJECTIVE QUALITY OF RESTORED IMAGES USING DIFFERENT
METHODS FOR TEST IMAGES COMPRESSED WITH H.264 INTRA
CODING AND QP =47

H.264 w/o Deblocking|H.264 Deblocking Proposed

Test Images
PSNR SSIM PSNR | SSIM | PSNR | SSIM
BQSquare 21.96 0.677 22.14 | 0.693 | 22.35 | 0.707
BasketballPass 26.31 0.680 26.59 | 0.698 | 26.76 | 0.705
BlowingBubbles 24.62 0.581 2495 | 0.611 | 25.03 | 0.614
RaceHorses 24.60 0.634 2497 | 0.667 | 25.12 | 0.675
Average 24.37 0.643 24.66 | 0.667 | 24.82 | 0.675

more concentrated around zero, which causes the quantization
noises with a lower variance. The other parameters are the
same as the above experiments. Table IV and V illustrate
the objective quality of the luminance component with two
quality assessment methods, PSNR and SSIM. Our proposed
method achieves up to 0.31 dB gain over the in-loop filter
of H.264/AVC for RaceHorses at QP = 37. On average, our
proposed method achieves 0.20 dB gain over in-loop filter
of H.264/AVC at QP = 37, and achieves 0.16 dB gain at
QP = 47.

VI. CONCLUSION

In this paper, we propose a new transform-domain approach
to reduce the compression artifacts. In the proposed scheme,
the transform coefficients of a compressed image are restored
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by adaptive estimation of DCT coefficients in overlapped
transform-blocks. The quality of restored images is improved
via combining the quantization noise model and block sim-
ilarity prior model. To tackle the optimization problem, the
overlapped blocks are divided into several subsets containing
non-overlapped blocks so that the overall optimization is
reduced to a set of sub-optimization problems that can be
easily solved. An effective parameter selection method is
proposed to make our scheme more practical. Experimental
results demonstrate that our proposed method can remarkably
improve both the subjective and the objective quality of the
block transform coded images.

APPENDIX

In order to solve the sub-optimization problem, we substi-
tute the probabilities in (8), (12) and (18) into (7). For the
bands with Gaussian quantization noise distribution, the opti-
mization problem is formulated as, (31) as shown at the top
of the page.

Here, XB, Y, and VN(B) are vectors whose elements
are taken row-wise from corresponding blocks. The func-
tion, diag(-), constructs a diagonal matrix with its elements.
Assuming that the blocks in image Z are independent, the
optimization problem in (31) is equal to that in (32) for all
the blocks in Q**?(i, )

X' = argmin 5 (X — Yp)" C,' X5 — Yn)
et g @
+3XB-Ynm) Cym X8 - Yvm).

Therefore, the solution of optimization problem in (32) is
derived by setting its derivative to zero w.r.t. Xg in each block
subset

Cy' X5 —-Yn) + Cys (X5 - YNm) = 0.

The solution is derived as follows.

X's= (Cél + C/_\fl(B))_l (CQIYB + Cxs) YV (’5))‘ 34

(33)

Because the two matrices Cél and CX}( are diagonal ones,
the solution for bands in (26) is obtained by substituting the
matrices with their elements.

0-_/%/’(3) (I/t, U) YB (I/t, U)

aé (u,v) + ajz\/(B) (u,v)
aé (1, 0) YNy (u,0)
O'é (u,v) + 0/2\/(3) (u,v)

For the bands with Laplacian quantization noise distribution,
the optimization problem is formulated as,

X (u,0) =

(35)

x = argmaxlogPr, (x) + logPry (x)
X
I 1
Beasr(ij) | V2 |Co|'?
1
X exp {—szQZ X5 — Y,3|] ]
(36)

= argmax log
X

1
Hog 1 {——p
BeQsub (i, j) ’CN(B) ’

1 —
X exp {—5 (XB— YN(B))T

Cym (X8 —Ynm) }}

The optimization process is similar with that in [37].
The derivative of the equation (36) is set to zero w.r.t. Xg
in each block subset.

_1 —
V2€ ) sign (Xg — YB) + Cyi (X8 — YA m) = 0,

(37)
1 x>0

sign(x)=1 0 x=0 (38)
-1 x <0O.

The solution for bands in (27) is obtained by substituting the
matrices with their elements, (39) as shown at the top of the

page.
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